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OPTIMAL CONTROL OF VARIATIONAL INEQUALITY 
WITH APPLICATIONS TO AXISYMMETRIC SHELLS 

JAN LOVISEK 

(Received July 8, 1986) 

Summary. The optimal centrol problem of variational inequality with applications to axi-
symmetric shells is discussed. First an existence result for the solution of the optimal control 
problem is given. Next is presented the formulation of first order necessary conditions of opti-
mality for the control problem governed by a variational inequality with its coefficients as control 
variables. 

Key words: elliptic variational inequalities, optimal control problems, shape of axisymmetric 
shells, second invariant of the stress deviator, first order necessary conditions of optimality, 
smooth regularized control problems. 
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INTRODUCTION 

We consider an optimal control problem in which the state variable of the system 
(which includes an elliptic, linear, symmetric operator, the coefficients of which 
are chosen as the design-control variables) is defined as the (unique) solution of 
a variational inequality. The existence result proved in Section 1 can be applied 
to the optimal design of the shape of axisymmetric shells (of Section 2; the theme 
of this section stems from the papers [5] and [6]). The meridian curves of their 
middle surfaces are taken for the design variable (the case of thickness is considered). 
Admissible functions are smooth curves of a given length, which are uniformly 
bounded together with their first and second derivatives, and such that the shell 
contains a given volume. The loading consists of the own weight, the hydrostatic 
pressure of a liquid and an external or internal pressure. As a cost functional, the 
integral of the second invariant of the stress deviator on both surfaces of the shell 
is chosen. Section 3 is concerned with the formulation of first order necessary condi­
tions of optimality for the control problem governed by a variational inequality 
with its coefficients as control variables (nonsmooth and nonconvex infinite dimen­
sional optimization problem. 
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We apply an idea of Barbu — Mignot — Tartar: the idea is to approximate the 
given optimal control problem by a family of "smooth" regularized control problems 
and then to pass to the limit in the approximating optimality equations. 

1. EXISTENCE THEOREM 

The proof of our existence theorem is based on results of [2], [4], [12]. 
Let V(Q) be a real Hilbert space and V*(Q) its dual space, the pairing between 

V(Q) and V*(Q) being denoted <•; '}nQy Next H(Q) is a separable real Hilbert 
space such that V(Q) is dense in H(Q) and the injection of V(Q) is completely con­
tinuous. 

Let U(Q) be a Hilbert space of controls, Uad(Q) cz U(Q) a set of admissible controls 
(Uad(Q) is a compact set in U(Q)). 

Let A(e): V(Q) -> V*(Q) for every e e Uad(Q) be a family of linear and symmetric 
operators with the following properties: 

1° For any e e Uad(Q) the operator A(e) belongs to L(V(Q), V*(Q)) 
({A(e)} is uniformly bounded, i.e. 
Hit(fi) -S cl9 \\v\\V(Q) g c2 => \\A(e) v\\v*m S c) 

2° For any ee Uad(Q) the operator A(e) satisfies the V(Q) — uniform co-
ercivity condition (with respect to U(Q)) 

(HO) J (A(e) v, v)ViQ) ^ 4v\\vw f o r a n y v e V(0)> 
for any e e U(Q), 
and a > 0 independent of e. 

3° For every v e V(Q) the operator A(*) v: 
Uad(Q) -> V*(Q) is strongly — strongly continuous: 
e„ -> e0 (strongly) in U(O) for n -> oo, 
A(e„) v -> A(e0) v in V*(Q) for all v e V(Q). 

Consider the equation 

(1.1) A(e) u(e) + dQ>(u(e)) 9 / + Be 

where d<&: V(Q) -> V*(Q) is the subdifferential of ^ (O: V(Q) -> R is a lower semi-
continuous convex function), B is a nonlinear continuous operator from U(Q) ~> 
-> H(.Q) a n d / i s a given element of F*(.Q). In what follows we make use of the cano­
nical injection H(Q) Q V*(0). As seen earlier, (1.1) can be rewritten as the variational 
inequality 

(1.2) u(e) e V(Q) , 

<A(e) u(e\ v - u(e)}V(Q) + Q>(v) - ®(u(e)) ^ </ + Be, v - u(e)yV(Q) 

for all veV(Q), eeUad(Q). 
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or 

u(e) e «(.Q) , 

(1.2a) <A(e) u(e), v ~ u(e)}V(Q) + j(v) - j(u(e)) ^ f + Be, v - u(e)>V(Q) 

for all v e &(Q), e e Uad(Q) 

where <I> = j + I$w (Igtyi) is the indicator of a convex, nonempty, closed subset 
of V(Q), j is a convex lower semicontinuous proper functional on V(Q)). We shall 
assume in addition that §t(Q) f] int D(j) + 0 (int C == interior of the set C, D(j) = 
= [v e &(Q):j(v) < + oo}). The parameter e e Uad(Q) is called the control, and the 
corresponding solution u(e) is called the state of the system (1.2). Equation (1.1) 
itself will be referred to as the state system or control system. For every fe V*(Q) 
and for every e e Uad(Q) the variational inequality (1.2) has a unique solution. 

The optimal control problem can be set in the following general form: 
Let a functional 

2: (U(Q) x V(Q)) ~> R 

be given, which satisfies the following condition 

( v f if en, e e Uad(Q), en -> e in U(Q), vn --> v (weakly) 
1 ' ; \ in V(Q) => lim inf &(en, vn) ^ 2(e, v). 

n-> oo 

Defining the cost functional as 

(1.4) ®(e) = 2(e,u(e)) 

where u(e) denotes the solution of (1.2a), we may consider the optimal design problem 

Minimize the function 

<g(e) 

over all u e §i(Q) and e e Uad(Q) subject to the state system (1.2a). 

