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ON A SUPERCONVERGENT FINITE ELEMENT SCHEME 
FOR ELLIPTIC SYSTEMS 

II. BOUNDARY CONDITIONS 
OF NEWTON'S OR NEUMANN'S TYPE 

IVAN HLAVACEK, MlCHAL KRfzEK 

(Received July 5, 1985) 

Summary. A simple superconvergent scheme for the derivatives of finite element solution 
is presented, when linear triangular elements are employed to solve second order elliptic systems 
with boundary conditions of Newton's or Neumann's type. For bounded plane domains with 
smooth boundary the local 0(h3//2)-superconvergence of the derivatives in the L2-norm is proved. 
The paper is a direct continuation of [2], where an analogous problem with Dirichlet's boundary 
conditions is treated. 

Keywords: finite elements, superconvergence, post-processing, averaged gradient, elliptic 
systems. 

AMS Subject classification: 65 N 30, 73 C 99 

1. INTRODUCTION 

In [2] we have studied a simple superconvergent finite element scheme for second 
order elliptic systems with non-homogeneous Dirichlet boundary conditions. In this 
paper we analyze the same scheme in the case of boundary conditions of Newton's 
or Neumann's type. These types of boundary conditions, however, are very rarely 
investigated in connection with a superconvergence of the finite element method — 
see [5], p. 187 (and [4, 7]). 

We recafi [2] the main idea of the proposed scheme. The use of linear elements 
to elliptic systems yields a piecewise constant field of the first derivatives of the finite 
element solution. Thus employing a suitable post-processing (based on averaging 
at nodes), a new continuous piecewise linear field can be defined. We show that the 
latter field improves the approximation of the first derivatives of the solution, which 
are often more important than the original solution itself. 

The paper is organized as follows. In Section 2, a variational formulation of a class 
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of elliptic problems is given, and several lemmas for coercive case and numerical 

integration are presented. In Section 3, a local 0(h3/2) error estimate in the L2-norm 

is proved for smooth domains. Finally, in Section 4 the same estimate is derived also 

for some non-coercive cases. To the authors' knowledge, there are no super-

convergence results for non-coercive problems in the literature. 

2. SOME LEMMAS FOR COERCIVE CASE OF ELLIPTIC SECOND ORDER 
SYSTEMS AND NUMERICAL INTEGRATION 

Preserving the notation of [2], we assume that the functions 

fe(V(Q))M, ge(L2(dQ))M 

are given. As in [2], we introduce the operators Nt(u), i = 1, ...,%, the bilinear 

form a(u, v) by means of a symmetric uniformly positive definite % x x matrix K 

with the entries Ktj e PS(Q). Moreover we define another bilinear form 

л м 
Ь ( ü > V) = Z ЬrVr»t <Ь , 

J ô ß ^ ř = 1 

where brt are bounded measurable functions on dQ. For brevity, we shall use the 
notation 

((u,v)) = a(u, v) + b(u, v) . 

The following weak formulation of the boundary value problem will be considered: 
Find u e W such that 

(2.1) ((«, v)) = (f, v)0fQ + (g, v)0fdD Vv e W, 

where W = (HX(Q))M and (•, -)0)dQ is the scalar product in (L2(dQ))M. 
Assume that: 

(H 1) the system of operators {N/u)}f=1 is coercive on W; 

(H 2) b(u, u) = 0 VueW; 

(H 3) an inequality of Korn's type holds: there exists a positive constant c0 such that 

((u,u))^c0\\u\\2
UQ V U G W . 

Then the problem (2.1) has a unique solution. 

Remark 2.1. As follows from [3], Part I, the inequality of (H 3) can be proven 
from (H 1), (H 2) and the positive definiteness of K, if 

v € W, £ \\N/y)\\la + b(v, v) = 0~v = 0, 
i = l 
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There are two important possibilities when the latter condition holds: 

(i) b(v, v) = 0 and some of the operators Nt(v) have "absolute" terms (nim =j= 0), 

(ii) b(v, v) 4= 0 and all N;(v) are without "absolute" terms (nim = 0). 

The first case corresponds with boundary conditions of Neumann's type on dQ, 

whereas in the second case the conditions of Newton's type are prescribed on a part 

F c dQ of positive length, and conditions of Neumann's type on the remainder 

dQ - r. 

Remark 2.2. In case of elastostatics (see [2], Example), the operators Nt(v) have 
no absolute terms and we have the variant (ii). Then a sort of "elastic supports" 
is to be prescribed on a part of dQ — cf. [3], Part II. 

