
Aplikace matematiky

Jan Ježek
An efficient algorithm for computing real powers of a matrix and a related matrix
function

Aplikace matematiky, Vol. 33 (1988), No. 1, 22–32

Persistent URL: http://dml.cz/dmlcz/104283

Terms of use:
© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104283
http://dml.cz

33 (1988) APLIKACE M A T E M A T I K Y No. 1, 22—32

AN EFFICIENT ALGORITHM FOR COMPUTING REAL POWER
OF A MATRIX AND A RELATED MATRIX FUNCTION

JAN JEZEK

(Received September 10, 1986)

Summary. The paper is devoted to an algorithm for computing matrices Ar and (Ar — I).
. (A — I)- * for a given square matrix A and a real r. The algorithm uses the binary expansion of r
and has the logarithmic computational complexity with respect to r. The problem stems from
the control theory.

Keywords: matrix algebra, matrix function, matrix power, computational complexity.

INTRODUCTION

In the paper, two numerical algorithms are described. The first computes R = Ar

for a given real m x m matrix A and for real r. The second algorithm computes
S = (Ar -I) (A - I) " 1 , r ^ 0.

The work is motivated by needs of the control theory. A linear system to be con
trolled is usually of the form

(1) 6 ^ = Ax(t) + Bu(t)
dt

where the vector x(t) denotes the state and the scalar u(t) the input signal; the matrix A
and the vector B are constant. For a fixed T > 0, let u(t) = un be constant in every
interval nT S t < (n + 1) T Denoting xn = x(nT), we can replace equation (1)
by that for discrete signals:

(2) xn + 1 = Fx„ + Gun

where

(3) F = e^ r , G = (e^r -I)A~lB.

Formulas (3) provide the conversion from A, B to F, G (depending on T). The inverse
conversion is given by

(4) A = - In F , B = - In F(F - I)"1 G .

22

For two intervals defined by Tl9 T2, the mutual conversions are

(5) F2 = F\ , G2 = (F\ - I) (F. - I)'1 G,

with r = T2JTl. That is where the functions to be computed come from.
The notions of the matrix power and logarithm call for precise definition. It can

be done in terms of matrix functions [1]: for every function/(a) of complex variable,
analytic on the spectrum of A, the function f(A) is defined via the Jordan form:

A = T~XJT, J = diag Ji9
i

f(A) = T~lf(J)T, f(J) = diag/(J.) ,

1

(6) J, =
1 /('.) =

f(ai), f'(at), í&à,

In our case, f(a) is the main value of ar defined for all complex a with the exception
of a = 0 real:

(7) r = c + z, c = .. . - 1 , 0 , 1, . . . , 0 ^ z < l ,

(8) a = \a\ (cos cp + i sin cp), — TC < (p < n ,

(9) ar = a°az, az = |O|Z (cos zip + i sin zcp) .

Similarly, the function S can be defined in the same region. Note that A — I may well
be singular because the function g(a) = (ar — \)(a — l) " 1 has a removable sin
gularity for a = 1. The matrix logarithm is defined via the function h(a) for (8):

(10) h(a) = In (a) = In |a| + i<p .

In the sequel, the notation A pwr X is used instead of Ax when X is a complicated
expression.

ALGORITHM FOR R = Ar

The definition of Ar is not suitable for numerical computation because of the need
to know or to compute the eigenvalues and eigenvectors, generally complex. Another
possibility is to express Ar = erlnA and to use algorithms for matrix exponentiation
and logarithm [4] but this procedure is too complicated and numerically not satis
factory. A better way is to employ the algorithm given in the sequel which utilizes
the square and the square root of a matrix.

For r < 0, Ar = (A~~1)~r can be taken, for r = 0, A0 = L So it is sufficient to
consider r > 0. Decompose r into the integer and non-integer part as in (7); then
Ar = ACAZ. The contribution of the integer part can be computed via successive
multiplication by A; the number of operations needed grows proportionally to c.

23

However, the consumption of operations can be dramatically reduced by using the
binary form of c:

(11) C - - I / . 2 ' , / , = < ? •
i = 0 N J

For i = 0, 1 , . . . , / , a sequence Qt is constructed:

(12) Qo = A, Q l + 1 = e ? ,
yielding

(n) A< = n ef •
i = 0

Note. For practical computation, the exponent ft = 1 means: include the factor,
ft = 0: do not include it.