A pair [e0, u0] e Uad(Q) x &(Q) for which the infimum in problem (&) is attained 
is called the optimal pair, and the corresponding control e0 is called the optimal 
control. 

Theorem 1. Under assumptions (HO) and (1.3) , problem (M) has at least one 
optimal pair. 

Proof. Let {ek} c Uad(Q) be a minimizing sequence for (£(e), i.e. 

(1.5) Hmi&(ek) = in f^ (e ) . 
fc->oo eeUad(Q) 

Since Uad(l^) is compact, there exists a subsequence [en] c {ek} such that en -> e0 

(strongly) in U(Q). 
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The means that Ben -* Be0 (strongly) in V*(Q). Setting un = u(en) we can write 

<A(en) (un - v), un - v>v(fl) = j(v) - j(un) - <f + Ben, v - un)V(Q) -

- <-4(eB) v, un - v)V(Q) for any v e $*(£). 

Then Proposition 1.7 ([3]) implies int D(j) c D(dj), and if 

(EO) it(fl) (1 int D(j) 4= 0 , 

there exists an element v0 e $t(Q) f\ D(dj) such that j(v0) — j(w) S <P5 ̂ o — w>V(fl) 

where p e dj(v0), w e §l(Q). This means that the function (0: $t(Q) -> K) 0(w) = 
= (j(^) — I(w))/||t>o ~ w||r(fl) *s bounded. Further by assumption ((HO), 2°) we get 
a |K - v0\\V(Q) = 6(un) + (||/||r*(o) + 1B«H||K*(II) + \<A(en) v0, un - v0)V(Q)\ : 
: ||w« - v0\\V(Q). 

Hence 
||uM||V(fl) ^ c by (assumption ((HO), 1°), and there exists a subsequence (denoted 
again by {un}) such that un~* u (weakly) in V(Q), 
where u e St(Q) (the set St(Q) is weakly closed). 

For any w e V(.Q) we have (by assumption ((HO), 3°)) 

lim (A(en) u(e„); w)V(Q) = lim <A(en) w, un)V(Q) = 
n-+oo n-+oo 

= <A(e0) w, u)V(Q) = <Al(e0) u, w>v(fl) 

and therefore 

(1.6) A(en) u(en) - A(e0) u (weakly) in V*(Q) 

if un -* u is weakly convergent in V(jQ). Furthermore, by assumption ((HO), 2°) 
we can write 

<A(*n) (u„ - u), un ~ u)V(Q) ^ 0 . 

Hence we have (by passing to the limit) 

lim 2<A(en), u, un)V(Q) = lim inf <A(e„) un, un)v(Q) + lim {A(en) u, u)V(Q). 
/I-+00 n-+oo «-»oo 

This yields 

(1.7) lim inf <A(e,.) un, un)V(Q) ^ <A(e0) u, u)V(Q). 
n-» oo 

Now, letting n tend to + oo in the inequality 

<A(en) un, un - v>v(fl) + j(un) S j(v) + <f + Ben, un - v>V(fl) 

and taking lim inf, we conclude by (1.6) and (1.7) that 

<A(e0) u,u - v)V(Q) + j(u) S J(v) + <f + Be0, u - v)V(Q) 

(because j(v) is a convex, lower semicontinuous, proper functional on V(Q)). 
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We infer w = w(e0) as claimed and the whole sequence {un} tends to w(e0) weakly 
in V(Q) (since the variational inequality (l.2a) has a unique solution for any ee 
e Uad(Q)). We can write 

<A(en) un9 v - unyv(Q) + j(v) - j(un) = <f + Ben, v - unyV(Q) 

for any v e $t(Q), en e Uad(Q). 

This yields 

<A(e„)9 un unyV(Q) - j(v) = <A(en) un9 vyV(Q) - <f + Ben9 v - unyV(Q) - j(un) . 

Consequently, 

lim sup <A(eB) un9 unyV(Q) - j(v) ^ lim (<A(en) un9 vyv(Q) -
«->oo n-*oo 

- <f + Ben9 v - unyV(Q)) - lim inf j(un) . 

Hence by (1.6) one has 

(1.8) lim sup <A(en) un9 unyv(Q) - j(v) ^ <A(e0) w, vyV(Q) -
n-*oo 

- <f + Be09 v - uyV(Q) - j(u) for any v e ft(.Q) 

and therefore (we take v = w) 

lim sup <A(en) un9 unyV(Q) ^ <A(e0) w, uyV(Q). 
n->oo 

By (1.7) it follows that 

lim <A(en) wB, unyV(Q) = <A(e0) w, uyV(Q). 
n-*cQ 

By virtue of ((HO), 2°, 3°) we have 

a lim sup \\un - u\\V(Q) ^ lim <A(e„) (un - w), un - uyv(Q) = 
«->oo «->oo 

= lim {<Ai(eB) un9 unyV(Q) + <A(e„) w, uyV(Q) - 2<A(en) w, w,^^)} = 0 . 
H-+00 

Hence 
lim un = u(e0) (=w0) holds in the strong topology of V(Q). 
H-+00 

Thus, we have shown that the map e -> u(e) is strongly — strongly continuous 
from UadvQ) to V(Q). 

By virtue of (1.3) and (1.5) we have 

inf <&(e) = lim inf ®(en) = lim inf £(e„, u(en)) = £(e0, w(e0)) = <S(e0) . 
e e U a d ( - ^ ) n-*oo 11-+00 

In other words, e0 is an optimal control of problem &.) 
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2. OPTIMIZATION OF THE SHAPE OF AXISYMMETRIC SHELLS 
WITH UNILATERAL CONSTRAINTS 

Axisymmetric thin elastic shells of constant thickness with unilateral constraints 
are considered and the meridian curves of their middle surfaces taken for the design 
variable. 

