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A UNILATERAL BOUNDARY-VALUE PROBLEM 
FOR THE ROD 

MIROSLAV BOSAK 

(Received September 30, 1986) 

Summary. A unilateral boundary-value condition at the left end of a simply supported rod 
is considered. Variational and (equivalent) classical formulations are introduced and all solutions 
to the classical problem are calculated in an explicit form. Formulas for the energies correspond
ing to the solutions are also given. The problem is solved and energies of the solutions are com
pared in the perturbed as well as the unperturbed cases. 

Keywords: buckling of the rod, variational inequality, Signorini problem, bifurcations. 

AMS classification: 73K05, 40D20. 

INTRODUCTION 

In his paper [1] E. L. Reiss solved in an explicit form the problem of branching 
of the trivial solution of a homogeneous rod satisfying certain (bilateral) boundary-
value conditions. Being inspired by his work we try to do similar work in the case 
of the unilateral problem. We give the explicit solutions and compare the correspond
ing energies for which we also obtain explicit formulae. Both the unperturbed uni
lateral condition and the perturbed one are considered. 

The physical background of the problem is given in Section 1. In this section 
we also introduce the variational inequalities modelling the unilarelal problems 
in question and give their interpretation. As it is pointed here, we can equivalently 
solve the problem in its classical formulation. 

In Section 2 we calculate all solutions of the problem. 
The main part of the paper is Section 3 where we calculate in detail the expressions 

for the energies and prove their ordering. 

1. PHYSICAL BACKGROUND OF THE PROBLEM AND ITS FORMULATION 

An underformed rod R is meant to be a three-dimensional continuum whose 
projection on the x-axis is the interval <0, TC> and whose cross section S(a) = 
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= {[x, y> z] e R; x = a), a e <0,7C> is^symmetrical with respect to its centre which 
lies on the x-axis. In this paper we deal with a rod of constant cross section which 
is made of homogeneous material. Moreover, we suppose that during the deforma
tion each cross section S(a) remains planar. 

These assumptions enable us to investigate only the deformation of the axis 
of the rod, i.e. of the segment {[x, 0, 0] ; x e <0, TC>}. We suppose that the deformation 
takes place in the xz-plane. 

Taking into account these assumptions and neglecting some higher order terms 
we are led to KirchhofPs energy functional (see [2]) 

(1.1) E(u, w) = f J — (u' + \w'2)2 + — (w")2 -Xu- Zw\ dx -

- (Xu + Zw + Mw')\n
0 , 

where 
u(x), w(x) denote respectively the horizontal and vertical displacements of the 

point (x, 0) (thus the coordinates of this point after the deformation are x + u(x), 
w(x)>; 

(X, Z) is the vector of the external force density which is a function of x; 

(X, Z) are the vectors of the forces acting at the ends of the rod; 

M are the moments of these forces; 

$ is Young's modulus; 

G is the cross-sectional area of the rod; 

J = j s z
2 dy dz is the moment of inertia with respect to the xy-plane. 

Provided X,Ze L2(0, TC) the functional Eis defined in the space Y = W1'2 x W2'2. 
In what follows we denote the elements of Yby v = (u, w). 

Let us now formulate the boundary-value conditions. The rod is supposed to be 
simply supported at both ends, but the rotation of the left end is unilaterally restricted 
(see Fig. 1). While the left end is fixed with respect to all displacements, the right 
end can move horizontally. Using our notation we can write these conditions as 

(1.2a) u(0) = 0 , w(0) = 0 , w'(0) ^ s , 

(1.2b) w"(0) ^ 0 , [w'(0) - s] w"(0) = 0 , 

(1.2c) u(n) =-c, W(TC) = 0 , 

(1.2d) w"(n) = 0 , 

where s ^ 0, c e <0, n) are The parameters. 

Applying the Lagrange principle of minimum of the potential energy we seek 
the state of equilibrium of the rod among the critical points of the functional E 
in the convex set K given by geometrical constraints (l.2a), (l.2c). 
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The point v e K is said to be a critical point of Ein the set K if it satisfies the Euler 
inequality 

(1.3) v e K: DE(v, v - v) = 0 , Vt? e K , 

where D is the Gateaux derivative. 
In what follows we treat the situation when 

X = Z = 0 , 

X = M = 0 . 

We give the specific form of (1.3) in this particular case. 

