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ON THE SIGNORINI PROBLEM WITH FRICTION
IN LINEAR THERMOELASTICITY:
THE QUASI-COUPLED 2D-CASE

JIRi NEDOMA

(Received June 5, 1985)

Summary. The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the
2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise
linear finite elements on the triangulation of the given domain, numerical procedures are proposed.
The finite element analysis for the Signorini problem with friction on the contact boundary I,
of a polygonal domain G = R? is given. The rate of convergence is proved if the exact solution
is sufficiently regular.

Keywords.: contact problems, variational inequalities, numerical analysis, mechanics, geo-
physics.
AMS Classiffcation: 73TDS.

1. INTRODUCTION

The problem studied is a simulation of a dynamic plate tectonic model, mathe-
matically describing the collision zones in the sense of the new global tectonics. The
aim of the present paper is to extend the results of [23] to the case of plate collision
with friction on the contact boundary between the colliding plates and blocks.
Similar to [21], [23] we shall assume that the collision model can be investigated
from the point of view of 2D — quasi-coupled thermoelasticity.

In the following we shall deal with the quasi-steady-state problem consisting of
the equilibrium equation

(1.1) (cijea(w) + Bi(T—Tp),; + fi=0 in G

and of the heat conduction equation
(1.2) (%;;T;)i + W= 0c;T; in G,

where G is the region occupied by the obducting or subducting plate with boundary
0G. The boundary consists of three parts, G = I', u I, U I',. Thus we consider
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the following three types of boundary conditions: On the Earth’s surface
{1.3a—c) =Py, T=T, or x;T;n;=gq, on I},

where Ty, qo are the temperature and the heat flow and P, is the loading on the

Earth’s surface;

— on the boundary I', the displacement vector u and the temperature T are prescribed,
i.e.

(1.4a,b) u=u,, T=Ty or »;T;n;=0 on TI,;

— the boundary I', represents the contact boundary between the colliding plates,
thus the Signorini conditions and the Coulombian law of friction are given:

(1.5a) u, <0, 7,(u)<0, u,;r,=0 on I, (theSignorini conditions)
(1.50) )] = Fhal . ()] = )] = 0
(Zru))(x) <0=3220, ulx)= —(4r)(x)
(the Coulombian law of friction),
(1.5¢) T<T,, q<0, (T-T,)gq=0 on TI,,

where u,, u, are normal and tangential components of displacement and rn(u) =
= 1,/(u) nnj, T, = © — t,n are the normal and tangential components of the stress
vector.

In linear elasticity contact problems with friction in the sense of the Coulomb law
(see [3]) were solved for the first time by Ne&as et al. [15] who solved the case of
a strip in R?, and JaruSek [12]—[14] who solved the case of a strip in R® and the
general case of the contact of three-dimensional elastic bodies with a sufficiently
smooth boundary. Numerical analysis of Haslinger [7] and Haslinger, Hlavacek [8]
gives the ideas how to solve these types of problems numerically. Due to the dif-
ficulties of the problem, Duvaut [2] introduced a modified friction law for the
Signorini problem replacing the normal stress on the contact boundary by its mollifier.

The aim of the paper is to present the mathematical analysis of the model problem
of the contemporary geodynamics as well as the theory of thermoelasticity, and to
prove the existence and convergence theorems.

2. VARIATIONAL SOLUTION OF THE SIGNORINI PROBLEM WITH FRICTION

Let G = R? be the plane region with a Lipschitz boundary G, occupied by either
an obducting or a subducting plate at the moment ¢ = t,. The boundary dG consists
of the parts I, I',,I,, G =T,0Tl,UT, Let x = (xy,x,;) be Cartesian co-
ordinates. Let n = (ny, n,), t = (t;,1,) = (—n,, n,) denote the unit outward normal
and tangential vectors to the boundary 0G. Let us look for the temperature T e H'(G)
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and the displacement vector u = (uy, u,) € W' = [H'(G)]?, where HYG) = W*%(G),
k € R' denotes the Sobolev space in the usual sense. Let e;;(u) be the strain tensor
and let Duhamel - Neumann’s law be considered, i.e.