Admissible functions are smooth curves of a given length, which are uniformly 
bounded together with their first and second derivatives, and such that the shell 
contains a given volume. The loading consists of the own weight, the hydrostatic 
pressure of a liquid, and external or internal pressure. 

As a cost functional, the integral of the second invariant of the stress deviator 
on both surfaces of the shell is chosen. 

We shall apply the abstract Theorem 1 to the optimal shape design (3F = e) 
in the case of axisymmetric problems for thin elastic shells. 

Let z and r denote the axial radial coordinates, respectively. We describe the 
meridian curve by means of two functions J^(s) and 2£(s), as follows: 

r = &(s) ; z = %(s) 0 S s SI 

where s denotes the arc parameter and the length I is given. 
We can write 

dJT(s)/ds = [1 - (d#-(s)/ds)2]1/2 . 

Let us choose U(S) = C(1)(S), S = (0, / ) , 

tlad(S) = {*(s) 6 C ( 1 M (S) : r0 <. P(s) <. r. , 

|dT(s)/ds| <. C. < 1 , |d2J^(s)/ds2 | <. C2, 

&2(s) (djr(s)/ds) ds = C3} 

where r0, ru Cx, C2, C3 are given positive constants. 
The integral condition means that the volume of the shell is prescribed. C (1) ,1(S) 

is the space of continuously differentiable functions in S, the derivatives of which 
are Lipschitzian. 

Moreover, we define an auxiliary set 

U°(S) - {&(s) e C(1\S): (1/2) r0 g &(s) S 2rt 

d&(s)lds ^ (1/2) (1 + Cx) < 1} . 

We shall use the linear theory of shells ([13]) and formulate the equilibrium in terms 
of the displacement vector u = (u, w), where u is the meridional and w the normal 
displacement (see Fig. l). Next, we set v = (cp, 0). Let us define the following system 
of strains. 

464 



ч 

Fig. 1. 

l ^з(«) = 

Ж,(и) = dii(s)/ds, Ж2(u) = ((d#"(s)/ds) u + (d#(s)/ds) w)j^(s), 

-å2w(s)jds2, JГA(U) = (-d^(s)/ds)(dw(s)/ds)/^(s), 

and the matrix: 

(2.2) K = Ehj(l - џ2) 

1 џ 0 0 
/i 1 0 0 
0 0 (h2/12) (uh2/12) 
0 0 (џh2jП) (Һ2jí2) (4,4) 

where E is the Young modulus, h the constant thickness of the shell and \i the Poisson 
ratio (0 ^ fi < 1/2). Henceforth Hk(S), k = 1, 2 denote the usual Sobolev spaces 
with square — inegrable derivatives, and [[•||Hfc(S)their norms (HQ(S) is a closed 
vector subspace of H1^), the trace yvofve HX(S) equals zero on dS). Let us consider 
the space 

W(S) = Hl(S) x H2(S) , L(S) = L2(S) x L2(S) 
and write 

\W(S) (N* (s) + lkllžW1/2-
We introduce the subspaces 

f F(S) = {v = (</>, 0) e W(S): cp(0) = 0(0) = d0(O)/ds = 0} , 
K > \ 0Z(S) = {v e V(S): jrt(v) = 0, i = 1, 2, 3, 4} . 

We define a bilinear form and an operator A(&): V(S) -» V*(S) by the equation 

(2.4) a(&, u, v) = <A(.T) u, v>K(S) = 2TT f £ K i ; . * > , JF) ^ . ( v , j r) j> d s . 
Js I./-1 
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Further, consider the form 

(2.5) <f(&), v}ViS) = 2% \k0B(&(t) - &(s)) + fc..((d^(s)/ds) 6 -
J S 

- (d&(s)jds) <p) + k39] &(s) As 

where 

f{P) = BP B:U(S)^L(S), L(S)QV*(S), 

k0 and kt are non-negative constants denoting the specific weight of the liquid and 
of the shell, respectively. The first part of the loading corresponds to the volume 
of the shell full of the liquid. The constant k3 denotes an internal or external pressure. 

The boundary conditions in V(S) correspond to the clamped edge s = 0. The 
subspace tffl(S) represents the virtual displacements of a rigid shell. It is easy to see 
that m(S) = {0}. 

In fact, 

•2 gv M ^ i v " ) = 0 -» u = u0 = c o n s t , 
( y r 3 ( u ) = 0 —> w = w0 -j- wxs, w0 , w± = c o n s t . 

Inserting the boundary conditions, we arrive at 

uo = wo = wi = 0 . 

Further, we introduce the set of kinematically admissible displacement by 

(2.7) St(S) = {v = [<p, 0] G V(S): fl(s) ^ 0 for 5 e S0 c S} . 

Lemma 1. The set $t(S) is non empty, convex and closed in V(S). 

Proof. The convexity of Si(S) can be seen directly from definition (2.7). Let us 
now consider such a sequence vn e Si(S), n = 1, 2, 3, ..., that vn -» v strongly in V(S). 
If v = [<p, 9], vn = [<p, 6n], then 6n ~> 0 strongly in H2(S). Due to the imbeding 
theorem for the space H2(S) ([1]) we have lim 0n(s) = 6(s) for every point s e S0. 

n->oo 

As 9n(s) g 0 in S0 we obtain 9(s) = 0 in S0 and hence v e 5l(S), which concludes 
the proof. 