( x * u ( x ) , w ( x ) l 

Variational formulation of the problem 

Denote 

(1.4) K = {v e Wl>2(0, K) x [W2>2(0, n) f) Wl
0>

2(0, TT)]; u(0) = 0, u(n) = 

= - c , w'(0) ^ s} . 

We want to find v e K satisfying the inequality 

(1.5) P {P(u' + iw'2) [(u ^ u)' + w'(w - w)'] + w"(w- w)"} dx ^ 0 

for all v = (u, w) G K. 

Remark 1.1. We divided (1.3) by SJ > 0, denoting £ = o\J. The term -Zw\n
0 

in (1.1) vanishes since w e Wo*
2(0, TT). 

It can be easily proved that any sufficiently smooth solution of (1.5) solves the 
following classical problem: 
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Find (M, W) e c2(<0,7t>) x c4«0, TC» satisfying the system of equations 

(1.6a) «' + K O 2 = - -

(for some k € R) , 

(1.6b) w(IV) + Xw" = 0 

together with the conditions (1.2). 
In the sequel we refer to this problem as to the problem (1.6). 
The following theorem permits us to work with the classical problem (1.6) instead 

of (1.5). 

Theorem 1.1. Any solution of the variational problem (1.5) is of the class 
C2«0,7i» x C4«0,7c>) and solves (1.6). The problems (1.5) and (1.6) are then 
equivalent. 

We omit the proof of this regularity result — it can be done by the standard 
method. 

2. SOLUTION OF THE PROBLEM 

All solutions of the problem (1.6) can be calculated explicitly and are given in the 
tables below. 

Remark 2.1. It is readily checked that the equation piK cos /m — sin/wc = 0 
has exactly one zero in each interval (n, n + £), n = 1, 2 . . . . We denote these 
zeros pin. 

Table 10 (Solutions of (1.6) in the case e = 0) 

for c > n27r/jS, neN: 

( \ c c - n2KJp . 
u{x) = x '— sin 2nx , 

K 2Kn 
(2.1) 

, . 2 / jc - n2nlp\ . 
w(x) = - / '— lsin nx ; 

«\V « / 

for c > H2„KIP, neN, where /»„ are the numbers defined in Remark 2.1: 
„(») = _ ^ x _ 2 ( c - / A W x ( i + c o s 2 / ,n 7 t ) _ 

j? it sin /.„7C L 

2 1 3 "1 
(2.2) cos y.„K sin y.„(x — n) H sin 2/i„(x — %) K COS2 /yt , 

M» 4/.B 2 J 

v(x) = lf/C-^[x-- + -s in^-X)1; 
At»t\V « / L sin^71 J 

w 
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foг 0 ^ c < к: 

, ч u(x) = X , 
(2.3) W тc 

w(x) = 0 . 

Table 1 c (Solutions of (1.6) in the case s > 0) 

for c ^ 7c(e2/4 + n2/j?), n e N : 

/ \ c c — n2KÍB . _ 
M(X) = x IJ- sin 2rcx , 

, N 7C 27Cfl 
(2.4) 

, v 2 /c - n27c/j? . 
w(x) = - / —-̂ - sin nx ; 

W V 7C 

for c = ATC/JS + (e27c/4) P(/m) , where 

(y cos j> — sm y)z 

Aє(0,l>uU(/ t 2 ,(n + l)2> /•2 

л = l 

A £2 

(2.5) w(x) = - - x - — : [X((IÍK)2 + 2 sin2 /m) + 

P 4(/L7C COS /Í7C — Sin fXKf 

PLK2 sin fi(x — TC) cos /J(X — 7c) — 4TC sin \IK sin \i(x — TC) + \m2 sin \XK COS /*7t 

— 47c sin2 \XK\ , 
w(x) = [TC sin \i(x — 7c) — (x — TC) sin \IK] ; 

/J7C COS \XK — s i n /HC 

(ychy - sh }>)z 

for c = Лтc//? + (e2к\4) Q(џк) , where 

sh2j; -

i y — sl 

2 є ( - o o , 0 > : 

(2.6) u(x) = - ~ x - — í — — [x((/ш)2 + 2 sh 2 /ш) + 
ß 4(ЏK Ch /Í7C — sh ЏKf 

+ /#c2 sh џ(x — к) ch џ(x — 7c) — 4тc sh џк sh /г(x — тc) + 

+ џк2 sh џк ch /Lл; — 4тc sh 2 џк] , 

w ( x ) = [7C Sh џ(x — 7C) — (X — 7C) sҺ Џк] . 
/X7C Ch ЏK — SÌÌ ЏK 
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R e m a r k 2.2. The formulas (2.5) with X = n2, neN reduce to the formulas 
(2.4) with C = K (e2/4 + n2\p). 