(2.1a,b) Ty = Cij ea(u) = Bi(T—T,), e = Hu, ; + u; ;)
where 7;; = 7,j(x) is the stress tensor, T, = T,(x) is the input temperature at which
the materials are in the initial strain and stress state, f;;(x) e C!(G) is the coefficient

of the thermal expansion. The elastic coefficients ¢;j,(x) € C!(G) satisfy the usual
symmetry conditions and the conditions of Lipschitz continuity and ellipticity

(2.2a,b) Cijki = Cjikl = Ckiij »
0 < ag = (cijulx) &) |fi'2 SA,< o VxeG, &= (&)eR*,
a,, Ay are constants independent of x € G and ¢ € R*.
Let »;; = x;;(x) € C'(G) be the thermal conductivity fulfilling
(2.2¢,d) wij = %, ®i(x) 0Lz ||, VxeG, V{eR?, ¢ =const.>0.

Let W = W(x) € I*(G) be the heat sources in the lithospheric plate, o(x) € C(G) and
c.(x) € C(G) the density and the specific heat, f € [I*(G)]* the vector of the body
forces.

The stress tensor satisfies the equilibrium conditions

(2.3) Tij,j +fi=0'
On 0G we define the stress vector t, its normal and tangential components by

Nt

o= T(X)nj, T, =T = Tgnmg,  To= Tl = Tngt,

ijtjtios
and the normal and tangential displacement components by u, = u;n; and u, = u;t;.

Further, denote by (, *) the scalar product in [I*(G)]?, by <+, - ) the scalar product
in [I2(I',)]* and by [-, -] the scalar product in [I*(8G)]>. Denote by H™"*(T,)
the dual space of HY(I,) = {v|ve H'*(0G), v|opar, = 0, with the norm
H'*(0G)}.

We shall look for such T, u, T replaced by T + z, u replaced by u + w, where z
is a sufficiently smooth scalar function in G = G U 0G satisfying (1.3b), (1.4b) and
z = 0 on I, and w is a sufficiently smooth vector function in G = G U 0G satisfying
(1.4a) and w = 0 on I',. Then due to (1.1)—(1.5) and this transformation we have
the following problem:

Problem (P;): find a scalar function T and a vector function u satisfying
(2.4a,b) —(eif(x) T)i + 0c;T; = @, (cijdx) e(u)),; + Fi =0,
i=1,2 in G,
where F; = f; — (B(T — T,)) ; + (cijuen’w)),; € L(G),
Q=W+ (x;2;),; — ocw;z ;€ IXG),

188



(2.5a, b) T=0, t;,n;=P;, on I,,

where P; = Py; — c;jur (W) n,,

(2.6a, b) T=0, u;=0, i=1,2 on T,,

(2.7a—c) T<T,, g0, (T-T,)gq=0 on I,,
u, <0, 7,0, ugw,=0 on I,,

and

e = Zla@ls fu (2] = #lw)]) = 0,
(Fr(w)(x) <0=34=20, ul(x)=—(11)(x),

where & is the coefficient of friction, A is a non-negative function on I',, q is the heat
flow, and F € [[*(G)]?, P e [H™V*(I")]?, uo € [H"*(I',)]?, g0 € I(T), T, e H~Y*(G),
T,e H"V(I,), T, e H"VX(T,), Q € I%(G), T, € H™VX(I’).

