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Summary. The paper deals with the existence of time-periodic solutions to the beam equation,
in which terms expressing torsion and damping are also considered. The existence of periodic
solutions is proved in the case of time-periodic outer forces by means of an apriori estimate and
the Fourier method.
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In this paper we shall prove the existence of functions u and v which satisfy the
equations

(1) Uy — COy + Uyxxx + au, — ﬁ <Jmui(€> ') dé) Uy =f(1) s

0
®) —Cllyy + Py + Ve + G0, — Poo =1,

the boundary conditions

(3) u(0, 1) = u(m, t) = u(0,1) = u(n, ) =0, ted0, ),
(4) v(0, 1) = v(m, t) = v,,(0,1) = v (n, 1) =0, te0, Ty,
and the periodicity conditions

©) u(,0) =u(-, T), o(,0) =o(:,T),

(6) ul+,0) = u(*, T), v, 0) = v, T),

where T > 0 is a real constant.
Coefficients «, & B, f,  are positive constants. We shall suppose y — ¢z > 0.
The physical meaning of the last inequality, as well as of the system (1), (2), may be
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found in Timoshenko [4]. The nonlinear term represents the change in the tension
of the beam due to its extensibility.

This problem is connected with the initial-boundary value problem for the non-
linear beam equation that was discussed by De Andrade [1] and Ball [2].

As usual, functions u, v:<0,n)> x {0, T) - R will be regarded as functions
defined on <0, T), whose values belong to some function space on <0, w). Let
I2(0, ™) be the Hilbert space of real valued Lebesgue measurable functions u = u(x)
on <0,y with |u| < oo, where |u|* = (u, u) and (u, v) = [§ u(x) v(x) dx. For the
sake of simplicity we shall write u, v instead of u(t), v(t), unless we wish to stress the
dependence on time. Thus we shall use the notation

ot = OO = [ e ),

0

~

(m@=@@wmrj

"u(x, 1) v(x, 1) dx .

0

First of all we shall establish a formal apriori estimate provided we have solutions
u, v which are smooth enough.

Multiplying (1), (2) by u, + eu, v, + v, respectively (¢ > 0 will be fixed in the
course of calculations), and integrating from 0 to © we obtain two equations. Their
sum gives

1

(7 Ec(litN(u’ v,y ) + M(u, v, u,0) = (fY, u, + eu) + (fP, 0, + ev),

and N, M may be written in the form
(8) N(u,v,u,v) = |u]® + plo.]* = 2c(u,, v,) + 26((u,, u) + (v, v) —
— c(up v) = (v, u)) + exul? + edo]* + |ul® + Slva? +

D e+ o,

) M(u, v, u,, N,) = afu,|* + @fv,|* + e|uc|* + ed|ve | + eBluc|* +
+ eBlv > + e(2c(uy, v)) — |u]? = y|o]?) .

We shall omit the terms u,, v, in the definition of N, M, if it cannot lead to misunder-
standing.
First of all we estimate the term N(u, v).

Lemma 1. If u(t), v(t) € Ho(0, m) N H,(0, ), u,(1), v(t) € I*(0, ) then there exist
constants A, B > 0 such that

A(fu ? + o> + Juas® + oae]® + [us|®) £ N(u, v) £
S Bju® + [ou]? + Juee]® + [oue]® + fuel*) -
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Proof. Let us make use of the fact that for u e Hg(0, t) n H*(0, ), L([u|* +
+ |u.]?) £ |ug|* holds for some fixed L> 0, and of the Young inequality 2ab <
< a®’[n* + b2p?, n > 0. Then we obtain

N(u,v) = [u* (L = cfn® = e(L + ¢) + [o.]> (v — en® — &e(y + ¢)) +
+ |uf? (soc + g— e(l + c)) + |of? (eo? + %L— ely + c)) + Hu? +
49 v * + B [ue]*

2 2

As y > c¢?, there exists 7 > 0 such that ¢ < * < y/c, so that we may choose ¢ > 0
satisfying

(10) e < L/2 + 2¢ + 24),

(11) e < SL|(2y + 2¢ + 24),

(12) e < (L=t +0),

(13) e<(y—en)(y+0),

(14) e < min {a/(1 + ¢),&/(y + ¢)},

(15) 26? < {min (& + & + f, y(ex + 1)}/(y + c /7).

The first inequality is proved. The inequality (15) is required to be satisfied for
a later use in the main theorem. On the other hand, by direct calculation we obtain

Ny ) < Juf? (14 ) (1+8) + o O + &) (14 6) +
lusl? (1 + ¢fL(1 + ¢ + @) + qu]“g T [ol? (6 + e/L(y + ¢ + 6) + BIL)
which completes the proof of Lemma 1.
A simple application of Lemma 1 provides
M(u,v) = |u,|* (« — &(1 + ¢)) + |v0,)* (@ = &(y + ¢)) +

+ eluy|? + eldv|? + e|Bul* = K N(u, v)
where
(16) K = B 'min {a — &(1 + ¢), & — &(y + ¢), ¢, &5, e} .
Hence, by (7), we get
1d

&2 ) R 1 e
LS NG o) + KNG o) 5 S (0 + 7)) + E?('"‘lz ol e +

2
£ g al) £ S OROF + P + 4K N o)
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where &> 0 satisfies &> = (1/AK) max (1, ¢/L). If we denote ¢ = &( S 2 +
+ | f(Z)]Z) we can finally write

(17) %N(u, v) (1) + KN(u,v) (1) < (1)

In the proof of the main theorem we shall make use of the following lemma (see
Ball [2]). .

