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OPTIMAL CONTROL OF VARIATIONAL INEQUALITY
WITH APPLICATIONS TO AXISYMMETRIC SHELLS

JAN LoviSex
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Summary. The optimal centrol problem of variational inequality with applications to axi-
symmetric shells is discussed. First an existence result for the solution of the optimal control
problem is given. Next is presented the formulation of first order necessary conditions of opti-
mality for the control problem governed by a variational inequality with its coefficients as control
variables.

Key words: elliptic variational inequalities, optimal control problems, shape of axisymmetric
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INTRODUCTION

We consider an optimal control problem in which the state variable of the system
(which includes an elliptic, linear, symmetric operator, the coefficients of which
are chosen as the design-control variables) is defined as the (unique) solution of
a variational inequality. The existence result proved in Section 1 can be applied
to the optimal design of the shape of axisymmetric shells (of Section 2; the theme
of this section stems from the papers [5] and [6]). The meridian curves of their
middle surfaces are taken for the design variable (the case of thickness is considered).
Admissible functions are smooth curves of a given length, which are uniformly
bounded together with their first and second derivatives, and such that the shell
contains a given volume. The loading consists of the own weight, the hydrostatic
pressure of a liquid and an external or internal pressure. As a cost functional, the
integral of the second invariant of the stress deviator on both surfaces of the shell
is chosen. Section 3 is concerned with the formulation of first order necessary condi-
tions of optimality for the control problem governed by a variational inequality
with its coefficients as control variables (nonsmooth and nonconvex infinite dimen-
sional optimization problem.
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We apply an idea of Barbu — Mignot — Tartar: the idea is to approximate the
given optimal control problem by a family of “smooth” regularized control problems
and then to pass to the limit in the approximating optimality equations.

1. EXISTENCE THEOREM

The proof of our existence theorem is based on results of [2], [4], [12].

Let V(Q) be a real Hilbert space and V*(Q) its dual space, the pairing between
V(Q) and V*(Q) being denoted <+; *Dy(q). Next H(Q) is a separable real Hilbert
space such that V(Q) is dense in H(®) and the injection of V(Q) is completely con-
tinuous.

Let U(Q) be a Hilbert space of controls, U,4(Q) = U(R) a set of admissible controls
(U.4(Q) is a compact set in U(Q)).

Let A(e): V(Q) — V*(Q) for every e € U,4(Q) be a family of linear and symmetric
operators with the following properties:

1° For any e € U, 4(Q) the operator A(e) belongs to L(V(2), V*(Q))
{A(e)} is uniformly bounded, i.e.
lelu = ci [olvay < 2= [[A(e) o]y < )
2° For any e e U,4(Q) the operator A(e) satisfies the V(Q) — uniform co-
ercivity condition (with respect to U(Q)) '
(HO) CA(e) v, v)ya) Z af|v]|fq for any ve V(Q),
for any e e U(Q),
and o > 0 independent of e.
3° For every ve V(Q) the operator A(+) v:
U,«(Q) —» V*(Q)is strongly — strongly continuous:
e, = e, (strongly)in U(Q) for n — oo,
A(e,) v = A(e,) v in V*(Q) for all v e V(Q).

L

Consider the equation
(1.1) A(e) u(e) + 0®(u(e)) > f + Be

where ®: V(Q) —» V*(Q) is the subdifferential of ® (®: V(Q) — R is a lower semi-
continuous convex function), B is a nonlinear continuous operator from U(Q) -
— H(Q) and fis a given element of V*(). In what follows we make use of the cano-
nical injection H(Q) G V*(Q). As seen earlier, (1.1) can be rewritten as the variational
inequality

(1.2) u(e) e V(Q),
CA(e) u(e), v — u(e)dyay + ®(v) — P(u(e)) = {f + Be, v — u(e)Pyq
forall veV(Q), eeU,(Q).
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or
u(e) e K(Q),

(1-23) <A(e) u(e), v = “(")>V(Q) + j(U) - j(u(e)) = f+ Be,v — u(e)>V(!2)

forall ve K(Q), eecU,y(Q)
where @ = j + Igq, U&m) is the indicator of a convex, nonempty, closed subset
of V(Q), j is a convex lower semicontinuous proper functional on V(2)). We shall
assume in addition that K(Q) N int D(j) + 0 (int C = interior of the set C, D(j) =
= (ve K(Q): j(v) < + 0}). The parameter e € U,4(Q) is called the control, and the
corresponding solution u(e) is called the state of the system (1.2). Equation (1.1)
itself will be referred to as the state system or control system. For every fe V*(Q)
and for every e € U, 4(Q) the variational inequality (1.2) has a unique solution.

The optimal control problem can be set in the following general form:
Let a functional

e (U(Q) x V(@) - R

be given, which satisfies the following condition

(1.3)

if e, eeU(Q), e, e in U(Q), v, — v (weakly)
in V(Q) = liminf 2(e,, v,) = L(e, v).

n—x

Defining the cost functional as

(1.4) €(e) = (e, u(e))
where u(e) denotes the solution of (1.2a), we may consider the optimal design problem

():
Minimize the function
() €(e)

over all u € 8(Q) and e € U,4(Q) subject to the state system (1.2a).

