Aplikace matematiky

Teresa Regińska

Superconvergence of external approximation for two-point boundary problems

Aplikace matematiky, Vol. 32 (1987), No. 1, 25-36
Persistent URL: http://dml.cz/dmlcz/104233

Terms of use:

© Institute of Mathematics AS CR, 1987
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SUPERCONVERGENCE OF EXTERNAL APPROXIMATION FOR TWO-POINT BOUNDARY PROBLEMS

Teresa Regińska

(Received August 7, 1985)

Summary. The superconvergence property of a certain external method for solving two point boundary value problems is established. In the case when piecewise polynomial spaces are applied, it is proved that the convergence rate of the approximate solution at the knot points can exceed the global one.

Keywords: Superconvergence of external approximations, two-point boundary value problems

INTRODUCTION

Finite element approximate solutions of differential equations can possess a superconvergence property, that is, there are some distinguished sets of points at which the convergence rate of the solution or its gradient exceeds the global optimum. It has been observed (cf. De Boor-Swartz [2], Douglas-Dupont [4]) that certain collocation methods give a superconvergence of solution at the knot points of the splines used. Moreover, superconvergence at the knots has been established by Douglas-Dupont [5] for the Galerkin solution of the two point boundary value problem when the approximation subspaces consist of C^{0}-piecewise polynomials. A superconvergence phenomenon for the gradient of the finite element approximate solution of the second order elliptic boundary value problem was analysed e.g. by Zlámal [9] and Křížek-Neittaanmäki [7] where extensive references concerning this problem can be found.

The object of this paper is to establish some superconvergence properties of a certain external method for solving two point boundary value problems using piecewise polynomial spaces. The method considered is a generalization of the Galerkin method.

Let us consider the problem

$$
\begin{gather*}
-u^{\prime \prime}+b u=f \quad \text { on } \quad I=[0,1] \tag{1.1}\\
u(0)=u(1)=0 .
\end{gather*}
$$

We will assume that $b \geqq \beta>0, b, f \in \mathscr{L}^{2}(I)$.

Let us introduce two families of spaces $\left\{V_{h}\right\}_{h \in \mathscr{H}},\left\{W_{h}\right\}_{h \in \mathscr{P}}$ such that $V_{h} \subset H_{0}^{1}(I)$ and $W_{h} \subset \mathscr{L}^{2}(I)$. Let ϕ_{h} be the orthogonal projection of $\mathscr{L}^{2}(I)$ onto W_{h}, i.e.

$$
\begin{equation*}
\forall w_{h} \in W_{h}, \quad \forall v \in \mathscr{L}^{2}(I), \quad\left(v-\phi_{h} v, w_{h}\right)=0, \tag{1.2}
\end{equation*}
$$

where (,) denotes the scalar product in $\mathscr{L}^{2}(I)$.
The following approximate problem will be considered:

$$
\begin{gather*}
\text { find } u_{h} \in V_{h} \quad \text { such that } \tag{1.3}\\
\left(u_{h}^{\prime}, v_{h}^{\prime}\right)+\left(b \phi_{h} u_{h}, \phi_{h} v_{h}\right)=\left(f, \phi_{h} v_{h}\right) \quad \forall v_{h} \in V_{h} .
\end{gather*}
$$

It is a certain kind of the external approximation of (1.1) - the solution u is approximated by the pair $\left\{\phi_{h} u_{h}, u_{h}\right\}$. The problem (1.3) is another formulation of the partial approximation of (1.1) considered by Aubin in [1] (cf. Definition 2.1, Chap. XI) for a special choice of prolongations. This external approximation was also applied to solving eigenvalue problems (cf. [8]).

In Section 2 a certain generalization of the Cea lemma giving a relation between the error bound and the approximation properties of V_{h} and W_{h} is proved. The main result concerning the superconvergence property is presented in Section 3 for the case when V_{h} and W_{h} are piecewise polynomial spaces. It is proved that if the solution is sufficiently smooth then the error at the knots is bounded by the square of the possible global estimation. In Section 4 the explicit form of $\phi_{h} v_{h}$ for $v_{h} \in V_{h}$ is found for a special choice of piecewise polynomial spaces. The general case of external approximation for higher order equations applying more than one, not sufficiently orthogonal, projections ϕ_{h}, will be considered in the subsequent paper.

2. ERROR ESTIMATION

The following notation will be used:

$$
\begin{array}{ll}
F=\mathscr{L}^{2} \times H_{0}^{1}, & F_{n}=W_{h} \times V_{h} \subset F ; \\
\omega: H_{0}^{1} \rightarrow F ; & \omega u=\{u, u\} \in F ; \\
\omega_{h}: V_{h} \rightarrow F_{h} ; & \omega_{h} v_{h}=\left\{\phi_{h} v_{h}, v_{h}\right\} .
\end{array}
$$

Let us introduce a bilinear form \bar{a} on $F \times F$:

$$
\begin{gathered}
\bar{a}(\bar{u}, \bar{v})=\left(u_{1}^{\prime}, v_{1}^{\prime}\right)+\left(b u_{0}, v_{0}\right) \\
\forall \bar{u}, \bar{v} \in F, \quad \bar{u}=\left\{u_{0}, u_{1}\right\}, \quad \bar{v}=\left\{v_{0}, v_{1}\right\} .
\end{gathered}
$$

By the assumption $b \geqq \beta>0, \bar{a}$ is F-elliptic, i.e.

$$
\bar{a}(\bar{u}, \bar{u}) \geqq \beta\|\bar{u}\|_{F}^{2} \quad \forall \bar{u} \in F,
$$

and moreover, $\exists \alpha>0 \forall \bar{u}, \bar{v} \in F$

$$
\bar{a}(\bar{u}, \bar{v}) \leqq \alpha\|\bar{u}\|_{F}\|\bar{v}\|_{F},
$$

where $\|\bar{u}\|_{F}^{2}=\left\|u_{0}\right\|_{0}^{2}+\left\|u_{1}\right\|_{1}^{2}$.