Lemma 2. Let X be a Banach space. If f e I*(0, T; X) and fe I*(0, T; X) then f,
possibly after changing it on a set of measure zero, is continuous from (0, T)
into X.

Indeed, for almost every s, t e <0, T):

£0) = £(s) = j f(0) do .

Now we can establish the main theorem. Let us denote S = H*(0, m) » H}(O, ).
For u e S’ and v € S we shall write (4, v) instead of u(v).

Theorem. Let fO, f® e L*(0, T; I*(0, )). Then there exist u,ve L0, T;S)
such that u,, v, e L*(0, T; [*(0, &), ,, v, € L*(0, T; S’) and both u and v satisfy
the periodicity conditions (5), (6) and the equations (1), (2) in the weak sense:

(18) (s W) — c(vys W) + (Uyrs W) + oty W) — Blue|? (urro w) = (F O, W),
(19)  —clug, w) + P(Vis W) + 8(vyy, Wy)) + vy @) — Py, w) = (fP, W)
for all weS.

Remark. The boundary conditions (3) and (4) are included in the formulation
of the weak solution.

Proof. System {sin kx};%, is a basis of S. Let us denote V, = lin {sin kx}j-;.
Now we shall try to find u™, v™: {0, T) - V,,

u™(t) =Y gi(t) sin kx ,
k=1

v™(t) = Y k(1) sin kx
k=1

satisfying (18), (19) for all w € V.

First we solve the initial-boundary value problem for (18), (19) and then we show
that the initial conditions may be chosen in such a way that u™ and o™ satisfy the
periodicity conditions.
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We take the following initial conditions for u, v:

(20) u™(0) = é:lock sin kx ,
(21) v(0) =k§1ﬁk sin kx,
(22) uy'(0) =k§1&k sin kx ,
(23) v}(0) =k§1ﬁk sin kx .

If we substitute w for sin kx, k = 1, ..., m, in (18), (19) we obtain a system of 2m non-
linear ordinary differential equations for gj(¢), hi(1), k = 1, ..., m (for the sake of
simplicity we omit the index m):

. - . 48 & .
(24) Gk — chy + kg, + gy + P (3 g22) k2g, = SO0,
noj=1

(25) —cgy + vhy, + Sk*h, + oh, + Bk2h, = £ .

These equations may be transformed into 4m equations of the first order and written
in the form

% = R(x) + S(1),

where R(x) is a polynomial and S(f) e L'(0, T). According to the Carathéodory
theory (see Kurzweil [3]), the system (24), (25) with the initial conditions (derived
from (20)—(23))
(26) gi(o) = 0, hi(O) =B, gi(o) =&, hi(o) = f;
has a unique solution on <0, t,,>, t,, > O.

Multiplying (24), (25) by di + gy, h. + eh,, respectively, we obtain an priori
estimate for u™, v™, which is of the same form as (17) where we substitute u™, v
for u, v. Thus

27) E% N(u™, o) (1) + KNG™, o%) (1) < 3(7).
Multiplying by eX* and integrating from 0 to ¢ we obtain

(29) N(u™, o) (1) = N(u™, o) (0) =X + J K60 () ds

0

It shows among other that 1,, = T. So we have functions g, h, on <0, T) with g, h,
absolutely continuous on <0, T>. Then there exist §,, /1, almost everywhere. Hence
we have the solutions u™, v™, satisfying the initial conditions (20)—(23).
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In order to find solutions satisfying (5), (6) we define a mapping
X R4n — Rx&n

by
x: (“ks Br» & ﬁk) - (gk(T)’ hk(T)’ g.k(T)? hk(T))

where gy, hy, i b are solutions of the system (24), (25) with the initial conditions
(26). If N(u™, v™, u}, v") (0) < R then

(29) N(u™, o™, up, of) (T) < Re™ " + Q,

where
T
0= J @(s) ds .
0
We shall denote .
m m
u = Yo sinkx, v=yfsinkx,
1 1

m

w=Ydsinkx, z=ypsinkx,
1

HMS

Pr = {(o, B G4 Br) €R*™, k=1,...,m; N(u,v,w,z) < R}.

Vectors from P satisfy the relation

{&lf + Vﬁf - ZC&kﬁk + 28(%5“1: + Yﬁkﬁ‘k — Py — C“kﬁk) +

M=
.