Let us suppose that I',e C>!(T,), # € C*! have a compact support and let
dist (supp &, 0G\T,) > 0. Let us denote by

V= {w|weH'G), w=0 on I',u I, in the sense of traces} ,
V={v|veW! v=0 on I, in the sense of traces}
the spaces of virtual temperatures and displacements, respectively, and by
'K ={w|we'W, w< T, on I, in the sense of traces} ,
K ={v|veV, v, =0 on I, in the sense of traces}

the sets of admissible virtual temperatures and admissible virtual displacements,
respectively. Further, denote

# = {g,e H YX(T,), g, < 0 in the dual sense to the ordering on

{w e H*(0G), w|.106\r.) = 0, provided with the norm of H'/%(9G)} given by
the restriction of the canonical ordering on I*(I,)}.

As our quasi-coupled problem is indeed not coupled, therefore both the problems
in thermics and elasticity can be solved separately and the coupling terms
(B:AT — T,)),; have the meaning of body forces. Our further investigations will be
based on the results of [23], [12]—[15].

We shall introduce an auxiliary problem, in which 7,(«) in (2.7) is replaced by g,
Let g, € # be arbitrary. For T, w e H'(G), u,ve W' we put

b(T, w) = by(T, w) + by(T, w) = J\G(%ij(x) T;w,; + ocv;T ;w)dx,

(2.8) s(w) =J Owdx + J gowds or s(w) =J. Qwdx,
G I: G
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B(u,v) = ,[Gcij“ e;j(u) ey(v)dx, S(v) = J‘(;Fivi dx + J; P, ds,
L(v) = Lo(v) + jg,(v)» Lo(v) = $B(v, v) — 5(v),

@) = <Flad ol = | oIl os.
I
Definition 2.1. By a variational solution of the auxiliary problem (P;), we mean
a pair of functions (T, u), Te 'K, u € K, such that

(2.9a, b) b(T,w —T) =z s(w—T),
B(u,v — u) + {F|g.|, |o]] = [u]> = S(v —u), Ywe'K, WweK

where lg,,] means —g, for g,€ . For g, = 0 we have the case without friction

(see [23]).
For u € W' we define 7,(u) by

(2.10) <Tn(u)y v,,) = B(u, U) - (F, U) VU € W1 N U'lru = 0 s Uy c1(6G\T'y) = 0 .

Definition 2.2. A solution (T, u), Te 'K, u €K, of (2.9) such that Fz,(u) = Fy,
with t,(u) from (2.10) is called a weak solution of the Signorini problem with
friction in linear quasi-coupled thermoelasticity.

Remark. As the problem is quasi-coupled the problem (2.9b) is equivalent to the
following variational formulation: u € K such that

(2.9v") L(u) < L(v) VveK.

As the set K is a nonempty, closed and convex subset of ¥, the functional Ly(v) is due
to Theorem 2.1 of [23], convex and differentiable, the functional j,, (v) = <g|v>,
g = Z|g,| is convex and non-differentiable, hence due to [1], (2.9b) and (2.9b")
are equivalent.

It can be shown that any classical solution of the problem discussed is a weak
solution, and conversely, if the weak solution of the discussed problem is smooth
enough, then it represents a classical solution of the problem discussed.

The next theorem gives the existence and unicity of the solution of the problem
(P¢), and an estimate of it. The theorem states that there is a unique solution and that
the problem is well-posed. By the well-posedness we shall mean the existence, uni-
queness, and continuous dependence of the solution on the given data (To, T, 0,
ug, F, Py). From the physical point of view, it reflects the fact that the solution only
changes a little for little changes in the displacements and surface body forces and
temperatures.

Theorem 2.1. Let (2.2a—d) hold. Then for every Q € I’(G), qo € I(T,), g € L*(I',),
Pe[IX(T)]% F € [I?(G)]? there exists a unique solution of Problem (Py),. Further-

190



more, there exist constants cq, ¢, independent of gn such that
IT]: < colldollizry + [Q]12e) + "T1"1 + | Tols»
lullw: = ea]|Plezacran + 1Flerz@ne + ﬂ“oﬂwz .