A pair [eg, o] € U,o(2) x K(Q) for which the infimum in problem (28) is attained
is called the optimal pair, and the corresponding control e, is called the optimal
control.

Theorem 1. Under assumptions (HO) and (1.3) , problem (#B) has at least one
optimal pair.
Proof. Let {e,] = U,4(Q) be a minimizing sequence for €(e), i.e.

(1.5) lim €(e,) = inf €(e).
k=

ecUaa(R2)

Since U,4(Q) is compact, there exists a subsequence {e,} < {e,]} such that e, > e,
(strongly) in U(Q).
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The means that Be, — Be, (strongly) in V*(Q). Setting u, = u(e,) we can write

<A(eu) (un - U), U, — U>V(.Q) é j(U) - j(un) - <f + Bem v — un>V(Q) -
— (A(e,) v, u, — v)yq forany ve K(Q).

Then Proposition 1.7 ([3]) implies int D(j) = D(9j), and if
(EO) K(Q) Nint D(j) = 0,
there exists an element v, € 8(Q) ) D(9)) such that j(vo) — j(w) = <P, vo — WDy(g)
where p € j(v,), we S(R). This means that the function (0: K(Q) —» R) 6(w) =
= (j(v) — jw))/|vo — w|v(ey is bounded. Further by assumption ((HO), 2°) we get
@y = volvay = 0us) + ([flvecay + |Beallvear + [<A(er) 20, 4y = vodvean] :
D [%n — Vollviey:

Hence
[a]lvc@y < ¢ by (assumption ((HO), 1°), and there exists a subsequence (denoted
again by {u,}) such that u, — u (weakly) in V(Q),
where u € 8(Q) (the set 8(2) is weakly closed).

For any w e V(Q) we have (by assumption ((HO), 3°)) .
lim (A(e,) u(e,); whye, = lim <A(e,) w, Dy =

= <A(90) W, Uy = (A(eo) U, Wy
and therefore

(1.6) A(e,) u(e,) = A(eo) u (weakly) in V*(Q)

if u, - u is weakly convergent in ¥(Q). Furthermore, by assumption ((HO), 2°)
we can write

CA(en) (u, — u), u, — Wy 2 0.
Hence we have (by passing to the limit)

lim 2 A(e,), u, u, )y = liminf <A(e,) u,, Dy + lim {A(e,) u, 4Dy g, -

n— oo

This yields

(1-7) lim inf <A(eu Ups Udy(g) 2 <A(€’o) U, Uyq) -

n-=* o

Now, letting n tend to + oo in the inequality

<A(en) Uy, u, — U>V(Q) + ](un) é ](U) + <f + Bem u, — U)V(Q)
and taking lim inf, we conclude by (1.6) and (1.7) that
<A(€o) U, U — Dy + J(“) = J(U) + {f + Beg, u — 0)yq)

(because j(v) is a convex, lower semicontinuous, proper functional on V().
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Weinfer u = u(e,) as claimed and the whole sequence {u,} tends to u(e,) weakly
in V(Q) (since the variational inequality (1.2a) has a unique solution for any ee
€ U,4(Q)). We can write

<A(en) Uy, 0 — un>V(ﬂ) + ](l)) - j(uu) 2 <f + Bem v — un)V(ﬂ)
forany ve 8(Q), e,eU,4(Q).
This yields
<A(en)’ Uy U)yia) — j(v) = <A(en) Uy, Vyey — <f + Beyy v — Uy — j(“n)-

Consequently,

lim sup <A(en) Ups un>V(Q) - j(U) < lim (<A(en) Uy, U>V(n) -

n— o =

— <f + Be,, v — u,>yq) — liminfj(u,).

n=o0

Hence by (1.6) one has

(1.8) lim sup {A(e,) u,, 4 dy@) — j(v) £ {A(eo) t, VDpq) —

— {f + Beg, v — upy(q) — j(u) forany ve K(Q)
and therefore (we take v = u)

lim sup <A(en) Uy Uy () S <A(eo) U, UDy(g) -

n—o

By (1.7) it follows that
lim <A(en) Uns un)V(Q) = <A(eo) u, “>V(m .

n— oo

By virtue of ((HO), 2°, 3°) we have

alim sup ||u, — ul|} o < lim (A(e,) (4, — u), u, — Uy =
n— o n— o0

= hm {(A(en) um un>V(.{2) + <A(en) u, u>V(D) - 2<A(en) u, un>V(Q)} = 0 .

Hence
lim u, = u(ey) (=u,) holds in the strong topology of V(2).

Thus, we have shown that the map e — u(e) is strongly — strongly continuous
from U,4(Q) to V().
By virtue of (1.3) and (1.5) we have

inf €(e) = lim inf €(e,) = lim inf 2(e,, u(e,)) = (e, u(e,)) = (e,) -

eeUqa(2) n— o0

In other words, e, is an optimal control of problem %)
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2. OPTIMIZATION OF THE SHAPE OF AXISYMMETRIC SHELLS
WITH UNILATERAL CONSTRAINTS

Axisymmetric thin elastic shells of constant thickness with unilateral constraints
are considered and the meridian curves of their middle surfaces taken for; the design
variable.