Let us consider the class ^3(d) of domains and a strongly regular family of triangula-
tions $ft = {«̂ Vf, introduced in [2], Section 2. In contrast to the case of Dirichlet 
problem, however, we have to change slightly the definition of the interpolation 
operator P. 

ә Я y 
Z 

Ғig. 1. 

Denote by Tc, Tt the parts of Q — Qh, i.e. the segments adjacent to the chords 
and to the tangents, respectively (see Fig. 1). For 

Wh = {VE Hl(Q) | v\T 6 Pt(T) VTe «Th, v\Tc E Px(Te), v\Tt e P±(Tt) VTC5 Tt a Q - Qh\ 

we put 

Wh = (Wh)
M. 

The interpolation operator P: HX(Q) n C(Q) —> Wh will be defined as follows: 

Pu = u 

at all nodes x e Qh and at the points y e dQ, where y is the point of dQ nearest to the 
vertex x (see Fig. 1). 

In Tc, the function Pu is defined by extension of the linear polynomial from the 
adjacent triangle Tk. In Tt, the function Pu is the linear interpolation of u with the 
nodes x, y, z (see Fig. 1). For u e W n (C(Q))M we define 

Pu = (PuuPu2,...,PuM). 
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Lemma 2.1 . Let Q e <$3(d), u e (H\Q))M, V e Wh. Then 

(2-2) |((u-PU ,v)) |gC^2 | |u | |3 > nH|1 > l 7 . 

Proof. We shall write 

e = u — Pu , 

a(e, v) = f £ KuN/e) N/v) dx + f J K y N/e) N/y) dx . 
Jflh I''1=1 Jfl-flh '"'1=1 

The first integral can be bounded by the right-hand side of (2.2), as follows by an 
argument which is parallel to that of Lemma 2.1 in [2]. 

We have to estimate the integral over Q - Qh. For any w e Hn(Q) there exists 
Calderon's extension Ew e Hn(R2) such that (cf. [6], Chap. 2, § 3.7) Ew\Q = w and 

(2.3) £w C(n) \\n,a-. n> í . 

Let us consider an arbitrary segment Tc. We may write 

(2.4) KuN/e)Nj(v)dx = C||N;(e)||0iTc \\Nj(v)\\0iTc ^ C.IMI.,-.. H i . r . 

Let us define the triangle Tc = Aa1d2d3 (see Fig. 2), where a ^ - = 2a1aj, j = 2, 3. 
Finally let TC denote the linear interpolation operator on Tc such that 

n w(at) = w(at) , i = 1, 2, 3 . 

Then Pw = TTW on T& u Tc, so that 

||Pw - w|| l fTc = l l ^ w - Ew\\ufk = Ch|Ew|2)fc 

(see e.g. [1], p. 123) and consequently, 

(2.5) \Pu. *m l . Г c = < Сй Ем m | 2 , T ( 
, m = 1,..., M 

Next let us consider an arbitrary segment Tt. An analogue of (2.4) holds as well. 

Let us define a triangle Tt with the vertices x, z, r, where xr = xz (see Fig. 3). Let nx 
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be the interpolation operator on Tt such that ntw coincides with w at the points 
x, z, y. By the same way as previously for Tc, we deduce 

(2.6) \\Pum - um\\UTt ^ \n1Eum - Eum\\uTt = Ch\Eum\2fTt. 

(We can easily verify that the minimal angle of Tt is bounded from below by a positive 
constant independent of h). We may write 

.r 

(2.7) KtjN^Nj^áx 
ß-Oh 

= z ... dx + zlí... 
T'\JTC 

áx 

The first sum can be estimated in the following way, using (2.5): 

I ... dx 
TC 

-íSc1|.||..r„H..r.ác1Q;HU)1/2Mi.. ÍЗ-Í?Һ = 

M M 

= C 2 | |v | i> 0(Z I«2 |£«m |2 . r c)1 / a ^ C3hHi.0'£2|Et.m|2,J1/2, 
Tc m= 1 m= 1 

where ^ is a "strip" containing all triangles Tc, 

^ = {xe l? 2 | dist (x, d.Q) < Ch} . 