The variational formulation of the problem (1.1) and the problem (1.3) can be written as follows:

$$
\begin{align*}
& \bar{a}(\omega u, \omega v)=(f, v) \quad \forall v \in H_{0}^{1}, \tag{2.1}\\
& \bar{a}\left(\omega_{h} u_{h}, \omega_{h} v_{h}\right)=\left(f, \phi_{h} v_{h}\right) \quad \forall v_{h} \in V_{h} . \tag{2.2}
\end{align*}
$$

We will assume that $\forall v \in H_{0}^{1}\left\|\left(1-\phi_{h}\right) v\right\|_{0} \leqq c h\|v\|_{1}$.
Under this assumption there exists a unique solution of (2.2) for $h<h_{0}$ since, by the F-ellipticity of $\bar{a}, \bar{a}\left(\omega_{h} v_{h}, \omega_{h} v_{h}\right) \geqq c\left\|v_{h}\right\|_{1}^{2}$ for $h<h_{0}$.
Putting $v=v_{h}$ in (2.1) and subtracting (2.2) from (2.1) we obtain

$$
\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega_{h} v_{h}\right)+\bar{a}\left(\omega u, \omega v_{h}-\omega_{h} v_{h}\right)=\left(f, v_{h}-\phi_{h} v_{h}\right) .
$$

Since $\omega v_{h}-\omega_{h} v_{h}=\left\{v_{h}-\phi_{h} v_{h}, 0\right\}$ and $f-b u=-u^{\prime \prime}($ from (1.1)), we have

$$
\begin{equation*}
\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega_{h} v_{h}\right)=\left(-u^{\prime \prime}, v_{h}-\phi_{h} v_{h}\right) \quad \forall v_{h} \in V_{h} . \tag{2.3}
\end{equation*}
$$

The following theorem is similar to the Cea lemma for the Galerkin approximation (cf [3], Th. 2.4.1).

Theorem 1. Let

$$
\left\|v-P_{h} v\right\|_{0} \leqq c h\|v\|_{1} \quad \forall v \in H^{1}(I) .
$$

If u and u_{h} are solutions of (1.1) and (1.3), respectively, then there exists a constant c independent of the subspaces V_{h} and W_{h} such that

$$
\left\|\omega u-\omega_{h} u_{h}\right\|_{F} \leqq \underset{v_{h} \in V_{h}}{\left.C \inf _{V_{h}}\left\|u-v_{h}\right\|_{1}+\inf _{w_{h} \in W_{h}}\left\|u-w_{h}\right\|_{0}+h \inf _{w_{h} \in W_{h}}\left\|u^{\prime \prime}-w_{h}\right\|_{0}\right\} ~ . ~}
$$

Proof. From the F-ellipticity of \bar{a} it follows that for an arbitrary element $y_{h} \in V_{h}$

$$
\begin{gathered}
\beta\left\|\omega u-\omega_{h} u_{h}\right\|_{\mathrm{F}}^{2} \leqq \bar{a}\left(\omega u-\omega_{h} u_{h}, \omega u-\omega_{h} u_{h}\right)= \\
=\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega u-\omega_{h} y_{h}\right)+\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega_{h}\left(y_{h}-u_{h}\right)\right) .
\end{gathered}
$$

Thus, the application of the equality (2.3) to the second term of the right-hand side gives

$$
\begin{gather*}
\beta\left\|\omega u-\omega_{h} u_{h}\right\|_{F}^{2} \leqq \tag{2.4}\\
\leqq \alpha\left\|\omega u-\omega_{h} u_{h}\right\|_{F}\left\|\omega u-\omega_{h} y_{h}\right\|_{F}+\left|\left(u^{\prime \prime},\left(1-\phi_{h}\right)\left(y_{h}-u_{h}\right)\right)\right| .
\end{gather*}
$$

Since $\left\|\phi_{h}\right\|=1$, thus $\forall y_{h} \in V_{h}$

$$
\begin{aligned}
& \left\|\omega u-\omega_{h} y_{h}\right\|_{F}=\left\{\left\|u-y_{h}\right\|_{1}^{2}+\left\|u-\phi_{h} y_{h}\right\|_{\|^{2}}\right\}^{1 / 2} \leqq \\
& \leqq\left\{\left\|u-y_{h}\right\|_{1}^{2}+\left|\left\|u-\phi_{h} u\right\|_{0}+\left\|u-y_{h}\right\|_{0}\right|^{2}\right\}^{1 / 2} \leqq \\
& \leqq \sqrt{ } 5 \max \left[\left\|u-y_{h}\right\|_{1},\left\|u-\phi_{h} u\right\|_{0}\right] .
\end{aligned}
$$

Moreover, by (1.2) and by the fact that $\forall v \in \mathscr{L}^{2}(I)$

$$
\left\|\left(1-\phi_{h}\right) v\right\|_{0}=\inf _{w_{h} \in W_{h}}\left\|v-w_{h}\right\|_{0}
$$

it follows that for any $z_{h} \in W_{h}$

$$
\begin{aligned}
& \left|\left(u^{\prime \prime},\left(1-\phi_{h}\right)\left(y_{h}-u_{h}\right)\right)\right|=\mid\left(u^{\prime \prime}-z_{h},\left(1-\phi_{h}\right)\left(y_{h}-u+u-u_{h}\right) \mid \leqq\right. \\
& \leqq\left\|u^{\prime \prime}-z_{h}\right\|_{0}\left\{\inf _{w_{h} \in W_{h}}\left\|\left(y_{h}-u\right)-w_{h}\right\|_{0}+\inf _{w_{h} \in W_{h}}\left\|\left(u-u_{h}\right)-w_{h}\right\|_{0}\right\} \leqq \\
& \leqq h\left\|u^{\prime \prime}-z_{h}\right\|_{0}\left\{\left\|y_{h}-u\right\|_{1}+\left\|u-u_{h}\right\|_{1}\right\},
\end{aligned}
$$