Admissible functions are smooth curves of a given length, which are uniformly
bounded together with their first and second derivatives, and such that the shell
contains a given volume. The loading consists of the own weight, the hydrostatic
pressure of a liquid, and external or internal pressure.

As a cost functional, the integral of the second invariant of the stress deviator
on both surfaces of the shell is chosen.

We shall apply the abstract Theorem 1 to the optimal shape design (#F = e)
in the case of axisymmetric problems for thin elastic shells.

Let z and r denote the axial radial coordinates, respectively. We describe the
meridian curve by means of two functions Z(s) and Z(s), as follows:

r=%(); z=2%(s) 0=s=<1

where s denotes the arc parameter and the length [ is given.
We can write

dZ(s)[ds = [1 — (dZF(s)/ds)*]"/*.
Let us choose U(S) = C¢V(S), S = (0, 1),
U,o(S) = {F(s)e CV"(S)irg £ F(s) S 1y,
[dZ(s)/ds| = C; < 1, |d*F(s)/ds?| = C,,

f #7(5) (02(9))os) s = €}

where g, ry, Cy. C,, C; are given positive constants.

The integral condition means that the volume of the shell is prescribed. C*(5)
is the space of continuously differentiable functions in S, the derivatives of which
are Lipschitzian.

Moreover, we define an auxiliary set

U°(S) = {#F(s) e CV(S): (1)2) ry < F(5) < 21y
F(s)fds < (1/2) (1 + €;) < 1} .

We shall use the linear theory of shells ([13]) and formulate the equilibrium in terms
of the displacement vector u = (u, w), where u is the meridional and w the normal
displacement (see Fig. 1). Next, we set v = (¢, 0). Let us define the following system
of strains.
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Fig. 1.

(2.1) { Ni(u) = du(s)[ds, A5(u) = ([dF(s)/ds) u + (dZ(s)/ds) ) #(s) .
N 3(u) = —d?w(s)[ds?, A 4(u) = (—dF(s)/ds) (dw(s)/ds)/Z(s),

and the matrix:

1u 0 0
2 1 0 0
(2.2) K = Eh|(1 — 1?) g 0 (h?[12) (uh?/12)

00 (uh?/12) (h*[12)[(4,4)

where E is the Young modulus, h the constant thickness of the shell and p the Poisson
ratio (0 £ p < 1/2). Henceforth H¥(S), k = 1,2 denote the usual Sobolev spaces
with square — inegrable derivatives, and |- | gws)their norms (Hg(S) is a closed
vector subspace of H(S), the trace yv of v € H'(S) equals zero on 0S). Let us consider
the space
W(S) = H'(S) x H*(S), L(S) = L,(S) x L,(S)
and write
lullwesy = (lulis + (W) -

We introduce the subspaces

] V(S) = {v = (¢, 6) € W(S): 0(0) = 0(0) = dO(0)/ds = 0} ,
(23) { A(S) = [ve V(S): N(o) = 0, i = 1,2,3,4) .

We define a bilinear form and an operator A(%): V(S) - V*(S) by the equation

4
(2.4) a(#,u,v) = CA(F) u, vy = 21 ) D IKU N (u, F) N (v, F) F ds.
L,]=
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Further, consider the form
(25)  <F(F), ¥y = 2 j [ko(2() — 2(6) + k(@7 ())a5) 0 -

— (dZ(s)/ds) @) + k30] #(s) ds
where

f(#) = B# B:U(S) - L(S), L(S)QV*(S),

ko and k, are non-negative constants denoting the specific weight of the liquid and
of the shell, respectively. The first part of the loading corresponds to the volume
of the shell full of the liquid. The constant k; denotes an internal or external pressure.

The boundary conditions in V(S) correspond to the clamped edge s = 0. The
subspace %(S) represents the virtual displacements of a rigid shell. It is easy to see
that 2(S) = {0}.

In fact,
(2.6) {./Vl(u) =0-u=uy, = const,

N3(U) = 0> w = w, + wys, wy, w; = const.
Inserting the boundary conditions, we arrive at
Uy = wo =w; =0.
Further, we introduce the set of kinematically admissible displacement by

(2.7) K(S) = {v=1[0,0]eV(S):6(s) <0 for se S, = S} .

Lemma 1. The set 8(S) is non empty, convex and closed in V(S).

Proof. The convexity of R(S) can be seen directly from definition (2.7). Let us
now consider such a sequence v, € K(S),n = 1,2, 3, ..., that v, — v strongly in V(S).
If v=_[¢0]v,=[¢0,], then 6, > 0 strongly in H*(S). Due to the imbeding
theorem for the space H*(S) ([1]) we have hm 0,(s) = 0(s) for every point s € S,.