Proof. The bilinear form b: '¥x 'V — R! is 'V — elliptic and bounded on 'V
and Q €('V)". To complete the first part of the proof for the thermics, the analogy
of the Lax-Milgram theorem for variational inequalities can be used. For the second
part of the proof for elasticity, the set K is closed and convex in W, hence it is
weakly closed. The functional Ly is strictly convex and weakly lower semicontinuous
(see [23]). The functional (g, |v,|) is convex and continuous, and thus it is weakly
lower semicontinuous (see [4]). According to the Korn inequality B(u, u) = ¢, [Ju[w
which is satisfied on V and j,(v) = <g, |v,’> = 0 (for an arbitrary g € L*(T,), we
have {g, |v,|> = 0 as g = 0 a.e. on I,), we find L(u) » oo as |u[y; — oo. Further,
substituting v = u,, uy € W1, uo|r, = 0,into (2. b) we get B(u, u — uq) = S(uo — u).
Applying the Korn inequality, we conclude that

crflullivs < Blu, u) < B(u, u — uo) + S(u — uo) <

< ullws Juollws + [Flewaere [ulws + [Pleacor #lws »
which completes the proof.  Q.E.D.

To prove the existence theorem of the contact problem with bounded friction,
estimates of the admissible coefficient of friction are necessary (Theorem 2.2).
The problem was completely solved by Jarusek [12], [13] for the case of linear
elasticity. As we see from his results and results of Negas et al. [15], the estimate
of the maximal admissible magnitude of the coefficient of friction % depends on the
elastic coefficients, precisely on constants a, and 4, of (2.2b) near the contact surface
in the nonhomogeneous anisotropic case, and on the Lamé constants A and yu in the
nonhomogeneous isotropic case, and is independent of the acting body and surface
forces. As in this paper we deal with the quasi-coupled problem, which is not coupled,
the results of Jarusek [12], [13] can be fully accepted also in this thermoelastic case.

Lemma 2.1. 4 mapping &: Fg,— F v,(u) is continuous on H™Y*(T,) ‘and
t,(u) € H for every g, € H.

For the proof see [13].

The next lemma gives the regularity of &.

Lemma 2.2. A mapping ® acts from H™'**Y(T,) to H"'**/(I,), y€(0, 1)2)
such that
(2.11) 12(g:)]-1/245 < (| #1») "gnn—1/2+y + ¢((F, P, u,),

where ||*[|-1/2+ is the norm in H~Y2*Y(), |||, is the norm in L*(T,).

The proof is based on the use of certain renormation technique by means of shifts
in arguments in (2.9b), the Fourier transformation and the method of local coordi-
nates. For the proof, see [13]. Finally, we have the following result.
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Theorem 2.2. Let G be the domain with the boundary 0G = I', v I', L I', defined
above. Let %;i(x), ¢;;u(x) satisfy (2.2). Let Tye H"Y*(I'), T,e H"YXT,), T, e
e H"YI,), uge W* such that ug|e6\r,) = 0. Let Fe[I*G)]%, Qe I*G), qo €
e IXI'), Pe[H Y*(I')]* such that [P,w] =0 for every we[H'*(8G)]* such
that w|oe\r., = 0. Let F € C*'(T',) have a compact support in T,. Let

(2.12a, b) |[9v‘[]m<(“—°) 12 or ]]9«'|]w<( K >1/4~(cs/cp)1/2

24, A+ 2u

for the nonhomogeneous anisotropic case or for the homogeneous isotropic case,
respectively, where ¢ = po™", ¢2 = (A + 2u) ¢™%, A, u are the Lamé coefficients,
0 the density, c;, ¢, the velocities of S and P waves, respectively, then there exists
at least one solution of the Signorini problem with friction for the quasi-coupled
case in thermoelasticity.