If we define a(F, u, v) and <f(#"), v}v(S) by the formulas (2.4), (2.5) (cf. (2.1), 
(2.2)), and V(S), .ft(S) by (2.3) and (2.7), respectively, the state problem (1.2a) corre­
sponds to a unilateral problem for a shell, the lower edge of which is clamped while 
on the upper edge we have the free boundary conditions under the combined effect 
of the own weight, of the weight of the liquid, and of a pressure. 

Lemma 2. The family {A(tF\ !F e Uad(S)} of operators defined by (2.4) satisfies 
the assumptions ((HO), 1°, 2°, 3°). 
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Proof. By virtue of the definition of U°(S), we have 

(2-8) | | A ( ^ ) v | ] r . ( S ) ^ c | | v | | r ( S ) 

where the positive constant c is independent of (J^, v). 

Fig. 2. 

Now ((HO), 1°) is an immediate consequence of (2.8). To prove the assumption 
((HO), 2°), we first realize that K is positive definite; i.e. %TK<* = CQT% for any £ e R4; 
c > 0, and we may write 

(2.9) (A{&) v, v}V(S) = a(&, v, v) = (c/2) r0 [[jr\ (v) + ^V2(v)] P ds 

for any #"GU a d (S ) , v e V(S). 

By virtue of (2.6) and the boundary conditions, we have 

s > c\\v\ V(S) (2.10) f [(d<P(s)lds)2 + (d20(s)/ds2)2] SF d 

for any v e V(S) with c > 0 independent of v (see e.g. [8] - Chapt. 11, Lemma 3.2). 
Combining (2.9) and (2.10) we, obtain 

(2.11) <A(^)v,v>V(S)^a\\v\\nS) for any veV(S), & e U°(S) . 
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The positive constant a is independent of (3F, v) and ((HO), 2°) is proved. Let 
3Fa -* 3F0 in Cl(S) for n -> oo. Then we may write 

||A(#-„) - A(3F0)\\LlV(ShV.(S)) = sup |(A(^„) - A(3F0)) v\\v.(S) = 
veK(S),|K||^(s) = l 

sup sup \<(A(3Fa) - A(S*0)) v, o>yV(S)\ . 
veV(S). || v || v ( S ) = 1 «,6K(S), || o. |I r < S ) = 1 

Moreover, we obtain the following estimates: 

(2.12) \<A(S*n) v, o>}v(S) - <A(^0) v, <»>v(s>\ = \a(P„ v, <o) - a(3*0, v, o>)\ = 

= 2TT f K > , ^ . ) K ^(«>, ^„) -*.(-) - ^T(y, ^o) K ~ * > , ^ 0 ) ^o(s)| ds = 

= 27T f|^"T(v, ^n) K ^(tt>, ^„) #-„(s) -

- ^ T ( v , J^„) K jr(a>, 3F„) 3F0(s)\ ds + 2n | |^TT(v, iF„) K ^T(o>, #•„) . 

. 3F0(s) - jrT(v, 3*0) K jr(a>, 3F0) 3F0(s)\ ds 

where o> = (v, o>), 

JT(v, 3F) = {jr,(v, 3*), jr2(v, 3F), JT3(v, 3?), JTjy, 3?)] . 

For the first integral we have 

J j ^ T ( v , 3Fa) K JT (co, 3Fn)\. \3Fn(s) - P0(s)\ ds = 

rr 4 Tt-rr 4 li/2 

= c\\3Fn(s) - 3F0(s)\\C(S) £ -^Kv> ^ » ) ds I -^K". *.) ds "* ° • 
J « J = 1 J LJsj = i J 

Next, for the second integral we have the upper bound 

(2.13) f s { K > > &«) K -^(o, ^n) ^o(s) - ATT(v, 3*n) K jr(a>, 3*0) 3*0(s)\ + 

+ \JTT(v, S*n) K jr(a>, 3?0) 3F0(s) - jr\v, 3F0) K JT(o>, 3?0) 3*0(s)\} ds = 

= f {\jrT(v, 3Fn) K jr(a>, 3Fa) - jr(o>, 3F0)) 3?0(s)\ + 

+ \(jrT(v, 3Fn) - JTT(v, 3F0)) K jr(a>, 3F0) 3*0(s)\} ds = 

= c IT lAr>(v, 3Fn) ds ] ' " ' [ | s i(JTj(co, 3F„) - jr.(a>, 3F0)Y\^'2 + 

' [l jtyrfa *J - •">. ̂ o))2]1'2 [Js i^j(a>, 3-0)J
2. + C 
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Then (2.1) yields 

(2.14) j V 2 ( v , 3Fn) ~ ^2(v, J^o)|2 ds = [[\<p\ . |(dJ%(s)/ds)/J^„ -

- (dJ*-0(s)/ds)/J^o| + \0\ • |(di2f„(s)/ds)/J*-„ - (diTo(s)/ds)/J^o|2 ds -+ 0 

since 
lim ||(dJ*-„(s)/ds)2/J*-„ - (d^0(s)/ds)/^0||C(S) = 0 , 
«->co 

lim ||(d^„(s)/ds/J^„ - (d^0(s)/ds)/J^o||c(S) = 0 
71-+00 

holds if &„ -• J^o in C(1)(S). 
In a parallel way we obtain 

(2.i5) \y*(*' *i" jr*{y' ^ 2 ds -

^ f (d0/ds)2 |dJ^„(s)/ds)/J^„ - (dJ^o(s)/ds)/J^0|
2 ds -+ 0 . 

Finally, inserting (2.14), (2.15) and the analogous relations with v replaced by to 
into (2.13), we are led to the assertion that the second integral in (2.12) tends to zero. 