We employ twice the Iljin inequality with e = Ch (see [2], (2.31)) first to a domain 
Q — Q, where Q => (2, and second to £2. Thus we obtain, using also (2.3) 

\Eum\lns ^ Ch\\Eum\\la S Ci«||"m||2,0 • 

Inserting this into (2.5), we arrive at the upper bound 

Qh3 / 2H|3 > 0Hi> 0 . 
The second sum in (2.7) can be estimated in a parallel way, using (2.6) instead 

of(2.5). 
To deal with the boundary integral b(e, v), we first show that 

(2.8) \\uj - Puj\\0>dn ^ Ch3/2H|2>0 , j = 1, ..., M . 

The proof of (2.8) is based on the following relation 

i w2 ás ^ C (8 
Jen \ , 

|Vw||2dx + ö'1 
w2 áx ) . 
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This inequality holds for any function w e HX(Q) and for an internal "boundary 
strip" cod c Q, the width 3 of which is small enough (see [5], p. 24). 

If we enlarge cod onto the whole domain Q and substitute 

S = h , w == ej , 

we obtain 

(2-9) W o . « . ^ C ( * W i . o + * " 1 k l o . a ) -

On the other hand, we have 

(2-10) M«.o s Cft2-«H|2>0 , a = 0 , 1 . 

This estimate is standard on .Qft. We can verify it on Q — Qh, using an argument 
parallel to the derivation of (2.5), (2.6), and the inequality (2.3) for n = 2. 

Inserting (2A0) into (2.9), we are led to (2.8). On the basis of (2.8) we may write 

r M 

(2.11) \b(u - Pu, v)| = £ &,.,.(«, - Pu,) p, ds 
JdQ i , / = l 

< 

g C £ b - Pt.,|0.8o klk*. = cth
3/2 z |u,|2ií7 io,i1>0 ú 

= C2h
3/2II"II | 1 , Я ' 

Combining (2.11) with the previous estimates for a(e, v), we obtain the assertion 
(2.2) of the lemma. • 

Lemma 2.2. Let Q e <^3(d),/ e H2(Q) and v e Wh. Let us define the approximation 

(fv)t,ah 

by the centroid rule on the triangulation ZTh of Qh. Then 

(2.12) \(f, v)0,a - (f, v)lQh\ S clt2||/||2,0 \\vl,a 

holds for h small enough. 

Proof. It is readily seen that 

(2.13) \(fv)0,a-(f,v)tQh\STt\Ek(fv)\ + 
K 

ľ, 
k=l í » áx 

where Ek denotes the local error on a triangle Tk. Lemma 2.2 of [2] yields the upper 
bound of (2.12) for the sum of local errors and it remains to estimate only the last 
term in (2.13). We have 

s l f fv 
\Ja-ah 

áx \\o,a-ah |M|o,i.f-flh 

Since Q — Qh is contained in a boundary strip QE of the width C/i2, we may apply 
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the Iljin inequality ([2], (2.31)) with e = Ch2 both to f and to v. Thus we obtain 

h ѓ cy i,я " i.o 
for sufficiently small h. 

Fig. 4. 

Lemma 2.3. Let Q e ^3(d). Assume that g e l}(dQ) is piecewise from C2, where 
the corresponding partition 

i 

dQ = urt 
£ = 1 

is consistent with every 3The^Si, and ve Wh. Using local ^-coordinate (see Fig. 4) 
for the parametric representation of the arc segments, we define 

(2-14) 

where 

Ki к2 rik 

(g> v)t,õn = £ 4(g") + E Зv d{ , 
fc=l fc=lj0 

Ik(w) = lkw(lkj2), 

^ ) = a(£)(l+(<^))2)1/2, - H « , , 
<pfc: [0, /fc] -> R is a function, the graph of which coincides with the arc segment 
AB (see Fig. 4). The first and second sum in (2.14) corresponds to the arc segments 
adjacent to the chords and tangents, respectively. Then 

(2A5) |(g, v)0M - (g, v)lda\ ^ Ch3/2 max ||g||c-(ro \\v\\i.a • 

Proof. Let us consider the local error 

Ek(w) = j \ ( í ) dí - 4(w) . 

Transforming the interval Ŝ  = [0, lk~\ onto the unit interval a = [0, 1] by means 
of the mapping 

* = «?/ / * , 
and introducing the functions 

vv(*) = w(/fc*), 

*{*)-£ vî> d^ - ív(l/2), 
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we derive easily 

(2.16) \Ek(w)\ - M(Vi>)| = h|£(Vv)|. 

Using the Bramble-Hilbert lemma (see [ l ] , Theorem 4.L3), we arrive at the estimate 

(2.17) \E(w)\<LC\w\2>„. 