due to the assumption of Theorem 1 . Thus, since $\left\|u-u_{h}\right\|_{1} \leqq\left\|\omega u-\omega_{h} u_{h}\right\|_{F}$, (2.4) implies

$$
\begin{gathered}
\left\|\omega u-\omega_{h} u_{h}\right\|_{F}^{2} \leqq C\left\|\omega u-\omega_{h} u_{h}\right\|_{F}\left\{\max \left(\left\|u-y_{h}\right\|_{1},\left\|u-\phi_{h} u\right\|_{0}\right)+\right. \\
\left.+h\left\|u^{\prime \prime}-z_{h}\right\|_{0}\right\}+h\left\|u^{\prime \prime}-z_{h}\right\|_{0}\left\|u-y_{h}\right\|_{1},
\end{gathered}
$$

for some constant C. Solving this inequality and replacing the maximum of the two norms by the sum, we obtain

$$
\begin{aligned}
\| \omega u- & \omega_{h} u_{h} \|_{F} \leqq C\left\{\left\|u-y_{h}\right\|_{1}+\left\|u-\phi_{h} u\right\|_{0}+h\left\|u^{\prime \prime}-z_{h}\right\|_{0}+\right. \\
& \quad+\left[\left(\left\|u-y_{h}\right\|_{1}+\left\|u-\phi_{h} u\right\|_{0}+h\left\|u^{\prime \prime}-z_{h}\right\|_{0}\right)^{2}+\right. \\
& \left.\left.+4 h\left\|u^{\prime \prime}-z_{h}\right\|_{0}\left\|u-y_{h}\right\|_{1}\right]^{1 / 2}\right\} \leqq \\
\leqq & C(1+\sqrt{ } 3)\left[\left\|u-y_{h}\right\|_{1}+\left\|u-\phi_{h} u\right\|_{0}+h\left\|u^{\prime \prime}-z_{h}\right\|_{0}\right] .
\end{aligned}
$$

The left-hand side does not depend on y_{h} and z_{h}, thus the infimum over $y_{h} \in V_{h}$ and $z_{h} \in W_{h}$ of the right-hand side can be taken. Thus the theorem is established.

Now, our consideration will be restricted to the piecewise polynomial spaces.
Let $h=1 /(n+1)$ and let Δ_{h} (briefly $\left.\Delta\right)$ be the uniform partition of I :

$$
\Delta_{h}=\left\{x_{i}=i h, i=0, \ldots, n+1\right\}, \quad I_{i}=\left(x_{i}, x_{i+1}\right) .
$$

Let $P_{r}\left(I_{i}\right)$ denote the class of polynomials of degree not greater than r on the set I_{i}. Let

$$
\begin{aligned}
& S_{h}\left(C^{0}, r\right)=\left\{v \in C(I), v \in \mathscr{P}_{r}\left(I_{i}\right) i=0, \ldots, n\right\}, \\
& S_{h}\left(\mathscr{L}^{2}, r\right)=\left\{v \in \mathscr{L}^{2}(I), v \in \mathscr{P}_{r}\left(I_{i}\right) i=0, \ldots, n\right\} .
\end{aligned}
$$

It will be assumed that

$$
\begin{equation*}
V_{h}=S_{h}\left(C^{0}, m\right) \cap H_{0}^{1}(I), \quad W_{h}=S_{h}\left(\mathscr{L}^{2}, s\right) \tag{2.5}
\end{equation*}
$$

and $m>s \geqq 0$.
Let $v \in H_{\Delta}^{r+1}$, where

$$
H_{\Delta}^{r+1}=\left\{v \in \mathscr{L}^{2}(I): v \in H^{r+1}\left(I_{i}\right), i=0, \ldots, n\right\}
$$

with the norm

$$
\|v\|_{\Delta r+1}^{2}=\sum_{i=0}^{n}\left\|\left.v\right|_{I_{i} i}\right\|_{r+1}^{2} .
$$

Let us introduce $I_{\Delta}^{r} v$ as the spline interpolant to v from $S_{h}\left(C^{0}, r\right)$ generated by the knots

$$
x_{i j}=x_{i}+j \frac{h}{r}, \quad j=0, \ldots, r-1, \quad x_{i r}=x_{i+1,0}=x_{i+1} .
$$

Thus

$$
\begin{equation*}
I_{\Delta}^{r} v(x)=\sum_{i=0}^{n} p_{r i}(x) \chi\left(\frac{x}{h}-i\right) \tag{2.6}
\end{equation*}
$$

where $\chi(x)$ is the characteristic function of the interval $(0,1)$ and $p_{r i} \in \mathscr{P}_{r}\left(I_{i}\right)$ satisfies

$$
\begin{equation*}
p_{r i}\left(x_{i j}\right)=v\left(x_{i j}\right) \quad j=0, \ldots, r . \tag{2.7}
\end{equation*}
$$

From the Peano Kernel Theorem ([6], Th. 3.7.1) it follows that if $p_{\text {ri }}$ satisfies (2.7) then

$$
\left\|v-p_{r i}\right\|_{H^{1}\left(I_{i}\right)}^{2} \leqq c h^{2 r} \int_{x_{i}}^{x_{i+1}}\left|v^{(r+1)}\right|^{2} .
$$