As 6,(s) < 0in S, we obtain 0(s) < 0 in SO and hence v € K(S), which concludes
the proof.

If we define a(#, u,v) and {f(F), VD, by the formulas (2.4), (2.5) (cf. (2.1),
(2.2)), and V(S), 8(S) by (2.3) and (2.7), respectively, the state problem (1.2a) corre-
sponds to a unilateral problem for a shell, the lower edge of which is clamped while
on the upper edge we have the free boundary conditions under the combined effect
of the own weight, of the weight of the liquid, and of a pressure.

Lemma 2. The family {A(F), F € U,4(S)} of operators defined by (2.4) satisfies
the assumptions ((HO), 1°, 2°, 3°).

466



Proof. By virtue of the definition of U°(S), we have

(2.8) H‘A(f ) ]y = ellVllvesy
where the positive constant c is independent of (%, v).

1

Fig. 2.

Now ((HO), 1°) is an immediate consequence of (2.8). To prove the assumbtion
((HO), 2°), we first realize that K is positive definite; i.e. ETKE = ¢£™¢ for any & € R%;
¢ > 0, and we may write

(29)  <A(F) v, vy = alF,v,v) 2 (c[2) o J‘S[./Vf(v) + N3(v)] F ds

forany F eU,(S), veV(s).

By virtue of (2.6) and the boundary conditions, we have

QI [ - @) s = vl

for any v € V(S) with ¢ > 0 independent of v (see e.g. [8] — Chapt. 11, Lemma 3.2).
Combining (2.9) and (2.10) we, obtain

(211)  CAF) v, vy 2 afv|Es forany veV(S), FeUS).
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The positive constant « is independent of (#,v) and ((HO), 2°) is proved. Let
F, > F,in C'(S) for n - co. Then we may write
|4(#.) = ACF)|ews) oy = sup 1”(1‘1(9 W) — A(Fo) v

veV (), llvilvisy=

= sup sup [K(A(F,) — A(F o)) v, ©Dys)) -

veV(S),lIvilv(sy=1 oeV(S),|lo]lv(s)=1

Ves) =

Moreover, we obtain the following estimates:

(2.12) [KA(F )V, @Ypis) — CA(Fo) ¥, 0)ys)| = |a(F,, v, @) — a(F,, v, 0)| £
< 2n LWT(v, F)K N (0, F,) F(s) — NT(v, Fo) KN (0, Fo) Fofs)| ds <
<2n LWT(V, F) K N (0, F.) F.s) -
- N, F)K N (0, F,) Fo(s)| ds + 2 LWT(v, F)K N (0, F,).

LFo(s) = N (v, Fo) KN (0, F o) Fo(s)| ds v
where o = (v, o),
N (v, F) = [N (v, F), N, (v, F), N3V, F), N4(v, F)].

For the first integral we have

LI./VT(V, F) KA (0, F,)| . |F.(s) — Fols)| ds <

4

<470 - #Oleo | [ TAAm 285" [[ Fh30. 20| 0.

j=

Next, for the second integral we have the upper bound
(2.13) L{ |V (v, ) KN (0, F,) Fo(s) — NV, F,) KN (0, Fo) Fofs)| +
+ |V T(v, F) K N (0, Fo) Fols) = AT(v, Fo) KN (0, Fo) Fofs)|} ds =
= [fr e F a7 - (o, 70) 7400 +

+ |(N (v, #,) — N (v, Fo)) K N (0, F) yo(s)|} ds <

1/2

< c[ ] élmf.(v, F.) ds]l/z US jil(mjfw, F) = N o, yo))z] +

1/2

wo[f, fteza - winsr] [, £oviton ]
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Then (2.1) yields

1) [ 1407 - wie g as = [ ol (@7 691, -

- (47 o(s)/ds)|Fo| + |0] . |(d2Z(s)/ds)|F, — (d2Z(s)/ds)|Fo|? ds — O
lim ||(d#,(s)/ds)*|#, — (dF o(s)[ds)[F o] cs) = O

n-— o0

"1112 1(d2Z(s)/ds|F, — (d2(s)[ds)/F o]l cs) = O

holds if #, » %, in C)(S).
In a parallel way we obtain

(2.15) J [\, F) — Halv, F)J ds <

< [ (00105 a7 a9/, - (@] a5~ 0.

Finally, inserting (2.14), (2.15) and the analogous relations with v replaced by @
into (2.13), we are led to the assertion that the second integral in (2.12) tends to zero.

Thus we have proved that

(No) lim [|A(ZF,) — A(Fo)| L), vasn = 0

On the other hand, (NO) implies ((HO), 3°). To prove the continuity of the operator B

we first notice that
(216)  |4Z,(s))ds — dZo()ds]ecs, < |, (9)ds — dFo(5)fds]ecs)
-0 holdsif #,eU’S), #,-> F, in CU(S).
Then we have also
(2.17) |2.(0) = Zo(s) = (Zo()) = Zo(s))] =
s [ o9 - a2@fes s 5 efa2,(9/ds — a2 9dslas, = 0.