The proof of the algorithm is simple: Qt = A2' is easily proved by induction, then

(14) n Qt' = n A 2 i f i =A p w r (i 2 i L) = Ac.
i = 0 i = 0 i = 0

The number of operations needed is proportional t o / , i.e. to log c.
Similarly, the contribution of the non-integer part is computed. For a start, let

the binary expansion of z be finite:

(15) z = 2:0.2-', <7f = (J -

A sequence Qx is constructed for i = 0, 1, ..., g:

(16) 2o = ^ , e i + i = V 2 i ,
yielding

(17) Az = n ef •
» = i

For the proof, Q{ = A2_i and

(18) flQV = f[A2'igi = -4pwr(f 2^gt) = ^ .
i = i i = i j = i

Now, for a general z the expansion (15) is infinite: g ~> GO. It is evident that Qg -> I;
the product in (18) is convergent because the sum in the exponent is. Practically,
g is given by the computer word length. The number of operations is proportional
to g, i.e. to —log s, where a = 2~g is the resolution of the computer.

By the matrix square root, its main value is understood. It is computed via an
iterative process based on the Newton method [4]. Before computing Az, a good
idea is to scale the matrix so that its determinant be 1 (under the above conditions,

24

we always have det A > 0):

(19) d = ^ / d e t A , Az = f-\dz.

This trick facilitates a simple selection of an initial value in the iterative process for
the matrix square root. During successive square-rooting of Qh the property det Q{ =
= 1 is preserved.

ALGORITHM FOR Sr = (Ar - I) (A - I)-1

This matrix function can be xomputed by making use of the above algorithm
for Ar. However, this method fails for A = I and in the neighbourhood of that case.
As it is just this domain which is the most interesting from the point of view of ap
plication, an independent algorithm for Sr was developed. It also has the logarithmic
grow of number of operations.

The algorithm is presented in the form of two theorems. The former deals with
an integer exponent, the latter covers the general case of non-integer exponent.

Theorem 1. Let Abe a real m x m matrix,c = 0 an integer; denote f,ft as in (11).
For i = 0, 1, . . . , / —• 1 construct a sequence Qh

(20) Qo = A, e . + i = G?-

For i = 0, 1, . . . , / construct a sequence Tt:

(21) T0=I, Ti+1 = Q{'(l+Qt)Tt.

Then

(22) Sc = (Ac - I) (A - I)- - = ^A' = f / . T , .
j=0 i = 0

N o t e . For practical computation, the factor ft = 1 in (22) means: include the term,,
fi = 0: do not include it.

Proof. The number/will be called the order of c. Denote by ch i = — 1, 0, 1, . . . , / ,
the sequence of integer numbers obtained by successively including the binary
digits of c:

(23) C; = £ A 2 \ c_1 = 0 , cf = c.
k = 0

Every c{ is of order i. A recurrent relation

(24) c i = c i _ 1 + L 2 i

holds. First,

(25) Sc = £ ' i f A'
i = 0 j = ci-i

25

will be proved by induction o n / For / = — 1, we have c = 0, Sc = 0. Let (25) hold
for all numbers of order / ; take c of order / + 1:

/ + 1 c , - l / C i ~ l c / + i - l

(26) £ £ A' = £ £ A'+ £ A' =
i = 0 j = C i - i i = 0 j = C i - i 3-Cf

C / - 1 C / + 1 - 1 C / + 1 - 1

= £ A' + £ A1 = £ A' = Sc.
1 = 0 j = cf j = 0

Formula (25) is proved. Next, rearrange it with help of (24):

/ C i - l / C i - C i - 1 - 1

(27) Sc = £ £ A' = £Ac<-« £ A' =
i = 0 j = C i - i i = 0 j = 0

/ / i 2 i - l / 2 * - l

= £ A e ' - ' £ A' = £ / f A e - ' £ A ' .
i = 0 j=0 i = 0 j = 0

The last sum can be written in the form

(28) Y ^ = ri(I + ^) -
j = o k = 0

This will be proved by induction on i. For i = 0, both sides are equal to 1. For
i + 1:

2 i + i _ i 2 « - l 2 i + 2 l ' - l 2»"- l

(29) £ A' = £ A' + £ A' = (/ + A2') £ A' =
j = 0 j = 0 j = 2 i j = 0

= (I + 4 2 ,) n (I + ^) = n (I + ^) -
k=0 k=0

Formula (28) is proved. With its help, (27) can be further modified to

(30) sc = Z L A p w K E / ^ ' f E A ' = £ / | ' n A ^ 2 k] e n (I + A**)],
i = 0 k=0 j=Q i=0 k=0 k=0

(31) Sc = ifi\\A^\l + A2k).
i=0 k=0

This form is exactly what formulas (20), (21) for Qh Tt yield. It can be seen with
formulas