Thus

$$
\begin{equation*}
\left\|v-I_{\Delta}^{r} v\right\|_{1}^{2}=\sum_{i=0}^{n}\left\|v-p_{r i}\right\|_{H^{1}\left(I_{i}\right)}^{2} \leqq c h^{2 r}\|v\|_{\Delta r+1}^{2} . \tag{2.8}
\end{equation*}
$$

Similarly the spline interpolant $J_{4}^{r} v$ to v from $S_{h}\left(\mathscr{L}^{2}, r\right)$ can be constructed. Namely, let $y_{i j}=x_{i}+j(h /(r+1)), j=0, \ldots, r$ be the knot points of interpolation and let

$$
\begin{equation*}
J_{\Delta}^{r} v(x)=\sum_{i=0}^{n} q_{r i}(x) \chi\left(\frac{x}{h}-i\right) \tag{2.9}
\end{equation*}
$$

where $q_{r i} \in \mathscr{P}_{r}\left(I_{i}\right)$ satisfies

$$
\begin{equation*}
q_{r i}\left(y_{i j}\right)=v\left(y_{i j}\right), \quad j=0, \ldots, r \tag{2.10}
\end{equation*}
$$

Since $L_{i}^{(v)}:=\left.\left(v-J_{\Delta}^{r} v\right)\right|_{I_{i}}=0$ for all $v \in \mathscr{P}_{k}\left(I_{i}\right)$ where k is an arbitrary integer not greater than r, then for $v \in H^{k+1}\left(I_{i}\right)$ the Peano theorem ([6], th. 3.7.1) implies that

$$
\left\|v-J_{\Delta}^{r} v\right\|_{\mathscr{L}^{2}\left(I_{i}\right)} \leqq c h^{k+1}\left\|v^{(k+1)}\right\|_{\mathscr{L}^{2}\left(I_{i}\right)} .
$$

Thus,

$$
\begin{equation*}
\left\|v-J_{\Delta}^{r} v\right\|_{0} \leqq c h^{k+1}\|v\|_{\Delta k+1} \tag{2.11}
\end{equation*}
$$

for $v \in H_{4}^{k+1}(I)$ provided $k \leqq r$.
Therefore, (2.8) and (2.11) imply that if $u \in H_{\Delta}^{m+1}$ then

$$
\left\{\begin{array}{l}
\inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{1} \leqq c h^{m}\|u\|_{\Delta m+1}, \tag{2.12}\\
\inf _{w_{h} \in W_{h}}\left\|u-w_{h}\right\|_{0} \leqq c h^{s+1}\|u\|_{\Delta s+1}, \\
\inf _{w_{h} \in W_{h}}\left\|u^{\prime \prime}-w_{h}\right\|_{0} \leqq c h^{\min (s+1, m-1)}\|u\|_{\Delta m+1} .
\end{array}\right.
$$

The following estimation is a simple consequence of Theorem 1 and (2.12)
Corollary 1. If $b, f \in H_{\Delta}^{m+1}(I)$ and $V_{h}=S_{h}\left(C^{0}, m\right) \cap H_{0}^{1}$ and $W_{h}=S_{h}\left(\mathscr{L}^{2}, s\right)$ for $m>s \geqq 0$, then

$$
\left\|\omega u-\omega_{h} u_{h}\right\|_{0} \leqq c h^{s+1} .
$$

Convergence and error estimates of the external approximation of an elliptic operator were also considered by Aubin ([1], Th. 2.2. Chap. XI). The general results were obtained in another way.

3. SUPERCONVERGENCE AT THE KNOTS

Let $G(t, x)$ be the Green function of the operator - $u^{\prime \prime}$ with the boundary conditions $u(0)=u(1)=0$.

Thus

$$
G^{\prime}(t, x)= \begin{cases}(1-t) x & 0 \leqq x \leqq t \\ (1-x) t & t \leqq x \leqq 1\end{cases}
$$

and

$$
\left(u^{\prime}, G^{\prime}(t, \cdot)\right)=-\int_{0}^{1} u^{\prime \prime}(x) G(t, x) \mathrm{d} x=u(t) .
$$

Let $\left.\hat{v}_{(}^{\prime} x\right)=G\left(x_{i}, x\right)$, where $x_{i}=i h, 0 \leqq i \leqq n+1$.
Then $\hat{v} \in V_{h}$ because, as was mentioned above, we consider now the case of the piecewise polynomial subspaces V_{h} and W_{h} given by (2.5) for $m \geqq 1$. The equation (2.3) for $v_{h}=\hat{v}$ takes the form

$$
\left(u-u_{h}\right)\left(x_{i}\right)=\left(-u^{\prime \prime}, \hat{v}-\phi_{h} \hat{v}\right)+\left(b\left(u-\phi_{h} u_{h}\right), \phi_{h} \hat{v}\right) .
$$

If $s \geqq 1$ then $\hat{v} \in S_{h}\left(\mathscr{L}^{2}, s\right)$ and $\hat{v}=\phi_{h} \hat{v}$. Thus

$$
\left|\left(u-u_{h}\right)\left(x_{i}\right)\right| \leqq\left\{\begin{array}{l}
\left|\left(b\left(u-\phi_{h} u_{h}\right), \hat{v}\right)\right| \text { if } \quad s \geqq 1, \tag{3.1}\\
\left|\left(b\left(u-\phi_{h} u_{h}\right), \phi_{h} \hat{v}\right)\right|+\left|\left(u^{\prime \prime}, \hat{v}-\phi_{h} \hat{v}\right)\right| \text { if } s=0 .
\end{array}\right.
$$

The trick presented above was used by Douglas-Dupont [5] for establishing a superconvergence result for the Galerkin method.