For any v = (¢, ) we may write

|<f('97n)’ Vovs) — <f(g’-o), V>V(S)| =
[ k() ~ 29 726) = (20 = 2() 7l +

=2

+ k0((dF (s)/ds) F(s) — (dF o(s)[ds) Fo(s) — ki@((dZ,(s)/ds) F,(s) —

— (dZo(s)/ds) Fofs)) + ks0(F(s) — Fols))} dsf -
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Thus, using (2.16), (2.17) and the convergence of #, in C'(S), we establish the conti-
nuity of the operator B.

Lemma 3. The set U,4(S) is compact in C'(S).

Proof. Since the functions from U,4(S) are uniformly bounded and uniformly
continuous, we apply Arzela’s theorem. In every sequence there is a subsequence
{#,} = U,y(S) such that #, - Z uniformly on [0, I]. It is easy to see that &
fulfils the condition |d#/ds| £ C;. Since the derivatives {d.#,/ds} are uniformly
bounded and uniformly continuous, there exist a function # and a subsequence
{d#,/ds} such that d#,[/ds — # uniformly on [0, /]. Using a classical theorem,
we obtain # = dF/[ds, hence #,, - # in C!(S).

Moreover, [d>#[ds?| < C,, and

1 1

Cy = limj Fr(dz,[ds)ds = J F(dZ|ds) ds .
m=o0,) 0 0

Now we define the cost functional. Asin ([5]), letit be related to the second invariant

of the stress tensor

(2.18 I (o) = (2/3) (62 + o5 — 0,04)

where o, and o, denote the meridional and circumferential normal stresses, re-
spectively. Thus we define

(2.19) (F, u) =2z J 6'(u) Co (u) # ds,
S

where

o(u) = <o, ot, o}, o)™ = HKN(u),
1h 0 —6/r 0
iho 6k o |
0 1h 0 —6n?|’
0 1fh 0 6/h?

H =

i
the superscripts i and e denote that the stress is considered on the internal and
external surfaces of the shell, respectively.

Bi(s) 0 (=1/2)Bi(s) 0
c - 0 B.(s) 0 (=1/2) Bls)
(=1/2) B(s) 0 Bi(s) 0
0 (—" 1/2) Be(s) 0 ﬁe(s)
where Bi(s), B.(s) are positive, bounded weight functions.

Note that
(2.20) 2(9" ,u)=(3/2)n JS(B;I 2(a' (W) + B.Iy(o%(u)) F(s)ds .
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Lemma 4. The cost functional (2.20) satisfies the condition (1.3).
Proof. We write
(2.21) F,,u,) — &(Fo,u) = ((F,,u,) — &Fo, u,)) +
+ (2(F o, u,) — &(F,, v)).
For any fixed # € U°(S) the functional £(%, v) is weakly lower semicontinuous

in V(S).
Indeed, it is differentiable and convex, since

D> Q(F,u,v,v) = 4n JSGT(V) Co (v) F(s)ds = 2 8&(F,v).

Combining (2.20) with the positive definiteness of the form (2.18) we conclude
that €(&#, v) is non-negative. Consequently,

(2.22) liminf (&(7,u,) — (F,u) 20

provided u, — u.
Denoting
M = KHTCHK
we may write

(223) [8(F 1) — &(Fo,u)]| = o j [0 5 M (0, 5) 7, -
— Ny, Fo) M N (u,, F) Fo] ds| <
< [ 7 M 7) 7, — A FY M (7)) +
+ | N (4, Z,) M N (u,, F,) Fo — N (u,, Fo) M N (u,, Fo) Fo|} ds <
< L{[JVT(u,,, FIM AN (u, F)||F, — Fo| +
+ | Ny, F,) M N (u,, F,) — N (u,, Fo) M N (u,, Fo)| . |Fo|} ds.
Since the entries of M are bounded function, we have
L|./V’T(u,,, F)M N (4, F)|F, — Fo|lds £
= %0 = Folew CJ; [ (s, 2oy = 0 -
(Since
@) ST S clulio 5 ¢ forany n,

F,eU°S)
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holds by virtue of the weak convergence of u,). The second part of the integral
on the right-hand side of (2.23) has the upper bound

(2.25) - L{ ATy, F) M(A(ty F) — Nty F )| +
+ (N F,) = HT(U, Fo)) M A (u,, Fo)|} ds <
= ”16[1.;"” (U F) | L) ]2 [,;1 | fu,, #,) —

4
= Nty Fo)|| L] + rlc[_ZIIIJV,-("m Z,) —
=

4
— N (U, Fo)| o)) [ZIH*/V i(Uny 70) | Ly]'? = 0
=

by virtue of (2.14), (2.15).

Altogether, the right-hand side of (2.23) tends to zero. Combining this and (2.22)
with (2.21), we obtain

lim inf (&(#,, u,) — &(F,, v)) = liminf (&(F,, u,) — &(Fo,u) 2 0.

Then Theorem 1 and Lemmas 1, 2, 3. 4 yield the following assertion (optimization
of the shape of axisymmetric shells):

The optimal design problem (28), where the data are defined as above, has at least
one solution.