+ op(eor + k*) + Bi(ed + ok* + BK*)} + EE(Z k*uz)* < R.
k=1
Using the transformation in the form

o = \/(V) (ak + bk) >

B = a, — by
& = \/(V) (dk + Ek),
ﬁk= a, — Ek

and the assumption on ¢ given by (15), we can prove, after some calculations, that P,
is a convex set. As Py is also closed and bounded, we can take advantage of the
Brouwer theorem. From (29) it is easy to see that for R > Q\ (1 — exp (—KT))
we have %(Pg) = Pg. So there exists a fixed point of the mapping x and thus gk(O) =
= g(T), h(0) = h(T) and §,(0) = g,(T), h(0) = h(T). Consequently, the cor-
responding u™, v™ satisfy the periodicity conditions (5), (6).
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Inequality (29) also gives N(u™, v™) (1) < C, € > 0 for t € €0, T). From Lemma 1

we can see that
i ()], Wi @), (@), [um(0)] = €,

where C is independent of m, t, and analogously for v. This implies that {u™}, {v™}
are bounded in L°(0, T; S) and {u}'}, {v}"}, {uk}, {7} and {|u?|* uZ.} are bounded
in L*(0, T; I*(0, m)).
We can choose subsequences with the following properties(we write m instead of m,,):
um > u, v™ —>v  weakly*in L°(0,T;S),
u™ = u,, uy, > u,, weakly* in L*(0, T; [*(0, 1)),
o = v, Ve > ., weakly* in L0, T; IX(0, m)),
|u|? us = weakly* in  L*(0, T; I*(0, m)) .
Moreover, as the injection H'((0, ) x (0, T)) » L*((0, r) x (0, T)) is compact,
u™ — u, ™ — v ae. in L*((0, )% (0, T)). In the sequel we shall write u™ instead
of u™. The next step is to show that ¢ = |u,|? u,,.
For y € L'(0, T; L*) we have

T
jr((f) - [uxlz Uyys l//) dt = j ((P - IU': 2 u;nx’ 1//) dr +
0 0
T T
+J i ? (7 — s ) di +f (2 = Jug]?) (e ) i

But

h

'[T(Iu:‘ll — ]uxll) (i, W) dt Jr(u"‘ — u, U, + uy,)di|f <

T 1/2
§C<'[ ]u'"—ulzdt> -0, m- .
0

The other integrals also tend to zero and the arbitrariness of i implies that ¢ =
= |u.|? u,,.
Now let k € N be fixed. Then

(upy, sin kx) — (u,, sin kx) weakly* in  L*(0, T)
(uf, sin kx) — (u,, sin kx)  weakly* in L*(0, T)
(uf, sin kx) — (u,, sin kx) weakly* in  D'(0, T),

and analogously for v. Hence the equations (18), (19) hold for w = sin kx and thus
for all w e S. Moreover, equations (18), (19) after some calculations give (uf, w) —
— (u,,, w) weakly in L*(0, T) for all w e S and thus (u,,, w) € L*(0, T). That implies
u, e L*(0, T; ).
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Finally, we must show that u, v satisfy conditions (5), (6). As u™ — u and uy - u,
weakly* in L*(0, T; I?), according to Lemma 2 we obtain, after a redefinition if
necessary, (u™(0), ) - (u(0), ¢) and (u™(T), ¢) - (u(T), ) for all ¢ e I*(0, ).
Since U™(0) = u™(T), we can see that u(0) = u(T).

From (18), (19) we have for w € S, (u};, w) — (u,,, w) weakly in L*(0, T), thus from
Lemma 2 we have (u}'(0), w) > (u,(0), w), we S, and since u}(0) = u}(T) we may
again conclude that u,(0) = u,(T) nad analogously for v. This completes the proof.
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of the manuscript.
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Souhrn
O PERIODICKYCH RESENICH SPECIALN{HO TYPU ROVNICE TYCE
JAN REHACEK

Tento ¢lanek se zabyva existenci periodickych feSeni rovnic pro kmitani nosniku, ve kterych
se uvazuje i ohybani nosniku a tlumeni kmitt. Za predpokladu &asové periodickych vnéjsich sil
je ukdzana existence periodickych feSeni pomoci apriorniho odhadu a Fourierovy metody.

Pe3srome
O MEPUOJMYECKNX PEHMIEHUAX YPABHEHUN VIIPYIUX KOJEBAHUI
JaN REHACGEK

B crartbe M3yyaeTcs CylIeCTBOBAHME INEPHOAMYECKUX PpelUeHHit cucteMbl AMddepeHumanbHbiX
YPaBHEHHMI NS ynpyrux KojeOaHuif, B KOTOPBIX PacCMATPUBAETCS TAKXKE CKPYYMBAEMOCThb M ra-
1enne Kosiebanuit. B ciydae meproanyeCcKnX BHEIIHAX CUIT JOKA3BIBAETCS CyLIECTBOBAHME PEIIEHHI
JIyT€M allpUOPHOI OLIEHKH PeIleHHi U MeToA0M Dyphe.

Author’s address: Dr. Jan Rehdéek, VSCHT, Suchbatarova 5, 160 00 Praha 6.

40



		webmaster@dml.cz
	2020-07-02T06:30:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