Proof. The proof of the thermic part of this theorem is equivalent to that of
Theorem 2.1. Further, the coupling term (8,(T — T,)),; € [L*(G)]* acts as a body
force (see [23]). As the estimate of & does not directly depend on the body and surface
forces, it does not depend on the term (B;(T — T,,)),;» either. Thus the same technique
of Jarusek of [13] can be used. Then using (2.11), the above mentioned properties
of @ on H™"*(T,), the Sobolev imbedding theorem and the reflexivity of the spaces
involved, the weak continuity of @ on # n H~*/**7(I',) is proved. Further, a convex
subset M = # n H™'2*¥(I,) which is mapped by @ into itself is found, provided
¢(||# ) < 1, for which the estimate (2.12) must be fulfilled. Applying Tichonov’s
fixed point theorem (see e.g. [13]) we prove the existence of a fixed point of @, for
which the appropriate u is a solution of the contact problem with friction considered.
The proof is given in detail in [13] for linear elasticity.

Remark. Theorem 2.2 and especially the estimates (2.12a,b) have practical
significance in geophysics, above all in the analysis of the geodynamic processes
taking place in the regions of collision of lithospheric plates and blocks. The meaning
of these estimates is following: the expression #|g,| = #|t,| represents the friction
forces acting on the contact boundary I',, which must be overridden in order to
shift the lithospheric blocks. These estimates and the estimates based on the numerical
analysis give us some information about the distribution of the stress field in the
collision zone and allow us to interpret some observed anomalous geophysical
fields discussed by the author for the Carpathians (see [19], [22]).

3. NUMERICAL SOLUTION
For the numerical solution the finite element method, based on the Galerkin
technique, will be used. Let us assume the case with the given friction g = #|g,| = 0,

g € L*(I',) a.e. on I, where g is the given frictional force. Then we define
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(3.1) jol0) = <g o> = j alofas.

Let the given bounded domain G = R? with the polygonal boundary G be
,.triangulated”, as in the case without friction ([23]). Let {7} be a system of regular
triangulations defined as in [23] with the end points I',n T, [,n T, I,nT,
coinciding with the vertices of the triangles Tj,.

Let 'V, V, be the spaces of linear finite elements

W, ={w|weC(G), w|r,eP;, w=0o0n I',uTl, VT,eT,},
V, = {v|ve[C(G)]? v|r,€[P1]% v =0 on I, VT, € T,},
where P, is the space of linear polynomials. Further, define
'Ky ={w|we'V, w< T, on I,} ='V,n'K, hence 'K,c'K for Vh,
K,={v|veV,v,£0onT,} =V,nK, hence K,cK for Vh.

Definition 3.1. We say that a pair of functions (T, u,), T, € 'K,, u, € K, is a finite
element approximation of the problem (Py),, if

(3.22,b) b(T,w—T,) = s(w—T,),
B(u,v — w,) + <g, [v,] — [(w)> = S(v — w,) Vwe'K,, vek,.

Remark. As the problem is quasi-coupled, a finite element approximation (3.2b)

of the primary problem (2.9b) is equivalent to the following formulation:
find u,eK, such that

(3.2v") L(u,) < L{v) Vwek,.

Theorem 3.1. There exists a unique solution of the finite element approximation
(3.2) for Vh, h e (0, 1).

Proof. Since K, is a nonempty, closed and convex subset of W*, it is weakly closed.
Thus the proof of both parts of the theorem is similar to that of Theorem 2.2, in
which the functional j, (v) = <g, |[v,|> is convex. Q.ED.

Lemma 3.1. For Te 'K, u e K, T, € 'K,, u, € K, we have
(3.3a,b) IT— Ts £ e{b(T, — T, w, — T) + (T, w — T,) +
+b(T,w,— T)—(Qw—T,) —(Q,w, — T)}'* Vwe'K, w,e'K,,
¢ =const. > 0,
[u = usllwr < cof B(wy — u, v, — u) + Bu,v — w,) +
+ B(u, v, — u) — (F,v — u,) — (F, v, — u) + jg.(v8) — Jjo.(u) +
+ jg(v) — Jo(w)}'?, VYveK, v,eK,, co= const.>0.