Since 

(2-18) |* | | .„ = ll\w\lSk, 

combining (2.16)—(2.18), we obtain 

\Ek(w)\ = Ch5/2|w|2A VweH2(Sk). 

Let us consider an arc segment adjacent to a chord. We have 

(2.19) \Ek(gv)\^Ch"2\gv\2tSk. 

Using g e C2(T.), <p e C3(Sk), and the definition of v, we can prove that 

d2 

dţ 2(gv) ÍC\\g\\c>š(v2 + \\Vv\\2y>2, 

(where |ja | |c 2 = max Jg | c 2 ( r f ) ) so that 

(2.20) \gv\2
2,Sk = C||a||22j*V + || V«| 2 ) dcj. 

From (2.19) 

(2.21) \(g, v)0,ao - (g, v)*0,di}\ = | £ £ k ( ^ ) | = Cft5/2 £ \gv\2,Sk 
k=l k=l 

follows. Since the number Kx of all arc segments is bounded by Ch~ l , we have 
according to (2.20) that 

,1/2 

(2-22) ÏЩ^ѓCҺ-^CtЩ 
к=í к=í 

2 
2,5, 

yiг ѓ 

ѓC1h->Ң9y(jţПv2 + õv 
» 

It is easy to fìnd that 
Ki ñк r 

(2.23) X v2 dÇśì v2dsS 
*=lJo Jõfì 

and 

c\\ »«U 

(2.24) £1 do I 

Щ 
dí 

Oü 

^ 
'fc = | j ; | 2

i T k Jt(mes Tk)~
l
 = CA^H?,-.,, 

(where 7̂  is the adjacent triangle), using the strong regularity of the family 9H of 
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triangulations. Inserting (2.23), (2.24) into (2.22) and then in (2.21), we come to the 
following estimate 

\(g,v)o,8a - (MS.«.I ^ ch2\\g\\c,(lv\\lQ + h-l\v\\,»)112 = 
gC 1 h 3 / 2 max | |a | | C J ( r ( ) | | t ; | | 1 ) f l . • 

i 

The discrete problem will be defined as follows: 
Find uh e Wh such that 

(2.25) ((u„ vh)) = (f, vh)*0tQh + (g, v„ )*^ W„ G W~ , 

where the terms on the right-hand side are defined as the sums over m = 1 , . . . , M, 
of the approximations introduced in Lemma 2.2 and Lemma 2.3, respectively, 
W„~ = P ( W n ( C ( S ) f ) c Wh. 

Theorem 2.1. Let Q belong to the class %3(d). Let u e (H*(Q))M and uh e Wh 

be the solution of (2.1) and (2.25), respectively, where fe(H2(Q))M, g is plecewise 
from C2. Then 

\\uh - Pu\\un g Ch3/2(lu||3)!7 + \\f\\2,a + max \\g\\CHrt)) 

holds for h small enough. 

Proof . If we put 

VH = uh - Pu e W~ , 

and use the inequality of Korn's type (H 3), we may write 

c0\\vh\\U S ((uh - Pu, vh)) rg |((U - Pu, vh))\ + \((uh - u, vh))\ ^ 

^ \((u - Pu, vh))\ + \(f, vh)lQh - (f, vh)0-a\ + |(g, vh)lsa - (g, vh)osa\ , 

Applying Lemma 2.i to the i-th term of the right-hand side, we obtain 

c0flv,fl.^ ^ Ch3/2(|u|3>n + | | f |k« + max | |gf l c 2 ( r o) . • 

3, AVERAGED GRADIENT AND SUPERCONVERGENCE 

Let us introduce the averaged gradient Gh(vjh) for the f-th component of vh e Wh 

according to (3.1) of [2]. Since the definition of Pv on Qh coincides with that of [2] 
(see Section 2), Theorem 3.1 of [2] holds again. Preserving the notation dujdx 
for the matrix of "exact" gradients and &(uh) for the matrix of averaged gradients, 
we are led to the main theorem. 
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(3.1) 

Theorem 3.1. Let the assumptions of Theorem 2.1 be fulfilled. Then 

J - - %(uh) ^ Ch 3 / 2 (H | 3 ,o + |f|2ifl max ||g||c2(r i )) 

holds for sufficiently small h. 

Proo f is parallel to that of Theorem 4.1 of [2]. 

Remark 3.1. The extension to the global 0(h3/2)-superconvergence can be shown 
as in Corollary 4.1 of [2]. 