The expressions for c, u(x), w(x) in (2.6) have finite limits as X tends to zero. 
For 2-= Owe have c = S2K\10 and 

(2.7) u(x) = - — — [9(x - TC)5 - 10TC2(X - TC)3 + 5TC4(X - K) + 4TC5] , 
407c4 

w(x) = x(x — K) (x — 2K) 
W 2TC2 V M ; 

R e m a r k 2.3. The problem (1.6) has the trivial solution only in the case e = 0. 

3. ENERGY OF SOLUTIONS 

In Section 2 we gave a list of all solutions of (1.6). Now we shall calculate the 
energies corresponding to these solutions and make a comparison of the results 
obtained. 

Remember that the functional of energy (1.1) in our case (after being divided 
by \S J) has the form 

(3.0) E(v) = (\p(u'(x) + (w'(x))2)2 + (w"(x))2] dx . 

Lemma 3.1. Denote by En(c), E^n(c), Ef(c) the energies corresponding to the 
solutions (2.1), (2.2) and (2.3), respectively. ^ 

Let E(X)be the energy of (2.6), (2.5) for X e ( - oo, 0>,X e (0 , 1> n (J (li2, (n + 1)2>, 
respectively. We have " = 1 

(3.1) En(c) = n2(2c - n2K\p) for c = n2K\p , neN , 

(3.2) Efln(c) = ii2
n(2c-fi2K\p) for C^^K/P, neN, 

(3.3) Ef(c) = C2P\K for 0 ^ c < TC , 

(3 4) E(X) = — + — ^(2fi7Z " S i n 2 ^ 
P 4 (/UK COS fiK — s i n JJLK)2 

for A6 (0, l>nU ( / t„ 2 , (n + l ) 2 >, 
« = 1 

(3 5) E(X) = — + — ^ 3 ( s h 2 ^ ~ 2 H 
P 4 (flK eh \m — sh \IK)2 

for Xe(— oo, 0> . 

Proof. From (3.0) and (1.6a) we obtain 

(3.6) E(v) = f T - + (w")2l dx = - K + Hw")2 dx . 
JOLP J P Jo 
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The proof of formulas (3.1), (3,3) can be found in [1]. Let us prove (3.2). We have 
X == p£ and 

w = JL(Li#)sin2^_x). 
sm2 tinn\ n J v y 

Using the equation \xnn cos finn = sin //n7r one can easily deduce (3.2) from (3.6). 
In the case of the solutions (2.5), (2.6) we have respectively, X = jn2, 

and Л = —џ2, 

KtøP = ^ V _ — sin2 ̂  _ x) t 
(џn cos џn — sm џn) 

K W ] 2 = . ' ^ . г- sh2 ̂  - x) . 
(џn ch /гл; — sh џny 

For A 4= 0 the formulas (3.4), (3.5) are obtained by integration in (3.6). In the case 
X = 0 one can easily verify that the energy of the couple (2.7) given by (3.6) equals 
JE(0) = lim E(X). j 

A->0 

Lemma 3.2. Define the function c(X) as 

c(X) = ^ + ~Q(nn), H = J(-X) if A_0, 
P 4 

Air p2it °° 

C(X) = -_ + —P(im) , jU = VA if ] e ( 0 , l ) u U ( / i „ 2 , ( « T l ) 2 ) 
p 4 n = i 

and /cl E(X) be the function defined by (3.4), (3.5). 
Then the functions c and E have the following properties: 

1. They are continuously differentiate in the set 

(-a3,l>uU(^2,(n + l)2> 
« = 1 

and their derivatives satisfy the equation 

(3.7) E'(X) = 2X c'(X) . 

2. The function c is increasing in the interval (— oo, 1> and it is strictly convex 
in each interval (fx2, (n + 1)2>. 

3. There exist numbers Xn e (jn2, (n + l)2) such that c is decreasing in (ft2, Xny 
and increasing in (Xn9 (n + 1)2>, and we have 

(3.8) c(n2) < c(Xn) for all w e N , 

4. The function E is decreasing in (—oo,0> and in each interval (/i2, An>. It is 
increasing in the interval <0, 1> as well as in each (Xm (n + 1)2>. 