The proof is similar to that in [5], [23].
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Theorem 3.2. Let I', be polygonal. Let T, e H*(I',) n H'(T,), Te 'K n H*G),
T|r, e HXT,), ueKn W?, (u)e[L°(L)]%, ue[W“™(I)]?, geL”(T,). Let
'K, = 'K, K, = K. Let the changes u, <0 — u, = 0 and u, = 0 > u, + 0 occur
at finitely many points of I', only. Then

IT = Tls = (k) fu — wyflwe = O(h).

Proof. To prove this theorem, the technique of the proofs of Theorems 2.6 and
2.10 of [23] will be used. We have 'K, < 'K, K, < K, Yh (0, 1). Using Lemma
3.1, Green’s theorem and the assumption that T and u are sufficiently regular we
obtain

G40 IT- TS e{UlT - TR 1T w4

1/2
+ CsuTh - T ”1 ]]Wh - T“L?(G) +J; T,n(W - Th) ds + Czﬂwh - T”Lz(r“)} s

3

¢ > 0 arbitrary ,
for the thermal part, and \

(3.4b) u — wyl|w:= co{ [2euy, — ulf + 12672 v, — w3, +

1/2
+ J () ny(v, — u); ds} , &€>0 arbitrary,
oG

for the elastic part.

To estimate the right hand side of (3.4a) we put wy, = Ty, where Ty, € 'V, is the
Lagrange interpolation of T on the triangulation J,. As (TL,),, < T, on I',, we have
T.; € 'K and since Ty; € 'V, also T;; € 'K,,. Thus

35)  |Tu = Tl £ h|Tl2. [(Tds = Lo £ eb® 2| T, »
| Ter = Tleae) = e,h*| 7],
Due to [23],
[ 7t = s = 0w,
Thus h
[T~ Tl 5 {12, HT]s + 126" e T, +
+ ¢3¢, BT, + 0(h*) + CzcshZE”Th”HZ(ru) = 0(h),

which proves the first part of the theorem.

To estimate the right hand side of (3.4b) we set v, = uzr, where u;; €V, is the
Lagrange interpolation of u on the triangulation 7. As (4r1), < 0 on I',, u,, € K.
Since u;; € V,, we have u;; € K,. Thus

luse = ullws < ¢ Rlufys [(un)s — wluawor < cshZE"“»”[m(mlz .
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In (3.3b) the terms B(u, v — u,) — (F, v — u,) and B(u, v, — u) — (F, v, — u) are
estimated by using Green’s theorem and later by using a suitable choice of v, € K,
v € K. Thus applying Green’s theorem we obtain

B(u, v, — u) — (F, v, — u) = J\rarn(u) (v — u), ds + J; t(u) (v, — u),ds < 0.

£

To estimate the integrals

J(r,) = JF 7,(u) (v, — u),ds and J,(T,) = J; v(u) (v, — u), ds

we assume that I', = UI',,, where I,, approximates piecewise linearly the
i i

boundary I',. To estimate the first integral we distinguish several cases:
— the case u,(x) < 0, x € I',,. Then due to u,z, = 0, the integral J,(I’,)) = 0.
— the case #,(x) = 0 and u,(x) < 0 — u, = 0, x € I[,,. Let us put v, = uy,.

Due to the properties of u;, discussed above, either (u;,), = 0 on I,, and then
Jy(T,,) = 0 or (uy), < 0 and then

()| < s = waliocr, j faldss e

The last inequalities hold because for ue[W"“(I',)]* and te[L*(I,)]? u,e€
e Wh>(I,,), ©,e L*(T,,), and because (uy;), is the Lagrange interpolation of u,.
Hence |J,(T,)| £ ¢h*.