(32) Q, = A2', T = ' f l e(fc(I + &)
k = 0

which can be easily proved by induction. •

Example.

c = 21 = 101012? / = 4 ,

26

/ 0 = 1 , / . = 0, /2 = 1 , / 3 = o, u = i .
c 0 = 1 ? c l = l) ^2 = ^ J ^ 3 = 5 , c4 = 21 ,

S21 = / + ... + A20 = / + (A + ... + A4) + (A5 + ... + A20) =

= / + Ax(/ + ... + A3) + A1+4(/ + ... + A15) =

= / + A\I + A) (I + A2) + A1+4(/ + A) (/ + A2) (/ + A4) (/ + A8),

Q0 = A , T0 = / ,

Qx = A2 , T. = AJ(/ + A) ,

S2 = A4 , T2 = A\I + A) (I + A2),

Q3 = A8 , T3 = A1^ + A)(/ + A2)(/ + A4),

T4 = A1+4(/ + A) (/ + A2) (/ + A4) (/ + A8) .

Theorem 2. Let A be a real m x m matrix with no real nonpositive eigenvalue.
Let r ^ 0 be a real whose binary expansion is finite. Denote c, z, g, gt as in (7), (15).
Construct sequences Qh Bh D; for i = 0 ,1 , . . . , g and G; for i = 0 ,1 , . . . , g — 1:

(33) Qo = A, Qt= QKl,

(34) B 0 = / , B; = 2 - 1 (/ + e i) B ; _ _ ,

(35) Go = ^c , Gi = 2-1efG j_1,

(36) D0 = (A C - /) (A - /) - 1 , Di = 2" 1 [(/+ e ^ D ^ + a i G i _ 1] .

Then all Bt are nonsingular and

(37) Sr = (Ar-I)(A-iyl = DgB;1.

Moreover, for general r whose binary expression is infinite, all the sequences are
convergent for a —> oo, B^ remains nonsingular, (37) remains valid.

Proof. Denote by zi9 i = 0, 1, ...,g the sequence of real numbers obtained by
successively including the binary digits of z:

(38) z; = X a t 2 - \ z0 = 0, _f=-=z.
/ c = l

The recurrent relation

(39) ZT = Z;-l + 0 , 2 ' £

is evident. Furthermore, introduce integers z\:

(40) z, = 2- |z; , z\ = igk2
l-k.

k=l

27

Formulas (39) and (7) have the form

(41) z'i = 2z'i_1 + gi9

(42) r = c + 2"gz = 2'g(2gc + z) .

Rearrange (37):

(43) Sr = (A - - J) (A - /) - » =

= 2-»[(A 2~7 9 c + z ' - /] [A2"9 - 7] - 1 [A2"3 - /] [(A 2 " 7 S - I]'1 2"
29c + z'-l 29-1

- p - - z (A2-y][2-° z {A2-yyx = i>gB;x.
J = 0 j=0

Dg can be rearranged, too:
2 0 c - l 29C + z'-l

A2~9\

'9

29C-1 29C + z'-l

(44) Ďg = 2-» £ (A2"7 + 2-» £ (A2"7.
j = 0 i = 20c

In the first sum, introduce two summation indices k9j' as the quotient and the re
mainder j = 2gk + / . In the second sum, introduce j ' by j = 2gc + j ' :

(45) Dg = 2~gY. WA2~d)29k+j' + 2~g\ (A2~9)29c+jf =
k = 0j' = 0 / ' = 0

c - l 2 Ö - 1

= E^2-E(^2

/c = o J = 0

"7 + 2 " ^ V Й 2 "
J = 0

For Šg, the following recurrent formula is used :

(46)
29-1

I 02"7
J = o

= П(I + лП-
i = 1

Using (28) we prove

(47) П(I + ^2") =
i = l

ШI +
i = l

(л2"79"] =

= ШI + Й2

i ' = 0

"7"] =
2 ^ - 1

Z(A2"7-
J = 0

Now we shall prove that Bg, Dg is what the formulas (33)-(36) for Qh Bh Gh Dt

yield, i.e. that Bg = Bg, Dg = Dg. The formulas

(48) Qt = A2"', Bt = 2-'TI(/ + A2"") = 2- i2£1(A2~7
k = 1 j = 0

can be easily proved by induction. For Gh we evidently have

(49) G, = 2~lAc f l Q? = 2~UC J] ^ " 2 " k = 2"U pwr(c + £ 0* 2"*) = 2"UC+Zi .
k=i k=i k=i