For the shape of the functions c, E see Figs. 2, 3. 
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Proof. As far as Assertion 2 of Lemma 3.2 and the inequalities (3;8) are con
cerned, we have not succeeded in finding their analytic proof. So we conjecture them, 
relying on the results of numerical computations. 

0.5 + 

0.A + 

0.3 

0.2 + 

0.1 + 

Fig* 2 —- Function c 

c(n2) =d-+j\; a -= 0-2, fi = 100, n = 1, 2, 3 

1. Let us first prove (3.7). 
Let X < 0. Denoting a = 1/jSrc3, b = g2/4TT, we have c(X) = rc2(-aj;2 + b Q(y))9 

where y = n y/(—X), 

(y ch y — sh j>)2 
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Easy calculation yields 

- 2 y 

which means that 

2 46 лл = ± У3(sh 2y - 2y) 
åy ăy {y ch y — sh y)2 

^{y)~-2y>Џb), 
dy dy 

the last equation being (3.7) for X < 0. 
The case X > 0 can be treated in a similar way. 
To complete the proof of Assertion 1 we compute the limits and derivatives 

of the functions c and E at the point X = 0 using the definition of the derivative 
of a function and some standard analytic methods. 

<A 
-+- X 

Fig. 3 — Function E 

s = 0-2, p = 100. 
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3. One can easily compute that c'(n2) > 0 for all n and, since obviously 
c(X) -» +co as X -> n„, the existence of the points A„ follows from the convexity 
of the function c (Assertion 2). 

4. Follows directly from Assertion 1, 2, 3. 

Theorem 3.1. For any integer n the following estimates hold: 

I) Vo(n + lfnjp: 

(3.9) En(c) < Ejc) < En+ .(c) < E\c) ; 

\l)VXe(n2
n,(n + \)2): 

(3.10) En(c(X)) < E(X) ; 

III) VA e (n2
n, (n + l)2), c(X) >^{~ + ilLj¥) • 

(3.11) E(X)<En+1(c(X)); 

IV) VA', A" e (/*2, (n + 1)2>, A' < X", c(X') = c(A"): 

(3.12) E(X') < E(X"). 

Proof. I) For a fixed c denote G(y) = y2(2c — y2nj0). It can be easily,checked 
that G is an increasing function in the interval <0, ,/(c/?/-)>. Since n < fin < n + 
+ 1 < ^/(cj?/-) and according to Lemma 3.1 we have 

En(c) =G(n), 

E,n(c) = GOO, 

£'(c) =G(V(c/?/rc)), 
the inequalities (3.9) hold. 

II) By calculation we obtain 

(3.13) En(c(n2)) = E(n2) Vn . 

Denoting c = c((n + l)2) we have for A e (/*2, (n + l)2): 

E(X) - En(c(X)) - £((n + l)2) - £,(c) - f " [2a c'(ff) - 2n2 c'(a)] da = 

= £n + 1(c) - £B(c) + 2 r +1>2c(a) da - 2[(a - n2) c(a)]A"+1>2 = 

= * [n4 - (« + I)4] + f" " 2c(a) da + 2(A - n2) c(A) ^ 
/? J A 

> 5 [n4 - (n + l ) 4 ] + - f"' X) 2a da + 2(A - n2) * X = 
^ / T /3JA l3 
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= - [n4 - (n + I)4 + (n + I)4 - X2 + 222 - 2n22] = 

_ _ [n4 _ 2 n
22 + A2] = - (n2 - 2)2 > 0 . 

To complete the proof of (3.10), let us now prove the inequality 

c(X) > - X , 
P 

which has been used in the above estimates. Obviously, it is sufficient to prove 
P(fin) > 0. 

We have 
y2 + y sin y cos y — 2 sin2 y > y2 — }> — 2 > 0 

for j = fin > 2, and therefore also for \i > n± > 1. To estimate the difference 
F(2) — F„(c(A)) we also needed X — n2 > 0. This is true since we have 2e(/j2 , 
(n + 1)2>. 

IV) Let 
2', X" e (ii2

n, (n + 1)2>, X < X", c(X) = c(A") = c . 