Now we estimate | [, 7,(u) (v, — ), ds + j, (v,) — j,(u)|- We have several cases:
— the case u/(x) > 0 for x e I',. Due to (3.2b) we have J,(I',) + J,(T,) + j, (v) —
— Jjg(#) = 0. Further, glu,| + 74, =0 a. e. on I',. Hence g = —7, a.c. on r,.
Let us put v, = u;;. Thus (uy;), = (4,)z; and (ugy), (s;), s; € I, s; are the points
of the triangulation on I',. Then (u,);, > 0 on I, and

J.rai{—g[(ur)u —u,] — g[(u)er — u,]} ds = 0,
— the case ut(x) =0forxe ra' As (ut)LI =0on f“, we have
frai{Tr(“) [(u)er — ue] + al|(u )| + lu,l]} ds=0,

— the case u,(x) <0 for xeI,. Since u, <0 on I',, we have |u|= —u, and
() < 0. Thus g = 7, a.e. on I',,. Let us set v, = u;,. Then

ra,.{g[(u')“ = we] + g[~(u)pr + u]} ds = 0,

— the case when u,(x) = 0 changes to u(x) % 0 for xeI,. Let v, = u,,. Since
we [WH(L)], v e [L/(L)] 9 € L*(T), we have w, € Wh*(T', ) and 7, & LT, ).
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Then
[, o) s = )+ ol = e 0
.J‘Ta‘(h,(u)l +g)ds £ ¢, h*.

< “(u,)” - “r”Loo(I_'a,) .

Thus

< ¢, h?.

[ o) Luus = s 7y ) = 10

Finally, we obtain
[u = wl|lwr S Eofehfulfs + e~ h?|ulf + c;h® + c,h?}'2 = O(h),

which completes the proof.

ALGORITHM

Since the problem is quasi-coupled the algorithm is divided into two parts. The
first for the thermal part is based on the technique of quadratic programming. The
second for the elastic contact problem with friction is based on the numerical ap-
proximation of a saddle point [1], [16]. Sufficient conditions for the existence of
a saddle point can be found in [4].

Definition 3.2. A point (ugy, 4,) €K, x A = K x A is said to be an approximate
saddle point of a functional & on K, x A if a saddle point (u,, 1) e K x A exists
and if

Llug, p) £ Llugy, ) £ L(v, 2) Y(v,p) €K, x 4.

The problem (3.2b) is equivalent to the following problem:

find u,e K, such that

L(u,) = min sup Z(v, )
veKp neA .
where A = {u| peI(T,), |u| £ 1 ae. on I}, & is the Lagrangian, K, =« K < V.
Then [, glv| ds = sup [, pgv,ds, where gv, is a Lipschitz operator mapping
V- IX(I,). ued
Thus we have the following problem:

find u,eK, such that
L(u,) = min sup &(v, p) = min sup {Lo(u) +J- Hgv, ds} .
veKp  ped veKp neA Ty

The existence of a saddle point follows from Propositions 1.2 and 2.2 of [4] and
the Korn inequality. By Proposition 2.2 we also obtain uniqueness of its approxima-
tion (ug, 4,) €K, x A.
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Let v € K. Then there exists v, € K, such that |jo, — v[4~0 = 0. Thus a sequence
{v4}, v, € K,, can be chosen such that v, — u, in V. Due to Propositions 1.2 and 2.2
of [4] and this assumption,

PL(ug, Ay) = min sup L(v, p) = min L'v) = L{ug) < L(v,) 555> Llu)

veKp HeA veKp

as the functional Lis continuous. Since 4 is closed and lim Lv) — oo subsequences

floll— 2o
{ugi}s {ni} of {ug}, {4} can be chosen such that ug; — o in V, Ay — 4o in A.
Since v, € K,, v, — v in V we have v e K and thus u, € K. Since 4 is closed, it is
weakly closed and thus 4, € 4.
As L{ug,) £ L{v,) 550~ L(u,) and as Lis weakly lower semicontinuous, we have

L(ug) < liminf L{ug,) < L{uy) .
hi=»0

Since ug is a solution of the problem (2.9b’), we have ug, = u, and the sequence
{ugy;} can be chosen quite arbitrarily. Thus {ug} — u,. As

L(vy) = Llug) = Lo(ug) + jg, () Z Lo(us) + B(ug, ug, — u;) —
- S(”sh ~ uy) + fg,,(“sh) + 1/2Co”ush - ”s“z , V€K,
we have
. ”us - ush” = C{Lo(”h) + jg,.(vh) - Lo(“sh) +
+ Blug, u, — ug) — S(ug — ug) — jo(us)}'’?, Vv,eK,.