28

The formula for D- remains to be proved:

(50) D. = SCB. + 2 - u * £ (A2_iy.
1=o

Induction by i: for i = 0 we have D0 = Sc as required. Let (50) hold for Di„1

and compute D- by (36):

(51) Dt = 2~1(/ + A2"') [S A , , + 2-i+1AcZ'' Y V " ") '] +
1 = 0

+ flf,2-12-i+1_4c+r|-1 = SCB; +

+ 2"Uc[Zi Y ^ 2 " + 1J +ZiY1A2'i + 2'i + lj + g;Az<"2] .
;=o 1=o

Denote the bracket by £• and work on it:

(52) Et = Z f " ^ _ 1 A 2 - ^ + ' i "^" 1 A 2 - i (2 1 + 1) + g^2"*1'*-*' .
j=o 1 = 0

Summation ind ices / = 21 a n d / = 21 + 1 are introduced:

(53) F, =2Zi'i'2A2~ij' + 2 Z i _ X;" 1 A 2 - ^ + giA
2'i2-^' =

j ' = 0 1 ' = 1
1'even 1'odd

= 2ZiY1A2"J + giA
2-'2"-^.

1 = 0

The last term fits into the sum wi th j = 2z/-_1 but only when gi = 1. In that case,
the upper bound is 2z-_1; in the case a- = 0 the bound 2z-_ t — 1 remains. We can
write

2 z i - i ' - l + g i Z f - i '

(54) £ , - v. A2^ = __.A 2 - ' ; .
j = 0 1 = 0

This completes the induction for D-. Now, comparing (48) with (43), Bg = Bg is
evident. From (50) and (45), Dg = Dg follows.

To prove nonsingularity of B/? it suffices to prove nonsingularity of all I + A ,
see (48). Suppose some I + A2_k is singular, i.e. 1 + a2'k = 0 for some eigenvalue a
of A, i.e. a2'k = —1, SLVga2'k = 7i. However, - n < arg a < % was supposed,
hence — 2~k% < dsga2~k < 2~k%.

As for the convergence g -> oo, it is clear that Qg -» I, Gg -> 0; Bg, D^ are to be
investigated:

(55) lim Bg = lim 2 ^ (A - I) (A2""* - I)"1 = (A - I) [lim 2*(AL2"9 - I)]"1 =
0->oo g-*co g-*°o

= (A - 7) [lim h(A1/ft - J)]" 1 = (A - I) [lim ±-1—H * = (A - J) (in A)-1 .

29

Similarly,

(56) lim D, = l\m2-»(Ac+2-°>°' - 7)(A2~S - 7)" 1 = (A- - 7)(lnA)- 1 .
g->cQ g-*oo

The convergence is proved. By virtue of (55), (56), B^, D w evidently exist even if
some eigenvalue a = 1 and In A is singular. At that point, the function 1(a) =
= (a — l)/ln a has a removable singularity. The matrix B^ is nonsingular because
1(a) never vanishes (a is never real nonpositive). It follows from (55), (56) that (37)
remains valid. •

In this algorithm, it is also useful to scale the matrix whose square root is to be
taken so that its determinant be 1. The algorithm gets modified:

(57) d0 = X/ det A , dt = d]:\,

(58) Qo = y ,
d0

Qi = Є.:І,

(59) B0=I, BІ «2-1(_+d ,,fi,) _?,-.,

(60) Go = Ac, GІ ^l-ҚdiQ^Gi^,

(61) D0 = (Ac -I)(A- -IГ 1 , DІ -2- l í [(/ + rf/ßł)_)ł_1

It is easy to see that it is equivalent to (33)-(36).

Example.

16 c 3, 2 = f§ = 0.11012 , , = 4 ,

. 1 = 1 , 02 = 1 , ^ 3 = 0 , . 4 = 1 ,

1 _ 2 _ _ - - 12
Z i = -J , Z 2 = Z 3 — 4 — g , ^4 16 '

z ; = i , z2 = 3, 4 = 6, 4 = 13,

(A«/i« _ /) (A - 7)" 1 = i ^ 6 1 ' 1 6 " I) (^ 1 / 1 6 - I)"1 04 1 / 1 6 - 7) .