3. FIRST ORDER NECESSARY CONDITIONS OF OPTIMALITY

Since the control problems govergend by nonlinear equations are nonsmooth
and nonconvex optimization problems, in order to derive necessary conditions of
optimality, we approximate the given problem (28,) by a family of smooth optimiza-
tion problems (4,,), and then pass to the limit in the corresponding optimality
equations. Minimize the function

(1) 2(u) + B(e)
over all u € K(Q) and e € U(Q) subject to the state system (1.2).

Here €: H(Q) — R and B: U(Q) — R are given functions satisfying the following
conditions (assumptions):

(E 1) 1° 8(u) is locally Lipschitz and non-negative on H(Q);
2 B(e) = { 0if e e U,4(Q)

+ co otherwise.
With regard to the spaces V(Q), H(Q) and the operator B € L(U(Q), V*(2)), we shall
assume in addition that

(E2) Bis completely continuous from U(Q) into V*(2).
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Lemma 5. The map e — u(e) is weakly-strongly continuous from U(Q) into V(Q).

Proofis based on an analogue of Theorem 1 and will be therefore omitted.

Theorem 2. Under the assumptions (E 1) and (E2), problem (8,) has at least
one optimal pair.

Proof. Let d = inf {2(u(e)), e € U,4(2)}. By the assumptions (E 1) we see that
0 <d < +o. Now let {g} = U,4(Q) be such that 8(u(e,)) — d. Since U,4(Q) is
compact there exists subsequence {e,} < {e,} such that e, — e, (strongly) in U(<Q).
Moreover, by Lemma 5 we obtain u(e,) — u(e,) = u, (strongly) in V(Q).

Since € is continuous on V(), we have (€ is locally Lipschitz and non-negative
from V(Q) into R) 2(u(e,)) = d. In other words, e, is an optimal control of problem
().

Let [eo, #o] be (any optimal pair of problem (28,). For every & >0, consider the
approximating control problem (2,,):

Minimize
(%) () + (1/2) e — e[ 3o
onall [e, u] € U,4(2) x V(R) subject to
(3.1) A(e) u(e) + grad @°(u(e)) = f + Be

(in the particular situation, grad ®° is a penalty operator associated with the varia«
tional inequality (1.2a)), where

{®°}, ¢ > O, is a family of convex functions, ®°: V(Q) —» R, which are twice
continuously differentiable and satisfy the following conditions:

1° ®*(v) = —c(|o]vq + 1)forallve V(Q)ande > 0;
2° lim ®(v) = ®(v) for all ve V(Q);
e=0

(H1) 3° hm inf ®*(v,) = ®(v) for any weakly convergent sequence in V(€), v,

4° (grad @°(u) — grad ®*(v), u — v)yq,

> —c(e + 4) (|grad ©*(u)||7eo, + Ugrad @ (v)]|7 eyt 1)
foralle, A > 0 and u, ve V(Q).

We define a function £°: ¥(2) — R as follows:

(32 €)= j 2(P,» — e4,0) 0,(¢) do (using an obvious substitution we may
R

write 2%(v) as
(v) = s'"jRnQ(A,,S) on((4;, 1P — 8) &7 1) d9)

where g, is a mollifier (a function which, for any choice of a real number ¢ > 0,
has certain special properties ([1]) in R", n = [¢~!] (the integer part of ¢~*), and
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P,: V(Q) - X,(Q)(X,(Q)) is the finite dimensional subspace of V(Q) generated
by {6;}7-,) is the projection of V() into X,(Q), given by

Px =Y x0;, where x =
i=1

1

0
xi9i .
i=1
Let 4,: R" > X,(Q) be the operator A,6 = Y 60, 6 = [0y,0,...0,].
i=1

If the function £ happens to be Fréchet differentiable, then we take £° = L.
Suppose that {A(e,), 4(e,): V(RQ) > V*(Q)} is a family of linear operators which
are uniformly convergent to A(e), i.e.

(H2) li_r}?) [A(e.) = A(&)]Lviay.vean = O

whenever e, — e strongly in U(Q) if ¢ - 0.
Now we will give some results obtained by approximating the variational inequality

(1.2a) by the penalized equation (3.1).

Theorem 3. For any & > 0 there exists at least one optimal pair [e,, u,] € U,4(Q) x
x V(Q) of the problem (2,).

Proof. (See the proof of Theorem 2.)

Theorem 4. Let {[e,,, u, |}, &, — O be a sequence of solutions of the problem
(8B.,). Assume that the injection of V(Q) into H(Q) is compact and the functions

®°: V(Q) > R satisfy conditions (H 1), 1° to 3°). Then there is a subsequence
&, = O such that

(33) { L ew—coin u(Q),
: 2° u, — u(ey) = u, weakly in V(Q) and strongly in H(Q),

where [eq, uo] is an optimal pair of problem (8,).
In addition, if the functions ®° satisfy condition ((H 1), 4°) and the operators
A(e) satisfy condition (H 2), then

1° u, — u, (strongly) in V(Q),
(3.4) < 2° Ale,,) u,, — A(eo) uo (weakly) in V*(Q),
3° grad ®™(u,,) — f + Bey — A(eo) uo € 0®(u,) (weakly) in V*(Q).