Remark 3.2. Let Q have a polygonal boundary which consists of line segments 
parallel with one of three different directions and the ratio of the lengths of any 
two parallel sides is rational. Then we can put 

Jh = ^ h 9 Q = £2h = Qh , 

and prove (3.1), which represents also a global superconvergence estimate (i.e. up 

to the boundary). Note that the arguments of Remark 2.2 of [2], leading to the 

"improvement" of the rate h3/2 to h2 for polygonal domains and u e (H3(Q))M, 

cannot be employed here. 

4. NON-COERCIVE CASES 

In the present section we shall consider a class of boundary value problems, where 
the hypothesis (H 3) fails to hold. All the other assumptions will be preserved. 
Moreover, let b(u, v) = b(v, u). We introduce the subspace 

9 = (y e w 1 1 IK-WII2o,« + K*> *) = o } . 
i = l 

and assume that 

0> * {0} , ^ c (Pt(Q))M . 

Let us choose a system of linear continuous functional pt e W, i = 1, ..., r, such 
that 

(4.1) v G W, £ ||N;W||o>r, + b(v, v) + £ p2(v) = 0 => v = 0 . 
i = l i = l 

Example 4.1. In the case of the Poisson equation with Neumann's boundary 
conditions, we set M = l,x = 2, b(u, v) = 0, N£(v) = dvjdxi9 i = 1, 2. Then 
0> = P0(O) and we may choose 

px(v) = \ vds, 

where F c U is an arc segment of positive length. 
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Example 4.2. Let M = 2, x = 3, b(u, v) = 0, Nt(v) be identified with the strain 

components of two-dimensional elasticity — cf. Example of [2], Section 2. Here 

& = {(gi> Qi) I qi = ai ~~ bxz> q2 = ai + 6^i» «i- 2̂> beR} . 

We can choose r = 3, 

* = 1, 2 , 

Pз(V) = (*l»2 - *2»l) d s . 

(cf. [3], Part II, the traction boundary value problem). • 

Henceforth let us restrict ourselves to the set of functionals pt e ((L2(F))M)r c W', 

and let us introduce the following subspace 

Vp = {veW|£p,2(v) = 0}. 
i=l 

Then an inequality of Korn's type holds in Vp, i.e. a constant c0 > 0 exists such that 

(4-2) ((u,u))^c0\\u\\ln VueV, 

(see [3], Part I, Remark 3). The subspace Vp coincides with the orthogonal comple
ment of 0* in W, equipped with the following scalar product 

(u, v)w = £ (JV,<u), iV;(v))0,fl + b(u, v) + £ Pi(u) Pi(v) . 
i = 1 i = 1 

We define the problem: 
Find u E Vp such that 

(4.3) ((u, v)) = (f, v)0>Q + (g, v)0>WJ W e Vp . 

The solution exists if and only if 

(4.4) (f, q)0iQ + (g, q)0,ao = 0 Vq e ^ 

(see [3], Part I, Theorem 2.2 and Remark 4). Note that (4.3) is equivalent with the 
same definition, where the test functions are taken from the whole space W instead 
of Vp, provided the condition (4.4) is fulfilled. 

By virtue of (4.2), there exists a unique solution of the problem (4.3). 
Passing to the finite element approximations, we shall suppose that F is a fixed 

straight line segment consistent with every 3Th e W. Let us define a modified inter
polation 

Pp:Vpn(C(G))M-+ WhnVp 

by means of the relation 

Ppu = Pu + Qu , 
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where u e Vp n (C(Q))M, P denotes the interpolation operator introduced in Section 2 
and Qu is a suitable "correction". On the basis of the orthogonal decomposition 

w = vp e g> 9 

we conclude that a unique Qu e &> exists such that Ppu e Vp. In fact, - Q u equals 
to the orthogonal projection of Pu onto 0». 

Lemma 4.1. Let u e (H3(.Q))M n Vp. Then 

(4-5) [|Q«Hi^ =S C^f|u||3,«. 
Proof. By definition, we have for any i = 1, ..., r, 

0 = p,(Ppu) - P l(p«) + p.(Qu) 
and 

Pt(u) = 0 . 
Consequently, we may write 

(4.6) |p.(Qo)| = |pf(Po)| = \Pi(Pu - o)| = C\\Pu - u | ] 0 , r . 

The trace theorem yields that o | r e (H2(r))M and it is well-known that 

(4-7) \\Puj - «,]|0>r = Ch2\u\lx , j=i,...,M. 

Combining (4.6), (4.7) and the inequality 

N - . r = C\\uj\U,a, 
we get 

(4-8) W Q « ) | = Ch 2 | o | 3 , Q . 

