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AN EFFICIENT ALGORITHM FOR COMPUTING REAL POWER
OF A MATRIX AND A RELATED MATRIX FUNCTION

JAN JEZEK

(Received September 10, 1986)

Summary. The paper is devoted to-an algorithm for computing matrices A" and (4" — I).
. (4 — D~ for a given square matrix 4 and a real ». The algorithm uses the binary expansion of »
and has the logarithmic computational complexity with respect to ». The problem stems from
the control theory.
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INTRODUCTION

In the paper, two numerical algorithms are described. The first computes R = A"
for a given real m x m matrix 4 and for real r. The second algorithm computes
S=@"-IH)Aa-1)""rzo.

The work is motivated by needs of the control theory. A linear system to be con-
trolled is usually of the form
(1) dx(r) _ A x(t) + Bu(r)

dt
where the vector x(f) denotes the state and the scalar u(f) the input signal; the matrix 4
and the vector B are constant. For a fixed T > 0, let u(t) = u, be constant in every
interval nT <t < (n + 1) T. Denoting x, = x(nT), we can replace equation (1)
by that for discrete signals:

(2) X,+1 = Fx, + Gu,
where
3) F=etT, G=(c"T —I)A"'B.

Formulas (3) provide the conversion from 4, B to F, G (depending on T). The inverse
conversion is given by

1 1 ~
4 A==InF, B=—-InF(F-1)"'G.
) - A0 F(F = 1)
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For two intervals defined by Ty, T,, the mutual conversions are
(5) Fy=F,, G,=(F-I)(F, —1)"' G,

with » = T,/T,. That is where the functions to be computed come from.

The notions of the matrix power and logarithm call for precise definition. It can
be done in terms of matrix functions [1]: for every function f(a) of complex variable,
analytic on the spectrum of A, the function f(A) is defined via the Jordan form:

A=TYT, J=diagJ;,
f(A) =T ST, f(J) = diagf(J),
& . I. _ f(a‘-)., f’(ai), ﬂ(zﬁﬂ,
(6) Ji= b ) = . . .
a;

In our case, f(a) is the main value of a” defined for all complex a with the exception
of a < O real:

(7 r=c+z, c=..-1,01,..., 05z<1,
(8) a=la|(cosp +ising), —-m<¢p<m,
9) a" = a‘a*, a* = |a|*(cos zgp + isinzg).

Similarly, the function S can be defined in the same region. Note that A — I may well
be singular because the function g(a) = (a” — 1)(a — 1)7! has a removable sin-
gularity for a = 1. The matrix logarithm is defined via the function h(a) for (8):

(10) h(a) = In(a) = In |a| + ip.

In the sequel, the notation A pwr X is used instead of A* when X is a complicated
expression.

ALGORITHM FOR R = 4"

The definition of A" is not suitable for numerical computation because of the need
to know or to compute the eigenvalues and eigenvectors, generally complex. Another
possibility is to express A" = e"™* and to use algorithms for matrix exponentiation
and logarithm [4] but this procedure is too complicated and numerically not satis-
factory. A better way is to employ the algorithm given in the sequel which utilizes
the square and the square root of a matrix.

For r < 0, A" = (A7')™" can be taken, for r = 0, A° = I. So it is sufficient to
consider r > 0. Decompose r into the integer and non-integer part as in (7); then
A" = A°A*. The contribution of the integer part can be computed via successive
multiplication by A; the number of operations needed grows proportionally to c.
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However, the consumption of operations can be dramatically reduced by using the
binary form of c:

I
(11) =312, i=<?.
Fori=0,1,...,f, a sequence Q; is constructed:
(12) Qo =4, Qui=0,
yielding
(13) A = _[f]oQ{f .

Note. For practical computation, the exponent f; = 1 means: include the factor,
fi = 0: do not include it.

The proof of the algorithm is simple: Q; = A>

"is easily proved by induction, then

M\

; .
(14) [Toli = ]J—[Azif" = A pwr(
i=0

i=0 i

2if) = A°. .
0

1]

The number of operations needed is proportional to f, i.e. to log c.
Similarly, the contribution of the non-integer part is computed. For a start, let
the binary expansion of z be finite:

g
_ - _ /0
—(15) Z_iZIgiz ’ gl—\l
A sequence Q; is constructed for i = 0,1, ..., g:
(16) Qo =4, Qi+1=\/Qia
yielding
g9
(17) =Tl ot
i=1
For the proof, 0; = 4™ " and
9 9 _i g .
(18) [Tof =114 = Apwr() 27'g,) = 4.
i=1 i=1 i=1

Now, for a general z the expansion (15) is infinite: g — oo. It is evident that Q, — I}
the product in (18) is convergent because the sum in the exponent is. Practically,
g is given by the computer word length. The number of operations is proportional
to g, i.e. to —log e, where ¢ = 277 is the resolution of the computer.