Thus we have proved that 

(NO) lim ||A(jg - A(*o)lurm.vw) = ° • 
FI-+00 

On the other hand, (NO) implies ((HO), 3°). To prove the continuity of the operator B 
we first notice that 

(2.16) ||d-n(s)/ds - dir0(S)/ds||C(S) ^ c||dJ^(s)/d- - d^0(s)lds\\ciS) -> 

->0 holds if ;FnGl/0(S),.f„->f0 in C(1)(S). 

Then we have also 

(2.17) |<y.(0 - &0(s) - (&0(l) - &0(s))\ = 

g J |diT„(s)/ds - diF(s)/ds| ds ^ c||diT„(s)/ds - dir0(s)/ds||C(S) "+ 0 • 

For any v = (<p, 6) we may write 

|<f( j^„) ,V>K ( s ) -<f( j^o),V>K ( s ) | = 

= 2 * I f { M [ ( - ? . ( 0 - &n(s)) &„(S) ~ ( ^ O ( 0 " - * o ( - ) ) ^ o ( s ) ] + 

IJs 

+ fc10((dJ^„(s)/ds) J^„(s) - (dJ^0(s)/ds) J^o(s) - fc1<p((dJf„(s)/ds) J^„(s) -
- (d^0(s)/ds) J*o(s)) + k3e(&„(s) - J^o(s))} ds . 
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Thus, using (2.16), (2.17) and the convergence of # n in C1(S), we establish the conti­
nuity of the operator B. 

Lemma 3. The set Uad(S) is compact in C1(S). 

Proof. Since the functions from Uad(5) are uniformly bounded and uniformly 
continuous, we apply Arzela's theorem. In every sequence there is a subsequence 
{#"„} c Uad(S) such that &n -> 3F uniformly on [0, \\ It is easy to see that 9? 
fulfils the condition |d#"/ds| rg Cv Since the derivatives {d#"„/ds} are uniformly 
bounded and uniformly continuous, there exist a function 3tf and a subsequence 
{d^Jds} such that d#"m/ds -> Jf uniformly on [0, / ] . Using a classical theorem, 
we obtain j f = d#"/ds, hence &m -> :#" in C1^). 

Moreover, |d2#"/ds2| ^ C2, and 

= lim 
ÌП-+OOJ 

&n(d2£m\dś) ds = í &\dЖ\ds) ds . 
o Jo 

Now we define the cost functional. As in ([5]), let it be related to the second invariant 
of the stress tensor 

(2.18 I2(a) = (2/3) (<г2 + <r2 - a5a ) 

where as and a0 denote the meridional and circumferential normal stresses, re­
spectively. Thus we define 

(2.19) 

where 

S ( ^ , u) = 2тr <гT(u) C<г (u) & ds , 

<T(U) = <JJ\, a\, a'e, a'e>
r = HKN(u) 

H 

\\h 0 -6//J 2 0 

1/Л 0 6/h2 0 
0 íjh 0 -6 /h 2 

0 íjh 0 6/h2 

the superscripts i and e denote that the stress is considered on the internal and 
external surfaces of the shell, respectively. 

c = 

/?,(s) 0 (-l/2)/?,(s) 0 
0 pe(s) 0 (-1/2)/?e(s) 

(-l/2)j8,(s) 0 /?,(s) 0 
0 (-1/2)/?.(•) 0 /?.(s) 

where j?,(s), /3e(s) are positive, bounded weight functions. 
Note that 

(2.20) 
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Lemma 4. The cost functional (2.20) satisfies the condition (1.3). 

Proof. We write 

(2.21) £(#"„, un) - £(JV, u) = (£(^„, un) - fl(^0, u„)) + 

+ (£(^o> O - S(^o5 «)) • 

For any fixed J^ e U°(S) the functional £(«^\ v) is weakly lower semicontinuous 
in V(5). 

Indeed, it is differentiable and convex, since 

D2 £(#", u, v, v) = An J ff
T(v) Or (v) /jF(s) ds = 2 £(#", v) . 

Combining (2.20) with the positive definiteness of the form (2.18) we conclude 
that £(#", v) is non-negative. Consequently, 

(2.22) lim inf (£(#", un) - £(#", u) ^ 0 
n-+ oo 

provided un -> u. 
Denoting 

M = KHTCHK 
we may write 

(2.23) |S(J^B, u„) - &(3*0, u„)\ = \2n \[^TK &») M JT(u„, 3F„) 3F„ -

- jrT(u„, gr0) M JT(u„, gr0) 3F0~\ ds\ :g 

- D l ^ U - ^ ^ •/r(""' ^B) *" " JrT{u>" ̂  M •yr(U"' *• ) ^°l + 

+ |^T(uB, ^„) A4 ^(u„, #-„) #"0 - ^•T(u„, #-0) M .yT(uB, gF0) 3F0\} ds S 

- ŷ ""' ^ M •yr(u"' ̂  '*• ~ ^ ° ' + 

+ \jrT(u„, 3*„) M jr(u„, 3Fn) - jrT(u„, tF0) M jr(u„, 3F0)\. \3F0\} ds . 