Let us choose v, €K, such that v, — u,. Then Ly(v,) = Lo(uy), j(vs) — i(us) for
h - 0,. Thus

lim sup [Ju; — ug| < c{j, (u,) — liminfj, (ug)}''* <0
=04 h=0,
as the functional j, is weakly lower semicontinuous. Thus |ju; — ug| — 0 for

h—0,.
As (ug, 4,) is saddle point of £ on K, x A, we have

Lo(“sh) + J /lg(ush)t ds = Lo(ush) + J lhg(ush)t ds, Vued.
ra rﬂ

Hence

J‘ (n— ) g(ug),ds <0 VYued and
Iy

J‘ ((A + 0g(ug)) — 4) (= 24)ds £0 Vo >0, Vued.
Iy

Thus
(3.6) A, = P(&, + o0g(u,),), o >0, Pisa projection of I¥I,) onto 4.
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Due to Proposition 1.7 of [4],

B(ug, v — ug,) + f Mg(v, — (ug)) ds = S(v — uy) Vvek,
Ie

or

(3.7) Lo(ug) + J ng(ug), ds < Lo(v) +j Agv,ds Vvek,.
Ia

@

The inequalities (3.7) and (3.6) give an idea for numerical solution. Such a type of
problems are solved by Uzawa’s or Arrow-Hurwicz’s algorithms (see e.g. in [1],

[4], [6], or [16]).
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Souhrn

SIGNORINIHO ULOHA SE TRENIM V LINEARNI TERMOELASTICITE:
QUASI-SDRUZENY 2D-PRiPAD

JiIki NEDOMA

V ¢lanku je diskutovana Signoriniho uloha se tfenim v quasi-sdruZené linearni termopruznosti
(2D-pripad). Diskutovana udloha je modelovou ulohou v geodynamice litosférickych desek.
Je dokazana existence a jednoznacnost feSeni modelové tlohy. Je dokazana konvergence kone&nd
prvkové aproximace k pfesnému feSeni. Je proveden odhad koeficientu tfeni v zavislosti na fyzi-
kalnich parametrech prostfedi.

Pesrome

3AJJAYA CUMHBLOPUHU C TPEHMEM U1 JIMHEMHOM TEPMOVIIPYI'OCTU:
KBA3H-COIIPSIDKEHHBIN 2D CJIVUAM

JiIRf NEDOMA

B crathe o6cyxmaercst 3agaya CHHBOPDHHM C TPEHHEM [Jis KBa3H-COIMPSOKEHHOM JIMHEHHOM Tep-
moynpyrocti. Obcyxnaemas 3afaya siBISETCS 32 MOIEJBIO IJISl TEOAMHAMUKH JIMTOCHEPUYECKHX
AT, JIOKa3pIBaeTCsl CyHIECTBOBAHME PELICHWS MOAENBHOM 3a/layM M €0 OJHO3HAYHOCTh. [larnee
IIPUBOOUTCS. JOKA3aTEIbCTBO CXOAUMOCTH alPOKCHMAalMM C KOHEYHBIM YHCJIOM JJIEMEHTOB K TOY-
HOMY peureHuro. JJaercst oneHka ko3hGuuueHTa TpeHus B 3aBUCHMOCTH OT (U3HYECKUX TapamMeTpoB
cpensbl.

Author’s address: Ing. Jiff Nedoma, Sttedisko vypocetni techniky CSAV, Pod vodarenskou
v&%i 2, 182 07 Praha 8.
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