On the other hand, the norm 

\MU-(y,v)U2 

is equivalent with the norm of (H\Q))M (see [3], Part I, Theorem 2.3). Thus we have 

c||Qo||1(0 = \\Qu\\w = (ip2(Qu)Y'2 = Ch 2 l o | | 3 ) 0 . • 
i = 1 

Next we shall verify an analogue of Lemma 2.1 for the modified interpolation 
operator Pp. In fact, 

e = u — Ppu = u — Pu — Qu , 

((e,v)) = ( ( o - P o , v ) ) + ((Qo,v)) . 

The term with u — Pu has been estimated in Lemma 2.1. Using Lemma 4.1, we may 
write 

M 

\((Qu, v))| = q| |Qo||1>0 ||v||1>0 + Yj | |e«. |0 , a o |t>,|0,9Q) = 
i , i= l 

= C1\\Qu\\ua\\v\\ua = C2h
2\\uj3ia\\v\\lta. 
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Altogether, Lemma 2.1 holds for the modified operator Pp, too. 
Let us define the discrete problem: 
Find uh e Wh n Vp such that 

(4.9) ((u* vh)) = (f, vh)t,Qh + (g, vh)*0)ei} Vvk E Wh n Vp . 

On the basis of the inequality (4.2), we can prove easily an analogue of Theorem 
2.1 for the modified operator Pp. 

Next we apply the same averaging technique as before. The main Theorem 3.1 
can be proven with a slight change in the argument, as follows. 

Since Gh is linear, we have 

Gh(PpUj) = Gh(Puj) + Gh(Quj), j = 1,..., M , 

(4.10) ||grad uj - G/P p « y ) | | 0 f l J h . S |[grad Uj - Gh(PUj)\\0A* + \\Gh(Quj)\\0tQh* . 

On the other hand, the definition (3.1) of [2] yields 

Gh(Quj) = grad Quj in Q* , 

since Qu, eP^iQ). Using Lemma 4.1, we obtain 

(4-11) \\Gh{Quj)l0iS}h. ^ \\Quj\\u„ ^ Ch2\\u\\3,n . 

Combining (4.10), (4.11) and the argument used in the proof of Theorem 4.1 of [2] , 
we are led to the assertion (3.1) of Theorem 3.1. 
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Souhrn 

O JEDNOM SUPERKONVERGENTNÍM SCHÉMATU 
V METODĚ KONEČNÝCH PRVKŮ PRO ELIPTICKÉ SYSTÉMY 

II. OKRAJOVÉ PODMÍNKY NEWTONOVA NEBO NEUMANNOVA TYPU 

IVAN HLAVÁČEK, M I C H A L KŘÍŽEK 

V článku se předkládá jednoduché sup^rkonvergentní schéma pro derivace lineárních troj
úhelníkových elementů, které jsou použity к řešení eliptických systémů 2. rádu s okrajovými 
podmínkami Newtonova nebo Neumannova typu. Pro omezené rovinné oblasti s hladkou 
hranicí je dokázána lokální superkonvergence derivací v L2 — normě rádu 0(h3^2). Článek je 
přímým pokračováním práce [2], která pojednává o podobném problému s Dirichletovými 
okrajovými podmínkami. 

Р е з ю м е 

ОБ ОДНОЙ СУПЕРСХОДЯЩЕЙСЯ СХЕМЕ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ 
ДЛЯ ЭЛЛИПТИЧЕСКИХ СИСТЕМ 

IL ГРАНИЧНЫЕ УСЛОВИЯ ТИПА НЬЮТОНА И НЕЙМАНА 

IVAN HLAVÁČEK, MICHAL KŘÍŽEK 

В статье предлагается простая схема с суперсходимостью для производных конечно-
элементного решения построенного с помощью линейных треугольных элементов, исполь
зуемых для решения эллиптических систем 2-го порядка с граничными условиями типа 
Ньютона или Неймана. Для ограниченных плоских областей с гладкой границей доказана 
локальная суперсходимость производных в L2 — норме порядка 0(h3^2). Статья является 
прямым продолжением работы [2], которая посвящена подобной проблеме с граничными 
условиями Дирихле. 

Authors* address: Ing. Ivan Hlaváček, DrSc, Dr. Michal Křížek, CSc, Matematický ústav 
ČSAV, Žitná 25, 115 67 Praha 1. 

213 


		webmaster@dml.cz
	2020-07-02T06:17:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