By the matrix square root, its main value is understood. It is computed via an
iterative process based on the Newton method [4]. Before computing 4%, a good
idea is to scale the matrix so that its determinant be 1 (under the above conditions,
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we always have det 4 > 0):
(19) d="/detA, Az=(§> d=.

This trick facilitates a simple selection of an initial value in the iterative process for

the matrix square root. During successive square-rooting of Q;, the property det Q; =
= 1 is preserved.

ALGORITHM FOR S, = (4" — I)(4 — D!

This matrix function can be .computed by making use of the above algorithm
for A". However, this method fails for A = I and in the neighbourhood of that case.
As it is just this domain which is the most interesting from the point of view of ap-
plication, an independent algorithm for S, was developed. It also has the logarithmic
grow of number of operations.

The algorithm is presented in the form of two theorems. The former deals with
an integer exponent, the latter covers the general case of non-integer exponent.

Theorem 1. Let A be a real m x m matrix,c = 0 an integer; denote f, f; as in (11).

Fori=0,1,...,f — 1 construct a sequence Q;:
(20) Qo =4, Qi+1=Qi2~
Fori=0,1,...,f construct a sequence T;:
(21) To=1, Ty =0+ Q)T;.
Then
c—1 . S
(22) Se=A-DNA-1)""'=YA =Y fT,.
j=0 i=0

Note. For practical computation, the factor f; = 1 in (22) means: include the term,
fi = 0: do not include it.

Proof. The number f will be called the order of ¢. Denote by ¢;, i = —1,0,1, ..., f,

the sequence of integer numbers obtained by successively including the binary
digits of ¢:

(23) ci:kazk, C_.1=0, CfZC.
k=0

Every c; is of order i. A recurrent relation

(24) ci=ci—q + fi2
holds. First,

ci—1

(25) Sczxf; Y A

i=0 j=ci-1
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will be proved by induction on f. For f = —1, we have ¢ = 0, S, = 0. Let (25) hold
for all numbers of order f; take ¢ of order f + 1:

f+1 ¢ci—-1 ci—1 crer1—1
(26) Y Y A= Z LA+ ) A=
i=0 j=ci-1 i=0 j=Ci-y Jj=cy
cr—1 cre1=1  ere1—1 .
=Y Ay A=y A=
Jj=cyr ji=0
Formula (25) is proved. Next, rearrange it With help of (24):
I ci—1 ci—ci-1—1 .
(27) =Y Y A= 5 TS
=0 j=ci-1 i=0 ji=0
I fi2i—1 2i-1

— g S =S,

i=0

The last sum can be written in the form

2i—1 3

(28) Y A= H(I + 4%,

This will be proved by induction on i. For i = 0, both sides are equal to 1. For
i+ 1:
20+l 211 2i42i-1 2i-1

(29) Y A=Y+ ¥ A=(1+4) Y A=
j=0 j=0 j=2i j=0

=+ Azi)it[l(l + A7) = Ij(l + A%).

Formula (28) is proved. With its help, (27) can be further modified to

(30) s, =é A pwr( Z i 2")ifAJ iz f,.[i]—j A7) [i];(l + 47,
S

(31) 2 f: H AT + A% .

This form is exactly what formulas (20), (21) for Q;, T; yield. It can be seen with
formulas

i—1
(32) 0,=4%, T,=T[0"I + Q)
k=0 -
which can be easily proved by induction. O
Example.

c=21=10101,, f=4,
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fo=1, fi=0, fi=1, [fi=0, [fo=1,
co=1, ¢ =1, c, =5, c3 =95, ¢y, =21,
Sp=IT+.. . +A4°=I+A+..+A4Y+ A+ ...+ 4°) =
=1+ A +...+ A4+ A" I+ ...+ AY) =
=1+ AT+ A) (I + A% + A1 + A) (I + A>) (I + A*) (I + 4°),
Qo =4, To=1,
Q, =A%, T, =AY+ 4),
0,=A4*%  T,=A'(1+ A1+ 4%,
Q3 =A%, Ty=A'I+ A1+ A*)(I + 4%,

T, = A" I+ A)(I + AY) (I + A% (I + 4%).

Theorem 2. Let A be a real m x m matrix with no real nonpositive eigenvalue.
Let r = 0 be a real whose binary expansion is finite. Denote c, z, g, g; as in (7), (15).
Construct sequences Q;, B;,, D, for i =0,1,...,g9 and G; for i =0,1,...,9 — 1:

(33) Qo=A4, Q=0
(34) B, =1, B, =271+ Q)Bi-y,
(35) Gy =A4°, G, =27'0G,_,,

(36) Dy=(A"-I)(A-D"", D;=2""[(I+Q)Di—y + 9:Gi—4]-
Then all B, are nonsingular and
(37) S,=("-N(A-1)""'=D,B;".