Lemma 1. Let u and u_{h} be the solutions of (1.1) and (1.3), respectively. If $b, f \in$ $\in H_{\Delta}^{m-1}(I)$ and V_{h} and W_{h} are given by (2.5) then there exists a constant c independent of h such that

$$
\left|\left(u-u_{h}, b \hat{v}\right)\right| \leqq \begin{cases}c^{2(s+1)} & \text { if } \quad s<m-1, \\ c h^{2 m-1} & \text { if } \quad s=m-1 .\end{cases}
$$

If moreover $b, f \in H_{\Delta}^{m}(I)$ then for $s=m-1$,

$$
\left|\left(u-u_{h}, b \hat{v}\right)\right| \leqq c h^{2 m} .
$$

Proof. Let us introduce an auxiliary problem

$$
\begin{equation*}
\text { find } \quad \psi \in H_{0}^{1}, \quad \bar{a}(\omega v, \omega \psi)=(v, b \hat{v}) \quad \forall v \in H_{0}^{1} . \tag{3.2}
\end{equation*}
$$

By the F-ellipticity pf \bar{a}, there exists a unique solution of (3.2). If $b \in H_{\Delta}^{v}(v=$ $=m-1, m)$, then $b \hat{v} \in H_{\Delta}^{v}$ and $\psi \in H_{\Delta}^{v+2}$ and by (2.7) and (2.9),

$$
\begin{equation*}
\left\|\psi-J_{\Delta}^{m} \psi\right\|_{1} \leqq c h^{m}, \quad\left\|b \psi-J_{\Delta}^{s} b \psi\right\|_{0} \leqq c h^{\min (s+1, v)} . \tag{3.3}
\end{equation*}
$$

Put $v=u-u_{h}$ Since $u-u_{h} \in H_{0}^{1}$ thus (3.2) implies that

$$
\begin{gathered}
\left(u-u_{h}, b \hat{v}\right)=\bar{a}\left(\omega\left(u-u_{h}\right), \omega \psi\right)= \\
=\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega(\psi-y)\right)+\bar{a}\left(\omega_{h} u_{h}-\omega u_{h}, \omega \psi\right)+ \\
+\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega y-\omega_{h} y\right)+\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega_{h} y\right)
\end{gathered}
$$

for arbitrary $y \in H_{0}^{1}$. Let $y=I_{\Delta}^{m} \psi$ (cf. (2.6)). Thus

$$
\left.\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega_{i}^{\prime} \psi-I_{\Delta}^{m} \psi\right)\right) \leqq \alpha \sqrt{ }(2)\left\|\omega u-\omega_{h} u_{h}\right\|_{F}\left\|\psi-I_{\Delta}^{m} \psi\right\|_{1} .
$$

Next, since $u \omega_{h h}-\omega u_{h}=\left\{\phi_{h} u_{h}-u_{h}, 0\right\}$, by (1.2) for $w_{h}=J_{\Delta}^{s} b \psi$, we have

$$
\begin{gathered}
\bar{a}\left(\omega_{h} u_{h}-\omega u_{h}, \omega \psi\right)=\left(\phi_{h} u_{h}-u_{h}, b \psi-J_{\Delta}^{s} b \psi\right) \leqq \\
\leqq\left\|\phi_{h} u_{h}-u_{h}\right\|_{0} \cdot\left\|b \psi-J_{\Delta}^{s} b \psi\right\|_{0},
\end{gathered}
$$

and moreover,

$$
\begin{gathered}
\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega y-\omega_{h} y\right)=\left(b\left(u-\phi_{h} u_{h}\right), y-\phi_{h} y\right)= \\
\leqq c\left\|\omega u-\omega_{h} u_{h}\right\|_{F} .\left\|I_{\Delta}^{m} \psi-\phi_{h} I_{\Delta}^{m} \psi\right\|_{0} .
\end{gathered}
$$

Finally, (2.3) and (1.2) imply

$$
\begin{gathered}
\bar{a}\left(\omega u-\omega_{h} u_{h}, \omega_{h} y\right)=\left(u^{\prime \prime}, \phi_{h} y-y\right)=\left(u^{\prime \prime}-J_{\Delta}^{s} u^{\prime \prime}, \phi_{h} y-y\right) \leqq \\
\leqq\left\|u^{\prime \prime}-J_{\Delta}^{s} u^{\prime \prime}\right\|_{0} \cdot\left\|I_{\Delta}^{m} \psi-\phi_{h} I_{\Delta}^{m} \psi\right\|_{0} .
\end{gathered}
$$

Thus, (3.3), (2.9) and Corollary 1 yield

$$
\left|\left(u-u_{h}, b \hat{v}\right)\right| \leqq c\left\{h^{(s+1) m}+h^{\min (s+1, v)}\left[\left\|\phi_{h} u_{h}-u_{h}\right\|_{o}+\left\|I_{\Delta}^{m} \psi-\phi_{h} I_{\Delta}^{m} \psi\right\|_{0}\right]\right\}
$$

if $f \in H_{\Delta}^{v}$. Now, it remains to observe that

$$
\left\|u_{h}-\phi_{h} u_{h}\right\|_{0} \leqq\left\|u_{h}-u\right\|_{0}+\left\|u-\phi_{h} u\right\|_{0}+\left\|\phi_{h}\left(u-u_{h}\right)\right\|_{0}
$$

and

$$
\left\|I_{\Delta}^{m} \psi-\phi_{h} I_{\Delta}^{m} \psi\right\|_{0} \leqq\left\|I_{\Delta}^{m} \psi-\psi\right\|_{0}+\left\|\psi-\phi_{h} \psi\right\|_{0}+\left\|\phi_{h}\left(\psi-I_{\Delta}^{m} \psi\right)\right\|_{0}
$$

yield

$$
\left\|u_{h}-\phi_{h} u_{h}\right\|_{0} \leqq c\left[h^{s+1}+\left\|u-\phi_{h} u\right\|_{0}\right] \leqq c\left[h^{s+1}+\left\|u-I_{\Delta}^{s} u\right\|_{0}\right] \leqq c_{1} h^{s+1}
$$