Since the entries of M are bounded function, we have 

|^T(uB , 3F„) M jr(u„, 3F„)\ \3Fn - SF0\ ds g 

ik \r. - ^o||c(S) c £ IK -K , j*-.)i£2(S) - o. 
I 

(Since 
1=1 

4 
(2.24) l\\^jK^n)\\liS)ú4u„\\2

nS)^c forany n, 

SF„eU°(S) 
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holds by virtue of the weak convergence of u„). The second part of the integral 
on the right-hand side of (2.23) has the upper bound 

(2.25) 2r. f {\jr\un , 2Fn) M(jf(un, &„) - jr(un, jr0))| + 

+ \(JTT(un, 3Fn) - JV\un, 3FQ)) M Jf(un, jr0)|} ds ^ 

g rlC[ i | K , K , jg||22(S)]
1/2 [ I IKX«». *J -

1=1 1=1 

- ^jK F0)\\liS)Y
12 + rlC[ £ | |^K, #„) -

; = 1 

- ^ • K , ^o)«U]1/2 [ i W^JK ^ O ) I U ] 1 / 2 - o 
1=1 

by virtue of (2.14), (2.15). 
Altogether, the right-hand side of (2.23) tends to zero. Combining this and (2.22) 

with (2.21), we obtain 
lim inf (£(#„, un) - £ ( # 0 , u)) ^ lim inf (£(#"0, un) - £(iF0, u ) H . 

n->oo «->-oo 

Then Theorem 1 and Lemmas 1, 2, 3. 4 yield the following assertion (optimization 
of the shape of axisymmetric shells): 

The optimal design problem (&), where the data are defined as above, has at least 
one solution. 

3. FIRST ORDER NECESSARY CONDITIONS OF OPTIMALITY 

Since the control problems govergend by nonlinear equations are nonsmooth 
and nonconvex optimization problems, in order to derive necessary conditions of 
optimality, we approximate the given problem (^t) by a family of smooth optimiza­
tion problems (&ls), and then pass to the limit in the corresponding optimality 
equations. Minimize the function 

(®t) &(u) + y(e) 

over all u e $t(Q) and e e U(Q) subject to the state system (1.2). 
Here £: H(Q) -> JR and S$: U(Q) -> R are given functions satisfying the following 

conditions (assumptions): 

(E 1) 1° &(u) is locally Lipschitz and non-negative on H(Q); 

2°X(e) = l°ifeeU>*(Q) 

w [ + oo otherwise. 
With regard to the spaces V(Q), H(Q) and the operator B e L(U(Q), V*(Q)), we shall 
assume in addition that 

(E 2) B is completely continuous from U(Q) into V*(Q). 

All 



Lemma 5. The map e -> u(e) is weakly-strongly continuous from U(Q) into V(Q). 

Proof is based on an analogue of Theorem 1 and will be therefore omitted. 

Theorem 2. Under the assumptions (El) and (E2), problem (M^) has at least 
one optimal pair. 

Proof. Let d = inf {2(u(e)), ee U&d(Q)}. By the assumptions (E 1) we see that 
0 S d < +oo. Now let {ek} c Uad(Q) be such that 2(u(ek)) -> d. Since Uad(Q) is 
compact there exists subsequence {en} <= {ek} such that en -> e0 (strongly) in U(Q). 
Moreover, by Lemma 5 we obtain u(en) -* u(e0) = u0 (strongly) in V(Q). 

Since 2 is continuous on V(Q), we have (2 is locally Lipschitz and non-negative 
from V(Q) into R) 2(u(e0)) = d. In other words, e0 is an optimal control of problem 
(*.) . v ' 

Let [e0, w0] be (any optimal pair of problem (^t). For every e >0, consider the 
approximating control problem (MlE): 

Minimize 

(-*.) S6(") + (1/2) I- - e0\\
2

V(Q) 

on all [e, u] € Uad(Q) x K^) subject to 

(3.1) A(e) u(e) + grad *8(tf(e)) = / + Be 

(in the particular situation, grad <De is a penalty operator associated with the varia* 
tional inequality (1.2a)), where 

{<D£}, e -> 0 + , is a family of convex functions, <De: V(Q) -» K, which are twice 
continuously differentiate and satisfy the following conditions: 

1° 0>%v) = -c(||i?[|-,w + 1) for all i? e 7(0) and a > 0; 
2° lim $f(v) = Q>(v) for all v e V(Q); 

E~*0 

3° lim inf <&e(vE) = ®(v) for any weakly convergent sequence in V(Q), ve -- v; 
£-+o 

4° <grad €>e(u) - grad <I>A(v), M - v>m) £ 
= - < £ + A)(||grad ^ (11)11^ + | g r adO^) | | ^ T O + 1) 
for all e, X > 0 and w, v e V(O). 

We define a function fie: V(.Q) -> R as follows: 

(3.2) £'(v) = 2(Pnv — £/1„<T) ^ ( C ) da (using an obvious substitution we may 
J Rn 

write 2e(v) as 

£•(») = e - f £(AnS) e„((A;lPav - 9) e"1) 69) 
jRn 

where ŵ is a mollifier (a function which, for any choice of a real number s > 0, 
has certain special properties ([1]) in Rn, n = [a"1] (the integer part of e"1), and 
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Pn: V(Q) -> Xn(Q)(Xn(Q)) is the finite dimensional subspace of V(Q) generated 
by {O^l^x) is the projection of V(Q) into Xn(Q), given by 

n oo 

Pnx = Y, xfii where x -= ]T x.:0f. 
* = i i = i 

« 
Let AM: IT -> Kn(;Q) be the operator Ana = J] (x^, a = [orl9 (T2 ... crj. 

If the function & happens to be Frechet differentiable, then we take ££ = fl. 
Suppose that {A(ee), A(e£): V(Q) -> V*(Q)} is a family of linear operators which 

are uniformly convergent to A(e), i.e. 

(H 2) lim \\A(ee) - A(e)\\L(ViQ)tV.(Q)) = 0 
£->0 

whenever ee -> e strongly in U(Q) if e -> 0. 
Now we will give some results obtained by approximating the variational inequality 

(L2a) by the penalized equation (3.1). 

Theorem 3. For any e > 0 there exists at least one optimal pair \ee, wj e Uad(:Q) x 
x V(Q) of the problem (&E). 

Proof. (See the proof of Theorem 2.) 