Moreover, for general r whose binary expression is infinite, all the sequences are
convergent for g — o, B,, remains nonsingular, (37) remains valid.

Proof. Denote by z;, i = 0,1, ..., g the sequence of real numbers obtained by
successively including the binary digits of z:

(38) Zi:zgkz_k, z20=0, z,=z.
k=1

The recurrent relation

(39) z; =24 +g;27"

is evident. Furthermore, introduce integers z:

(40) z; =27z}, zj=Y g, 2""*.
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Formulas (39) and (7) have the form

(41) z;=2z;_4 + gi,
(42) r=c+2792" =2792% + z).
Rearrange (37):
(43) S,=A-hHA-I)""=
= (A [ AT - [ 1]
29c+z"—1 29-1

B R I R B

D, can be rearranged, too:

29¢-1 29¢c+z'-1
(449) D=2 T (Y 42 Y (7Y

i i=2%e

)

1]
<

In the first sum, introduce two summation indices k, j* as the quotient and the re-
mainder j = 2% + j’. In the second sum, introduce j' by j = 2% + j':

c—129-1 z'—1

45 D =29 A2 4 9 27N
! k=0 j'=0 j

ji'=o

c—1 29-1 z' =1

—ZA"Z “Z(Az Y+ 27 -"ACZ(AZ ‘

For Bg, the following recurrent formula is used:

29—-1

(49) Ty =14

Using (28) we prove

g

(47) [_1(1 + A7) = i]jl[l + (A7) =

i=1

29—1

Zjljo[l + (Az—o)zi'] — j;O(Az—g)j )

A

Now we shall prove that B,, D, is what the formulas (33)—(36) for Q;, B;, G, D;

yield, i.e. that B, = B,, D D The formulas

2i—-1

(48) Q,=4*"", B, =2 H(1+A2 ")—?.*Z(A2 °)
can be easily proved by induction. For G;, we evidently have

(49) G, =2~ ’A‘H of = 27t [] A "= 27iapwr(c + Y g, 27%) = 2740t
k=1
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The formula for D; remains to be praved:

z;'—1 .
(50) D, =SB, +27'4° Y (A*7).
ji=0
Induction by i: for i = 0 we have D, = S, as required. Let (50) hold for D;_,
and compute D; by (36):
i-1'

5y -

ji=0
+ g, 2 27iv I etE-t = S B+

L Ut SO T Ut R
+ 27 AP 4 AT At
=0 =0

J

(51) D, =271 + A* ) [S.Bi—( + 27104

J

Denote the bracket by E; and work on it:

zi-1'—1 zi-1'—1 . _ ,
(52) E;= Y A% 4 Yy ATCIED 4o g g2 e
j=0 j=o0
Summation indices j' = 2j and j' = 2j + 1 are introduced:
2zi-4'-2 o 2za’=1 B )
(53) E;= Y AT+ Y ATV 4 g4 =
j'=0 ji'=1
J'even Jj'odd
2zi-¢’-1 .
— Z AZ ij + giA2 2z .
j=0

The last term fits into the sum with j = 2z}_; but only when g; = 1. In that case,

the upper bound is 2z;_; in the case g; = 0 the bound 2z;_; — 1 remains. We can
write
2zi-1'—1+g; Zi-1'
(54) E;= Y A Y=Y 47Y.
ji=0 i=0
This completes the induction for D;. Now, comparing (48) with (43), B, = B, is
evident. From (50) and (45), D, = D, follows.

To prove nonsingularity of B;, it suffices to prove nonsingularity of all I + A7,
see (48). Suppose some I + A?""is singular, i.e. 1 + a*>~ = 0 for some eigenvalue a
of A, ie. a®>“ = —1, arga®* “ = n. However, —n < arga < m© was supposed,
hence —27*1 < arga®™" < 27Fn.

As for the convergence g — oo, it is clear that Q, » I, G, — 0; B,, D, are to be
investigated: ,

(55) lmB,=1m27%A4 - I)(A>" =)' =(A -1 [lim22(4*”° = )] * =
g—© g—roo g—r

A" -1

]—1 =(A4-I)(nA)".