and

$$
\left\|I_{\Delta}^{m} \psi-\phi_{h} I_{\Delta}^{m} \psi\right\|_{0} \leqq c\left[h^{m+1}+\left\|\psi-\phi_{h} \psi\right\|_{0}\right] \leqq c\left[h^{m+1}+\left\|\psi-I_{\Delta}^{s} \psi\right\|_{0}\right] \leqq c_{1} h^{s+1}
$$

and the lemma is proved.
Theorem 2. Let u and u_{h} be the solutions of (1.1) and (1.3), respectively. If $b, f \in$ $\in H_{\Delta}^{m-1}$ and V_{h} and W_{h} are given by (2.5) then for $x_{i}=i h, i=1, \ldots, n$,

$$
\left|u\left(x_{i}\right)-u_{h}\left(x_{i}\right)\right| \leqq\left\{\begin{array}{lll}
c h^{2(s+1)} & \text { if } \quad s<m-1 \\
c^{2 m-1} & \text { if } \quad s=m-1 .
\end{array}\right.
$$

If moreover $b, f \in H_{\Delta}^{m}$ then for $s=m-1$,

$$
\left|u\left(x_{i}\right)-u_{h}\left(x_{i}\right)\right| \leqq c h^{2 m} .
$$

Proof. Let us observe that

$$
\left|\left(b\left(u-\phi_{h} u_{h}\right), \phi_{h} \hat{v}\right)\right| \leqq c\left\|u-\phi_{h} u_{h}\right\|_{0}\left\|\hat{v}-J_{\Delta}^{s} \hat{v}\right\|_{0}+\left|\left(b\left(u-\phi_{h} u_{h}\right), \hat{v}\right)\right|
$$

and

$$
\begin{gathered}
\left|\left(b\left(u-\phi_{h} u_{h}\right), \hat{v}\right)\right|=\left|\left(u-\phi_{h} u, b \hat{v}\right)+\left(u-u_{h}, \phi_{h} b \hat{v}-b \hat{v}\right)+\left(u-u_{h}, b \hat{v}\right)\right| \leqq \\
\leqq\left\|b \hat{v}-J_{\Delta}^{s} b \hat{v}\right\|_{0}\left[\left\|u-J_{\Delta}^{s} u\right\|_{0}+\left\|u-u_{h}\right\|_{0}\right]+\left|\left(u-u_{h}, b \hat{v}\right)\right| .
\end{gathered}
$$

Thus, due to Lemma 1, Corollary 1 and the estimate (2.11) it follows that

$$
\left|\left(b\left(u-\phi_{h} u_{h}\right), \phi_{h} \hat{v}\right)\right| \leqq c h^{(s+1) \min (s+1, m-1)} .
$$

Now, the theorem follows from (3.1) and the estimate

$$
\begin{aligned}
& \left|\left(u^{\prime \prime}, \hat{v}-\phi_{h} \hat{v}\right)\right| \leqq\left\|u^{\prime \prime}-J_{\Delta}^{s} u^{\prime \prime}\right\|_{0}\left\|\hat{v}-J_{\Delta}^{s} \hat{v}\right\|_{0} \leqq \\
& \quad \leqq\left\{\begin{array}{llll}
0 & \text { if } & s>0, \\
h & \text { if } & s=0 & \text { and } \quad b, f \in \mathscr{L}^{2}(I), \\
h^{2} & \text { if } & s=0 & \text { and } \quad b, f \in H_{\Delta}^{1}(I) .
\end{array}\right.
\end{aligned}
$$

A comparison of the convergence properties of the external method (1.3) and the corresponding Galerkin method is presented in the next remark.

Remark 1. Let z_{h} be the Galerkin approximate solution to u generated by $V_{h}=S_{h}\left(C^{0}, m\right) \cap H_{0}^{1}(I)$ and let u_{h} be the solution of the external approximation equation (1.3) generated by the same V_{h} and $W_{h}=S_{h}\left(\mathscr{L}^{2}, m-1\right)$. Then $\left\|u-u_{h}\right\|_{1}$ is of the same order $\left(0\left(h^{m}\right)\right)$ as $\left\|u-z_{h}\right\|_{1}$ and moreover, for $x_{i}=i h, i=1, \ldots, n$

$$
\left|u\left(x_{i}\right)-u_{h}\left(x_{i}\right)\right| \leqq \begin{cases}c^{2 m-1} & \text { if } \quad b, f \in H_{\Delta}^{m-1}, \\ c h^{2 m} & \text { if } \quad b, f \in H_{\Delta}^{m}\end{cases}
$$

while

$$
\left|u\left(x_{i}\right)-z_{h}\left(x_{i}\right)\right| \leqq c h^{2 m} \quad \text { if } \quad b, f \in H_{\Delta}^{m-1} .
$$

It is easy to see that the same result can be obtained if the nonselfadjoint equation

$$
u \in H_{0}^{1}:\left(u^{\prime}, v^{\prime}\right)+\left(a u, v^{\prime}\right)+(b u, v)=(f, v) \quad \forall v \in H_{0}^{1}
$$

is approximated by

$$
u_{h} \in V_{h}:\left(u_{h}^{\prime}, v_{h}^{\prime}\right)+\left(a \phi_{h} u_{h}, v_{h}^{\prime}\right)+\left(b \phi_{h} u_{h}, \phi_{h} v_{h}\right)=\left(f, \phi_{h} v_{h}\right) \quad \forall v_{h} \in V_{h},
$$

where V_{h}, W_{h} and ϕ_{h} are defined as before.
Moreover, the method can be extended to the case of higher order differential
equations. For example, let us consider the problem

$$
u \in H_{0}^{k}, \quad\left(u^{(k)}, v^{(k)}\right)+(b u, v)=(f, v) \quad \forall v \in H_{0}^{k},
$$