Proof. For every ¢ > 0 we have
(3.5) 2(u,) + (1/2) [le. — €0t = £(uor)

where u,, is the solution to (3.1) with e = e,. Let z be arbitrary but fixed in D(®).
By (3.1) and the definition of gradient we have

(3.6)  {A(eo) o o, — Z)yay + ‘Da(um) - (I’S(Z) = {f + Beg, Uy, — 2Dy
for any ze V(Q)n D(®).
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Then by ((HO0), 2°) and ((H 1) 1°, 2°) we see that {||ug, |y} is bounded for & — 0.
Hence there exists ug € V(Q) and a subsequence {u,,,} of {uo,)}, ¢, = 0 for n - oo
such that

(3.7) Uo,, — g (weakly) in V(Q) .

Since the function v — {A(e) v, v)y(q) is convex and continuous on V(Q) for ee
€ Uad(Q) it is weakly lower semicontinuous.
Hence

lim inf <A(eo) Uoe, an,,>V(Q) = <A(eo) “3, “:>V(g) .

Together with ((H 1), 3°), (3.6) and (3.7), this yields
(A(eo) u§, “3 - Dy + <I>(u?§) = ‘D(Z) + {f + Bey, u?)‘ = Dy

for all z € V(Q) n D(®). Hence ug is the solution of (1.2). Since the limit is unique
we conclude that ug, — ug in V(Q), ug= u, and [eo, uo] is an optimal pair of
(#8,). Then by Proposition (1.12) in ([3]) we can write (uo, = u, strongly in H(R))

|€5(uoe) — 2(uo)| < |2%(uor) — L(uo)| + [€(o) — L(uo)| - 0
for ¢—-0

because by (3.2) we see that |@(uo,) — £(uo)| < Ll|uo, — tto]a(a), where L> 0
is independent of ¢.
Hence

(3.8) lin; sup (2(u,) + (12) [le. — eo]lda) = (o)
“
follows from (3.5).
On the other hand, we have (e, € U,4(?) and U,4(Q) is compact)
e,, > e in U(Q) for a subsequence {e,} of {e}.
We conclude that
Be,, — Be strongly in V*(Q).

Let @ be arbitrary but fixed in D(®). By (1.9) and the definition of gradient we
have

(3.9) CA(es,) e, e, = @Yy + P(u,,) — B(0) =
‘ < <f + Be,, ty, — ©Yyq forany we V(Q).
Then by ((HO). 1°, 2°) and ((H 1), 1°, 2°) we see that {|u,, |y} is bounded for

g, = 0.
Hence there exists u € V(Q) and a subsequence ¢, — 0 such that

(3.10) u, —u (weakly)in V(Q).
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Next, by an analogue of (1.6) and (1.7), ((H 1), 3°) together with (3.9) yields
CAle) u, u — WYy + O(u) < ®(w) + {f + Be,u — 0)yq,
forall weV(Q).

Hence u = u(e) is the solution of (1.2). Since the limit is unique we conclude that
u, — u(e) weakly in V(Q) and strongly in H(Q) and therefore

(3.11) lim 8 (u, ) = 8(u(e)) .
en—0
We may write

lim sup (1/2) |le,, — eollfey = lim sup (8*(u,,) + ((1/2) |
gn—0 en—0

e, = @ollte) +
+ lim sup (— 27(w,)) S B(uo) ~ €(u(e)

(which follows by virtue of (3.8), (3.11) and the definition of u).
We obviously have liminf(1/2) |le,, — eo|?g) = 0, and combining these two
&n—0

results, we arrive at lim (1/2) |le,, — o7 = O
-0

€n

Hence e = ¢, and u(e) = u, as claimed. Let us show (3.4, 1°). To this end we use
the conditions ((HO), 2°), ((H 1), 4°). We can write

(3.12) allu, — uy| vy S <Ales) u, — Ale,) s, 4, — U dp(0) =
= <A(ez) U, — A(ec) Uy, U, — Uy — <grad q’x(“e) -
— grad (Dl(u/l)’ u, — u}.>V(Q) + <B(ee - ex), u, — u).)V(Q) =

< e + ) (1 + [|grad ©(u,)|[Pey + [grad ®(u,)[Vecq) +

+ [|Ble. = ex)llven 1 = sllviay + [ A(ez) — Ale)]riviarvecan [talviey x
X |lu, = us]lviey £ e(e + A) (1 + |grad O (u,)]| 7oy + |lgrad @*(u,)[Peee) +
+ |[Ble. = en)llvuay (J#ellvear + [illvea) +

+ cf|A(e;) - A(e.) |y, vacon (EA e ”“A”V(m ””e"V(m) .