=(A-D[limh(4" -] ' =(4-1) [lim
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Similarly,
(56)  lim Dy = 1lim 279(4°" 277" — 1) (4>77 — [)™! = (4 — I) (Iln A)"".
g— oo g—

The convergence is proved. By virtue of (55), (56), B, D,, evidently exist even if
some eigenvalue a = 1 and In A is singular. At that point, the function l(a) =
= (a — 1)/In a has a removable singularity. The matrix B, is nonsingular because
I(a) never vanishes (a is never real nonpositive). It follows from (55), (56) that (37)
remains valid. O

In this algorithm, it is also useful to scale the matrix whose square root is to be
taken so that its determinant be 1. The algorithm gets modified:

(57) do =7/det A, d; =d¥ -,
A -1
(58) Qo= 0= 0.,
do
(59) B, =1, B; = 2_1(1 + diQi) By, v
(60) G, = A°, G =2"Y(diQ)" Gi—y

(61) Do =(4°—1)(A - ™', D;=2"'[(I+d,Q)D;-y +9G,.].

It is easy to see that it is equivalent to (33)—(36).

Example.
r=9%1, c=3, z = 1 =0.1101,, g=4,

gl'—"]’ g2=1, g3=07 g4=13

@l

> Z4 = 16>
=1, z,=3, 2z3=6, z4

(49115 — 1) (4 1) = A = D) (4719~ 17 (400 ).

L(Arere -1t 16 =

= [L(1 + A1 4 ... + A5°/19)] [Tig(l + AVIS L AME)] L

Q2 '=A1/4, Q3 =A1/8, Q4= A1/16’

I
—
w

Qo =4, Q15A1/2’
By =1, By =3(I+A"), Ba=3I+ A1+ A1)
o H -

_ I AV A, Bs = AT AT (0 A =

W+ AV 4+ AT),
AT+ AV = ST+ AV 4y 415116

B4 = %(I + 141/8 +

3+(1/2) G, = 143+t(1/2) G, = 143+t1/2)+1/4)
Gy=4°, Gi=134 R ’ 3= ’
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Dy=1+ A+ 4%,
D,

I+ A4+ AT+ AV?) + 343 = J(I + A2 + ... + A7),
Dy =3I+ A2 + ...+ APV (I + AY%) + 343D =
=3I+ AV 4 L+ A
Dy =3I+ AV + ...+ A" I + AV8) = J(I + A8 + ... + A*°8),
Dy = (I + AYVE 4 ..+ APB) YT + AY16) 4 L A3
= (I + AY'S 4 L4 450116),

CONCLUSION

The main idea of the algorithm is to cumulate computations in order to reach low
(logarithmic) computational complexity. For r an integer, this trick is known, and is
described e.g. in [2], [3] (not just for matrices). The generalization for r a non-
integer is new.

Both algorithms were programmed in Fortran and tested on the IBM 370/135
computer with 4 byte floating point format (mantissa 24 bits). They work effectively
and reliably for reasonable data, i.e. when |arg a,-| < 7 for all eigenvalues a; of A.
In the applications of the control theory, this condition means that the sampling
interval is not too long. For ]arg a,-l — 1 the convergence of the matrix square root
is lost. Numerical examples as well as full source programs are published in [5].

The idea of the algorithm is general and is not limited to the matrix algebra. It can
be used in any algebra where inversion, square root and convergence are defined.

It was e.g. implemented and tested for the algebra of real polynomials R[x] modulo
a fixed polynomial p(x).
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Souhrn

EFEKTIVNI ALGORITMUS PRO VYPOCET REALNE MOCNINY MATICE
A PRIBUZNE MATICOVE FUNKCE

JAN JEZEK

Clanek je vénovan algoritmu pro vypodéet matic 4" a (4" — I) (4 — D)~ pro danou &tverco-
vou matici 4 a pro redlné r. Algoritmus pouZiva binarniho rozvoje Cisla » a vyznaduje se loga-
ritmickou vypo&tovou sloZitosti vzhledem k r. Uloha vyrista z potieb teorie Fizeni.

PCBIOMC

DOOEKTUBHBIN AJI'OPUTM [JI51 BEIYUCJIEHUSA JEVCTBUTEJILHOM
CTEINEHU MATPUIILI 1 POACTBEHHON MATPUYHOUW ®VHKINU

JAN JEZEK

%

CraThs NMOCBSAIIEHA aNrOPUTMY Asi Belumciaenus matpun A" u (A" — 1) (4 — 1)~ 1 nns nauHoit
KBaJpaTHOH MaTpuul A ¥ NeHCTBUTENBHOrO r. ANTOPHTM IOJIb3yeTCs OMHAPHBIM Pa3IOkKEHHEM
YHCAa ¥ M OTJIMYaeTCsl NorapudMUYeCKOi BBHIMMCIMTENBLHOM CloXHocThIo. IIpobiema BuipacTaeT
M3 NOTPeOHOCTENH TEOPUH YIIPaBIIEHUS.
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