and the approximate equation

$$
u_{h} \in V_{h}:\left(u_{h}^{(k)}, v_{h}^{(k)}\right)+\left(b \phi_{h} u_{h}, \phi_{h} v_{h}\right)=\left(f, \phi_{h} v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

where $V_{h}=S_{h}\left(C^{k-1}, k+r\right) \cap H_{0}^{k}$ and ϕ_{h} is the orthogonal projection of \mathscr{L}^{2} onto $W_{h}=S_{h}\left(\mathscr{L}^{2}, s\right)$. Then it can be proved that

$$
\left\|u-u_{h}\right\|_{k} \leqq c\left\{\inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{k}+\inf _{w_{h} \in W_{h}}\left\|u-w_{h}\right\|_{0}+h_{w_{h} \in W_{h}}^{s} \inf \left\|f-b u-w_{h}\right\|_{0} .\right.
$$

In the case $r \geqq k-1$, the superconvergence at the knot points $x_{i}=i h, i=1, \ldots, n$ can be established under the condition of sufficient regularity of the solution. For the proof of that property, the function $\hat{v}(x)=G\left(x_{i}, x\right)$ is applied, where $G(t, x)$ is the Green function of the problem $(-1)^{k} y^{(2 k)}=f, y \in H_{0}^{k}$. If $r \geqq k-1$ then $\hat{v} \in V_{h}$.

4. THE FINITE DIMENSIONAL PROBLEM

In this section only the spaces V_{h} and W_{h} given by (2.5) for $s=m-1$ will be considered.

In order to obtain a matrix equation implied by (1.3) one needs an explicit form of $\phi_{h} v_{h}$ for $v_{h} \in S_{h}\left(C^{0}, m\right)$.

Let x_{i} be the knot points considered above.
Let $\left\{x_{i j}\right\}_{j=0}^{m}$ be the uniform partition of the subinterval $\left[x_{i}, x_{i+1}\right]: x_{i j}=x_{i}+$ $+(j / m) h, j=0, \ldots, m-1$ and $x_{i m}=x_{i+10}, x_{00}=0, x_{n m}=1$.
Let l_{k}^{m} denote the k-th Lagrange interpolate polynomial on the $m+1$ knots $0=x_{00}, x_{01}, \ldots, x_{0 m}$, i.e.:

$$
l_{k}^{m}(x)=\frac{\left(x-x_{00}\right) \ldots\left(x-x_{0 k-1}\right)\left(x-x_{0 k+1}\right) \ldots\left(x-x_{0 m}\right)}{\left(x_{0 k}-x_{00}\right) \ldots\left(x_{0 k}-x_{0 k-1}\right)\left(x_{0 k}-x_{0 k+1}\right) \ldots\left(x_{0 k}-x_{0 m}\right)}
$$

Similarly, let l_{k}^{m-1} be the k-th Lagrange interpolate polynomial on the m knots $x_{00}, \ldots, x_{0 m-1}$. If $m=0$ we put $l_{0}^{0}=1$. Then, for arbitrary $v_{h} \in V_{h}$ and $w_{h} \in W_{h}$,

$$
\begin{aligned}
& v_{h}(x)=\sum_{i=0}^{n} \sum_{v=0}^{m} v_{h}\left(x_{i v}\right) l_{v}^{m}(x-i h) \chi\left(\frac{x}{h}-i\right) \\
& w_{h}(x)=\sum_{i=0}^{n} \sum_{\mu=0}^{m-1} w_{h}\left(x_{i \mu}\right) l_{\mu}^{m-1}(x-i h) \chi\left(\frac{x}{h}-i\right) .
\end{aligned}
$$

Let $\mathfrak{a}_{v}=\left\{\alpha_{v j}\right\}_{j=0}^{m-1}$ be a solution of the matrix equation

$$
A_{h} \mathfrak{a}_{v}=\mathfrak{b}_{v}
$$

where

$$
A_{h}=\left\{\left(l_{\mu}^{m-1}, l_{j}^{m-1}\right)_{\mathscr{L}^{2}(0, h)}\right\}_{\mu, j=0}^{m-1}
$$

and

$$
\mathbf{b}_{v}=\left\{\left(l_{v}^{m}, l_{j}^{m-1}\right)_{\mathscr{L}^{2}(0, h)}\right\}_{j=0}^{m-1} .
$$

Since A_{h} is the Gramm matrix of a linearly independent set of functions on $[0, h]$, A_{h}^{-1} exists and $\mathfrak{a}_{v}=A_{h}^{-1} \mathfrak{b}_{v}$. Let

$$
q_{v}(x)=\sum_{j=0}^{m-1} \alpha_{v j} l_{j}^{m-1}(x) \text { for } x \in[0, h]
$$

It is easy to see that $q_{v}(x)=\phi_{h} l_{v}^{m}$ since

$$
\int_{0}^{h} q_{v}(x) l_{j}^{m-1}(x)=\int_{0}^{h} l_{v}^{m}(x) l_{j}^{m-1}(x) \mathrm{d} x \quad \text { for } \quad j=0, \ldots, m-1
$$

Thus, due to the linearity of ϕ_{h}, we have $\forall v_{h} \in V_{h}$

$$
\begin{gather*}
\phi_{h} v_{h}(x)=\sum_{i=0}^{n} \sum_{v=0}^{m} v_{h}\left(x_{i v}\right) \phi_{h}\left[l_{v}^{m}(x-i h) \chi\left(\frac{x}{h}-i\right)\right]= \tag{4.1}\\
=\sum_{i=0}^{n} \sum_{j=0}^{m-1}\left\{\sum_{v=0}^{m} v_{h}\left(x_{i v}\right) \alpha_{v j}\right\} l_{j}^{m-1}(x-i h) \chi\left(\frac{x}{h}-i\right) .
\end{gather*}
$$