. (A 1 6 / 1 6 - 7) - 1 . 1 6 =
= [U l + Ame + . . . + ^0/16)- ^ (/ + ^ 1 / 1 6 + . . . + ^15/l 6)]-l p

e 0 = ^, e i = ^1/2. e 2 = ^1/4, e 3 = ^1/8, e 4 = ̂ 1/16,
7 i 0 = I , B 1 = i (7 + ^ 1 / 2) , 5 2 = KI + ^ / 2) K I + ^ 1 / 4) =
_. i (/ + ^i/4 + ... + A3/4), fj3 = 1(1 + A1'* + ... + A*»)i(l + A1/8) =

= i(7 + A1/8 + ... + ^ 7 / 8) '

B i _ i (i + Am + ... + A7/8)i(I + ^ 1 / 1 6) = T_(I + ^ 1 / 1 6 + . - + ^ 1 5 / 1 6) ,

G0 = A3, G, = _A3 + (1 / 2) . G2 = i A 3 + <1/2>, G3 _ ^34(1/2). (1,4, (

30

D0 = I + A + A2 ,

Dj = (I + A + A2)±(l + A1/2) + І A 3 = І(I + A1/2 + ... + A6/2),

D2 = |(7 + A1/2 + ... + A6'2)І(I + A1/4) + £A3+(1/2> =

= i (/ + A1/4+... + A14/4),

D3 = І(I + A1/4 + ... + A14/4)i(/ + A1/8) = £(7 + A1/8 + ... + A29/8),

£>4 = £(/ + A1/8 + ... + A29/8)І(I + AlП6) + І A 3 + (1 / 2) + 1(/4> =

= ^ (/ + A1/16 + ... + A60/16).

CONCLUSION

The main idea of the algorithm is to cumulate computations in order to reach low
(logarithmic) computational complexity. For r an integer, this trick is known, and is
described e.g. in [2], [3] (not just for matrices). The generalization for r a non-
integer is new.

Both algorithms were programmed in Fortran and tested on the IBM 370/135
computer with 4 byte floating point format (mantissa 24 bits). They work effectively
and reliably for reasonable data, i.e. when |arg at\ < n for all eigenvalues at of A.
In the applications of the control theory, this condition means that the sampling
interval is not too long. For |arg at\ -+ n the convergence of the matrix square root
is lost. Numerical examples as well as full source programs are published in [5].

The idea of the algorithm is general and is not limited to the matrix algebra. It can
be used in any algebra where inversion, square root and convergence are defined.
It was e.g. implemented and tested for the algebra of real polynomials K[x] modulo
a fixed polynomial p(x).

References

[\] F. R. Gantmacher: Theory of matrices (in Russian). Moscow 1966. English translation:
Chelsea, New York 1966.

[2] B. Randell, L. J. Russel: Algol 60 Implementation. Academic Press 1964. Russian translation:
Mir 1967.

[3] D. E. Knuth: The art of computer programming, vol. 2. Addison-Wesley 1969. Russian
translation: Mir 1977.

[4] J. Jezek: Computation of matrix exponential, square root and logarithm (in Czech). Kniznica
algoritmov, diel III, symposium Algoritmy, SVTS Bratislava 1975.

[5] J. Jezek: General matrix power and sum of matrix powers (in Czech). Kniznica algoritmov,
diel IX, symposium Algoritmy, SVTS Bratislava 1987.

31

S o u h r n

EFEKTIVNÍ ALGORITMUS PRO VÝPOČET REÁLNÉ MOCNINY MATICE
A PŘÍBUZNÉ MATICOVÉ FUNKCE

JAN JEŽEK

Článek je věnován algoritmu pro výpočet matic Ar a (Ar — I) (A — I)~í pro danou čtverco
vou matici A a pro reálné r. Algoritmus používá binárního rozvoje čísla r a vyznačuje se loga
ritmickou výpočtovou složitostí vzhledem k r. Úloha vyrůstá z potřeb teorie řízení.

Резюме

ЭФФЕКТИВНЫЙ АЛГОРИТМ ДЛЯ ВЫЧИСЛЕНИЯ ДЕЙСТВИТЕЛЬНОЙ
СТЕПЕНИ МАТРИЦЫ И РОДСТВЕННОЙ МАТРИЧНОЙ ФУНКЦИИ

^АN 1Е2ЕК

Статья посвящена алгоритму для вычисления матриц Аг и (Аг — I) (А — I)"
квадратной матрицы А и действительного г. Алгоритм пользуется бинарным разложением
числа г и отличается логарифмической вычислительной сложностью. Проблема вырастает
из потребностей теории управления.

Ашког'з аМгезз: Гп§. ^ап ^еъек, С8с, ШТА С8АУ, Род Vоаа^епзкои \Ы[4, 182 08 РгаЬа 8.

32

		webmaster@dml.cz
	2020-07-02T06:29:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