Theorem 4. Let {[e£n,weJ}, &„ -» 0 be a sequence of solutions of the problem 
(^£ M) . Assume that the injection of V(Q) into H(Q) is compact and the functions 
<&En: V(Q) -> R satisfy conditions ((H 1), 1° to 3°). Then there is a subsequence 
sn -> 0 such that 

(3 3) [l° e*n~*eoinXJ{Q)> 
^ ' ' | 2° uZn-+ u(e0) = u0 weakly in V(Q) and strongly in H(Q), 

where [e0, u0] is an optimal pair of problem (^St). 
In addition, if the functions <I>S satisfy condition ((H 1), 4°) and the operators 

A(e) satisfy condition (H 2), then 

{ 1° u£n -> w0 (strongly) in V(Q), 
2° A(een) uen - A(e0) u0 (weakly) in V*(Q), 
3° grad ®Bn(uen) --> / + Be0 - A(e0) u0 e d®(u0) (weakly) in V*(Q). 

Proof. For every s > 0 we have 

(3-5) &c(ue) + (1/2) \e, - e0\\
2

U(Q) ^ &%u0e) 

where u0e is the solution to (3.1) with e = e0. Let z be arbitrary but fixed in D(O). 
By (3A) and the definition of gradient we have 

(3.6) (A(e0) u0e, u0e - z)V(Q) + ®e(u0e) - 0>£(z) £ </ + Be0, u0e - z)V(Q) 

for any z e V(Q) n D(<I>) . 
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Then by ((HO), 2°) and ((H 1) 1°, 2°) we see that {||W0«||K(O>}
 i s bounded for s -> 0. 

Hence there exists w0 e V(Q) and a subsequence \u0sn} of {w0fi}, sn -> 0 for n -> co 
such that 

(3.7) w0fin - u0 (weakly) in 7(0) . 

Since the function v -> <-4(e) v, v}V(Q) is convex and continuous on V(Q) for e e 
e Uad(Q) it is weakly lower semicontinuous. 

Hence 

lim inf <^(e0) u0Sn, u0En}vm ^ <A(e0) u*, uoyV(Q). 
n-*co 

Together with ((H 1), 3°), (3.6) and (3.7), this yields 

<A(e0) «*, u* - z}¥m + <D(u*) £ «J>(z) + </ + 5e0, u* - z>K(0) 

for all z e V(£2) n D(«I>). Hence u0 is the solution of (1.2). Since the limit is unique 
we conclude that u0£ ->• u* in V(O), u*= u0 and [e0, u0] is an optimal pair of 
(891). Then by Proposition (1.12) in ([3]) we can write (u0£ -> u0 strongly in #(&)) 

|fi*(u0£) - fi(u0)| g |fi'(u0£) - fl*(u0)| + |fiE(u0) - fi(u0)| -> 0 

for e ~> 0 

because by (3.2) we see that |Se(u0e) — fle(«o)| = ^-||Mo£ ~ WO||H(.Q)> where L > 0 
is independent of e. 

Hence 

(3.8) lim sup (fi*(u£) + (1/2) ||e£ - e0||£(O)) S fi(«0) 
f-»0 

follows from (3.5). 

On the other hand, we have (efi e Uad(Q) and UadvQ) is compact) 

eEn -> e in U(Q) for a subsequence {efin} of {efi} . 

We conclude that 
BeEn -> Be strongly in V*(Q) . 

Let co be arbitrary but fixed in D(<J>). By (1.9) and the definition of gradient we 
have 

(3.9) <A(eJ u,„, u£„ - m>rm + 4>£"(u£n) - O£"(o>) g 

^ </ + Be£n, u£„ - co>K(0) for any co e V(i2) . 

Then by ((HO), 1°, 2°) and ((H 1), 1°, 2°) we see that {||u£Jv(0)} is bounded for 

Hence there exists u e V(Q) and a subsequence sk -> 0 such that 

(3.10) "«fc^« (weakly) in V(i2). 
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Next, by an analogue of (1.6) and (1.7), ((H 1), 3°) together with (3.9) yields 

<A(e) u,u - co}V(Q) + <b(u) g 9(co) + </ + Be,u - co>v(Q) 

for all a>eV(0). 

Hence u ~ u(e) is the solution of (1.2). Since the limit is unique we conclude that 
uEn -* u(e) weakly in V(Q) and strongly in H(Q) and therefore 

(3.H) limfie"(u£n) = 2(u(e)). 
£n-*0 

We may write 

lim sup (1/2) \\eEn - e0\\
2
V(Q) = lim sup (&°»(u£n) + ((1/2) ||e£n - e0\\fJ(Q)) + 

£n-*0 £„->0 

+ lim sup (-&En(u£n)) = 2(u0) - 2(u(e)) 

(which follows by virtue of (3.8), (3.H) and the definition of w0). 
We obviously have liminf (1/2) ||eCn — e0||tf(.G) = ®> anc* combining these two 

Bn~>0 

results, we arrive at lim (1/2) ||eCn — eo||u(fi) = 0. 
£n-+0 

Hence e = e0 and u(e) = w0 as claimed. Let us show (3.4, 1°). To this end we use 
the conditions ((HO), 2°), ((H 1), 4°). We can write 