Let ¢ — 0, 1 — 0 be subsequences of {,}. Since the operator B is continuous and
e, = eo in U(Q), u,, — uo (weakly) in ¥(Q), we have lim |B(e, — ;)| =0
2,A—0

and |uy]lve) < ¢ [#e]v@) < c. On the other hand, by (1.6) we see that

IA

|grad @° u(e,)

IV*(Q) =cC,

|grad @* u(e;)| ¢ forany ¢6—0,1-0.

IIA

VH()
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Then taking into account conditions (H 2) and passing to the limit in (3.12) for
e, A~ 0 we obtain Jim [[u, — u,]yeq = 0 ({u,} is a Cauchy sequence).
2,A=0

This means that u, — u (strongly) in V() for & — 0. In virtue of ((3.3), 2°) we get
u, > u = uep).

Hence for ¢ — 0 (due to (1.6)) grad ®*(u,) — ¢ = (f + Beo) — A(eo) u, (weakly)
in V*(Q). Then if ¢, tends to zero in the inequality

*(u,) — ®(v) = (grad ®"(u,,), u,, — V)y(a

for any v e V(Q), it follows by ((H 1), 2°, 3°) that ®(u,) < P(v) + (& ug — Dy (q)
for any v € V() as claimed.

Lemma 6. There exists p(e,) = p,€ V(Q) satisfying together with u, and e,
the system
1° A(e,) u, + grad ®(u,) = f + Be,,
(3.13) 2° — A*(e,) p, — grad (grad ®°(u,)) p, = grad £(u,),
3° B*p, e 0%B(e,) + €, — €, .

Proof is given in ([3]).
Now take the scalar product of ((3.13), 2°) with p, and use the coercivity condition
((HO), 2°) and the positivity of the operator grad (grad ®°(u,)) to get

|| pe|lvie S |erad €(u,)| g forall &> 0.

Since @ is locally Lipschitzian, the map u — grad £(u) is uniformly bounded on
bounded subsets.
Hence
[Pellvey S ¢ forall e>0.

Therefore, we may conclude that there exists a sequence ¢, — 0 and p, € V(Q),n €
€ H(Q) such that

(3.14) { 1° p,, = po (weakly)in V(Q),

’ 2° grad £(u, ) ~n (weakly)in H(Q).

By Theorem 4 and ((3.14), 2°) it follows via Proposition (1.12), ([3°]) that € 88(u,),
where € is the generalized gradient of £([3°]). Now, if & tends to zero in ((3.13), 3°)
then Lemma 3.2 and Theorem 1.2 ([3°]) imply that B*pj € d%(e,).

We may view p, as a dual extremal element of problem (£,) and

Aleo) up + ®(ug) = f + Bey ,
(3.15) — A*(eo) po — D? ®(u,) po = 0L(uy),

B*p, € 0%B(eo)
as generalized first order necessary conditions of optimality. (The element
D* ®(u,) p, € V*(Q)is defined by D ®(u,) p, = weak — lim grad (grad ®*(u, ) p,,).)

n—+x
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Suhrn

OPTIMALNE RIADENIE VARIACNEJ NEROVNICE S APLIKACIOU
NA ROTACNE SYMETRICKU SKRUPINU

JAN LoviSex

Je Studovana dloha optimalneho riadenia variatnou nerovnicou s riadeniami v koeficientoch
operatora nerovnice, a v pravej strane nerovnice. Dokazuje sa existencia optimélneho riadenia.
V aplikicii na pruZnd rota¢ne symetrickii $krupinu konS$tantnej hribky, meridianova krivka
sa berie za navrhovu premennt. Je predpisana jej dizka a objem, ktory jej zodpoveda, derivacie
do 2 radu st v danych hraniciach. ZafaZenie predstavuje hydrostaticky tlak, vlastna tiaz a pretlak.
Utelovy funkcional je integral druhého invariantu napitia pri okrajovych povrchoch $krupiny.
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Pesrome ) .

TEOPUA OIITUMAJIBHOI'O VIIPABJIEHUA OJISI BAPUALIMOHHOI'O
HEPABEHCTBA C IIPUMEHEHUMEM K OCECMMMETPUYHOM OBOJIOUKE

JAN LoviSEk

Henp 510# paGoThI 3aKiiouaeTcss B cielyromeM: POpMyIMpoBaTh U PEMATH 3a7ayy TEOPHH
ONTHMAJIGHOTO YNPaBICHAA [JIsi BapMallAOHHOTO HEpPaBEHCTBA C YNPaBIeHHEM B OIepaTope M
B NpaBoi 4acTH. JIoka3pBaeTCs CymMeCTBOBABME 3a/1a4H OI'THMAJILHOIO YpaBiieBus, Korna Gysxums

CTOHMOCTH MMe€ET KBaapaThuHbii BuA. Kpome T0ro ¢opmynupyercsi ycjoBHMe MEPBOIO pona IJist
3aJa4¥ ONTHMAJBLHOTO YIPaBIICHHUS.

Author’s address: Doc. Dr. Jdn Lovisek, CSc., Stavebna fakulta SV§T, Radlinského 11,
813 68 Bratislava.
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