As examples, the cases $m=1$ and $m=2$ will be considered. If $m=1$ then $A_{h}=h$ $\mathfrak{b}_{0}=\mathfrak{b}_{1}=h / 2$. Thus $\mathfrak{a}_{0}=\mathfrak{a}_{1}=\frac{1}{2}$ and

$$
\begin{gathered}
\left.\phi_{h}\left[\sum_{i=0}^{n}\left(v_{i}^{\prime} x_{i}\right) l_{0}^{1}(x-i h)+v\left(x_{i+1}\right) l_{1}^{1}(x-i h)\right) \chi\left(\frac{x}{h}-i\right)\right]= \\
=\sum_{i=0}^{n} \frac{1}{2}\left(v\left(x_{i}\right)+v\left(x_{i+1}\right)\right) \chi\left(\frac{x}{h}-i\right)
\end{gathered}
$$

Fig. 1. The orthogonal projection of $v \in S_{h}\left(C^{0}, 1\right)$ onto $S_{h}\left(L^{2}, 0\right)$.

Let now $m=2$. In this case

$$
A_{h}=h\left|\begin{array}{rr}
\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{4}{3}
\end{array}\right|, \quad \mathfrak{b}_{0}=h\left|\begin{array}{l}
\frac{1}{6} \\
0
\end{array}\right|, \quad \mathfrak{b}_{1}=h\left|\begin{array}{l}
0 \\
\frac{2}{3}
\end{array}\right|, \quad \mathfrak{b}_{2}=h\left|\begin{array}{r}
-\frac{1}{6} \\
\frac{1}{3}
\end{array}\right|
$$

and thus

$$
\mathfrak{a}_{0}=\left|\begin{array}{c}
\frac{2}{3} \\
\frac{1}{6}
\end{array}\right|, \quad \mathfrak{a}_{1}=\left|\begin{array}{l}
\frac{2}{3} \\
\frac{2}{3}
\end{array}\right| ; \quad \mathfrak{a}_{2}=\left|\begin{array}{r}
-\frac{1}{3} \\
\frac{1}{6}
\end{array}\right| .
$$

According to (4.1),

$$
\begin{gathered}
\phi_{h}\left[\sum_{i=0}^{n}\left(v\left(x_{i 0}\right) l_{0}^{2}(x-i h)+v_{(}^{\prime}\left(x_{i 1}\right) l_{i}^{2}(x-i h)+v\left(x_{i 2}\right) l_{2}^{2}(x-i h)\right) \chi\left(\frac{x}{h}-i\right)\right]= \\
=\sum_{i=0}^{n}\left\{\left[\frac{2}{3} v\left(x_{i 0}^{\prime}\right)+\frac{2}{3} v\left(x_{i 1}\right)-\frac{1}{3} v_{(}^{\prime}\left(x_{i 2}\right)\right] l_{0}^{1}(x-i h)+\right. \\
\left.+\left[\frac{1}{6} v_{(}^{\prime}\left(x_{i 0}\right)+\frac{2}{3} v_{(}^{\prime}\left(x_{i 1}\right)+\frac{1}{6} v\left(x_{i 2}\right)\right] l_{0}^{1}(x-i h)\right\} \chi\left(\frac{x}{h}-i\right)
\end{gathered}
$$

Fig. 2. The orthogonal projection of $v \in S_{h}\left(C^{0}, 2\right)$ onto $S_{h}\left(L^{2}, 1\right)$.

References

[1] J. P. Aubin: Approximation of elliptic boundary-value problems. Wiley-Interscience, New York, 1972.
[2] C. De Boor, B. Swartz: Collocation at Gausian points. SIAM J. Numer. Anal. 10 (1973), 582-606.
[3] P. Ciarlet: The finite element method for elliptic problems. North-Holland, Publishing Company (1978).
[4] J. Douglas Jr., T. Dupont: Collocation method for parabolic equations in a single space variable. Lecture Notes in Math., 385 (1974).
[5] J. Douglas Jr., T. Dupont: Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems - Topics in numerical analysis, ed. J.J.M.F. Miller, pp. 89-92 (1973).
[6] P, J. Davis: Interpolation and approximation. Blaisdell Publishing Company (1963).
[7] M. Křižek, P. Neittaanmäki: Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45 (1984), pp. 105-116.
[8] T. Regińska: Superconvergence of eigenvalue external approximation for ordinary differential operators. IMA Jour. Numer. Anal. 6 (1986), pp. 309-323.
[9] M. Zlámal: Some superconvergence results in the finite element method - Mathematical Aspects of f.e.m.. Lecture Notes 606 (1977), pp. 353-362.

Souhrn

SUPERKONVERGENCE VNĚJŠÍCH APROXIMACÍ PRO DVOJBODOVOU OKRAJOVOU ÚLOHU

Teresa Regińska

Dokazuje se vlastnost superkonvergence pro jistou vnější metodu řešení dvoubodové okrajové úlohy. Pro případ po částech polynomiálních prostorů je dokázáno, že rychlost konvergence přibližných řešení v uzlových bodech mủže přesáhnout globální rychlost konvergence.

Резюме

СВЕРХСХОДИМОСТЬ ВНЕШНИХ АППРОКСИМАЦИЙ ДЛЯ ДВУХТОЧЕЧНОЙ КРАЕВОЙ ЗАДАЧИ

Teresa Regińska

Доказывается сверхсходимость одного внешнего метода решения двухточечной краевой задачи. Для случая кусочно полиномиальных пространств доказано, что скорость сходимости приближённых решений в узловых точках может превысить скорость сходимости в целом.

Author's address: Dr. Teresa Regińska, Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warszawa, P.O.B. 137, Poland.