(3.12) a\\u£ - ux\\V(Q) S <A(e£) uE - A(eE) ux, u£ - ux}V(Q) = 

= <A(ex) ux - .4(0 ux, ue - ux}V(Q) - <grad 0>E(uE) -

- grad ®\ux), uE - ux}V(Q) + <B(eE - ex), u£ - ux)V(Q) = 

S c(e + X)(l + ||grada>£(OIIV*(si) + | |grad*^)l |£w> + 

+ \\B(e8 - ex)\v*(Q) \\uB - ux\\V(Q) + c\A(ex) - A(eB)\\L(V(Q)tV*(Q)) \\ux\\V(Q) x 

x IK ~ u4vm = c(8 + -i)(l + |)gradcH£(u£)||^(fi) + ||grad &(uA)l$.m) + 

+ 1-9^ - ex)\\v,(Q)(\\u£\\V(Q) + l«A|]K(fl)) + 

+ 4A(ex) - 4 0 ||L(VW,V*(«)) (IH1VW + ||^||V(o) iw6|lV(o)) • 

Let e -> 0, X -> 0 be subsequences of {ew}. Since the operator JB is continuous and 
en -+ e0 in U(Q), u£n -± u0 (weakly) in V(Q), we have lim \\B(e£ - OHV*(«) = 0 

e,A-*0 

and ||wA||V(fl) = c, \\u£\\V(Q) g c. On the other hand, by (1.6) we see that 

||gradO>eu(e£)||K*(r2) S c, 

||grad 0>x ̂ (ex)\\y*(Q) ^ c for any e -» 0, A -> 0 . 
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Then taking into account conditions (H 2) and passing to the limit in (3.12) for 
e, A -> 0 we obtain Jim \\ue — ux\V(Q) = 0 ({ue} is a Cauchy sequence). 

e,A->0 

This means that wg -* u (strongly) in V(Q) for e -> 0. In virtue of ((3.3), 2°) we get 
ue -» u = u(e0). 

Hence for s -> 0 (due to (1.6)) grad Oe(ue) -* $ = ( / + Be0) - A(e0) u0 (weakly) 
in V*(Q). Then if sn tends to zero in the inequality 

W(uJ - <b8n(v) S <grad *«"(i< J , uSn - v}V(Q) 

for any v e V(Q), it follows by ((H 1), 2°, 3°) that * ( I I 0 ) ^ *(©) + <£, w0 - »>K(IJ) 

for any v e V(Q) as claimed. 

Lemma 6. There exists p(ee) = pe e V(Q) satisfying together with uE and ee 

the system 

( 1° A(ee) ue + grad &(ue) =f+ BeEi 

(3.13) 2° -A*(ee) pe - grad (grad 4>%ue)) pe = grad &(ue) , 
{3°B*peedy(ee) + ee-e0. 

P r o o f is given in ([3]). 
Now take the scalar product of ((3.13), 2°) with pe and use the coercivity condition 

((HO), 2°) and the positivity of the operator grad (grad Oe(t/£)) to get 

afl.P«lko) ^ flgrad fi'(««)|U(.o) for all £ > 0 . 

Since £ is locally Lipschitzian, the map u —> grad &s(u) is uniformly bounded on 
bounded subsets. 

Hence 

\\Pe\\v(Q) _=s c for all £ > 0 . 

Therefore, we may conclude that there exists a sequence sn -*• 0 and p0 e V(O), ^ e 
e H(Q) such that 

(<iU\ fl°Pen-Po (weakly) in V(Q), 
v ; [ 2° grad fi^iij-* i/ (weakly) in H(Q) . 

By Theorem 4 and ((3.14), 2°) it follows via Proposition (1.12), ([3°]) that rj e d£(u0), 
where 3£ is the generalized gradient of £([30]). Now, if s tends to zero in ((3.13), 3°) 
then Lemma 3.2 and Theorem 1.2 ([3°]) imply that B*p0 e dty(e0). 

We may view p0 as a dual extremal element of problem (^ x ) and 

( A(e0) u0 + 0>(w0) =f+Be0, 
(3.15) I -A*(e0) p0 - D2 O(i*0) P0 = 8&(u0), 

[ B*p0edy(e0) 

as generalized first order necessary conditions of optimality. (The element 
D2 <*>(u0) Po e V*(Q) is defined by D2 0>(w0) p0 = weak - lim grad (grad ®En(uEn)pen).) 
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Súhrn 

OPTIMÁLNĚ RIADENIE VARIAČNEJ NEROVNICE S APLIKÁCIOU 
NA ROTAČNĚ SYMETRICKÚ ŠKRUPINU 

JÁN LOVÍŠEK 

Je študovaná úloha optimálneho riadenia variačnou nerovnicou s riadeniami v koeficientoch 
operátora nerovnice, a v právej straně nerovnice. Dokazuje sa existencia optimálneho riadenia. 
V aplikácii na pružnú rotačně symetrickú škrupinu konštantnej hrůbky, meridianova křivka 
sa berie za návrhovú premennú. Je predpísaná jej dížka a objem, ktorý jej zodpovedá, derivácie 
do 2 rádu sú v daných hraniciach. Zaťaženie představuje hydrostatický tlak, vlastná tiaž a přetlak. 
Účelový funkcionál je integrál druhého invariantu napátia pri okrajových povrchoch škrupiny. 
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Резюме 

ТЕОРИЯ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ДЛЯ ВАРИАЦИОННОГО 
НЕРАВЕНСТВА С ПРИМЕНЕНИЕМ К ОСЕСИММЕТРИЧНОЙ ОБОЛОЧКЕ 

^АN ^оV^8Ек 

Цель этой работы заключается в следующем: Формулировать и решить задачу теории 
оптимального управления для вариационного неравенства с управлением в операторе и 
в правой части. Доказывается существование задачи оптимального управления, когда функция 
стоимости имеет квадратичный вид. Кроме того формулируется условие первого рода для 
задачи оптимального управления. 

Ашког'з аййгезз: Оос. Ог. 1ап Ьоушк, С8с, 8 ^ е Ъ п а ГакиИа 8У8Т, КасИтзкёЬо 11, 
813 68 Вгаазкш1. 
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