Assertion 2 of Lemma 3.2 implies c(X) < c V2 e (X, X"). Consequently, 
fA" rx» 

E(X") - E(X) = 22 c'(2) d2 = - 2 c(A) d2 + [22 c(X)]% = 
JA' JA' W 

= - f 2 c(X) dX + 2(2" - 2') c = 2 f [c - c(2)] d2 > 0 , 
J Xf J X' 

and (3.12) is proved. 
Ill) The behaviour of the function c in the interval (fxn, (n + l)2) indicates that 

there exists a point X of this interval with the following properties: 

a) c(X) = c((n + l )2) , 
b) c(» ^ c((n + l)2) Ver e <I, (n + 1)2> , 

c) c is decreasing in (/i2, I>. 

Using IV) we now obtain 

En+1(c(X)) - E(l) - E„+1(c((n + l)2)) - E(I) - E((n + l)2) - E(X) > 0 . 

If we denote by F(2) the difference on the right-hand side, we have 

F'(2) = 2(n + l)2 c'(X) - 22 cf(X) = 2[(n + l)2 - 2] c'(2) . 

Taking into account our assumption we can write 

ßz л* +1)2 

C > 7t — + V ) = <(n + l)2) 
ß 
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and therefore 

Hence 

and (3.11) is proved. 

X e (jij, X). 

F(X) > F(X) > 0, 

CONCLUSIONS 

1) The case e = 0. 

Table 1 shows that for c g n\p the problem (1.6) has but the trivial solution. 

This means that unless the right end of the rod is displaced by more than njp from 

its original position, no buckling occurs. When c exceeds n\p, we obtain the first 

"buckled" solution, namely the couple 

(3.14) U 2П 

/ \ c c — nlP . ~ 
u(x) = x — sin 2x 

w n 2r 

sm x , 

The value c = TU//J is then the first bifurcation point of our problem. 

With c increasing we pass through other bifurcation points, as more solutions 

emerge (see Fig. 2). However, as a result of the estimates (3.9), all these new solutions 

have energies higher than (3.14). 

In short, the equilibrium state in the case e = 0 is described by the trivial solution 

("no buckling") for c S n\P, and by the couple (3.14) for values of the parameter 

greater than n\p. As a matter of fact, the lowest energy solution is the same as in the 

case of the bilateral problem studied in [1], 

2) The case c > 0. 

Here the bifurcation diagram is somewhat more complicated. Assertion 2 of 

Lemma 3.2 implies that for values of c < c(Xt) we have a unique branch of solutions 

given by (2.6) for c g c(0), by (2.5) for c(0) ^ c ^ c(l), and by (3.14) for c ^ c(l) 

(see Fig. 2). According to Assertion 4 of the same lemma the energy of this solution 

decreases for c smaller than c(0) and increases with c on the interval <(c(0), c(l)>* 

Since the function E1 is increasing (see formula (3.1)). the energy E is increasing 

in <c(l), c(^i)> as well. 

As the value of c passes through the first bifurcation point c(X1)9 more solutions 

of the problem begin to emerge. Namely, the couple (3.14) is at this point joined 

by two new solutions of the form (2.5) (see Fig. 2). At the point c(4) one of these 

branches is replaced by a solution of the form (2.4) (with n = 2). 

Once again, two new branches given by formulas (2.5) bifurcate from the point 

c(X2), and so on. Inequalities (3.9) —(3.12) enable us to compare the energies of all 
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solutions. As in the previous čase, the equilibrium statě is given by (3.14) for c 
greater than c(l) = TI(S2/4 + 1//J). 

In both cases e = 0, s > 0 the lowest-energy solutions, except for the trivial 
one, háve no zeros in the open interval (0, n). (The buckled rod has no points in 
common with the x-axis, except for its ends.) 
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S o u h r n 

JEDNOSTRANNÁ OKRAJOVÁ ÚLOHA PRO PRUT 

MIROSLAV BOSÁK 

Autor se zabývá problémem větvení řešení jedné úlohy o prostě podepřeném prutu s jedno
strannou okrajovou podmínkou na levém konci. Variační formulace úlohy je převedena na ekvi
valentní úlohu klasickou, která je explicitně vyřešena. Explicitní tvar řešení, výpočet vzorců, 
vyjadřujících energii jednotlivých řešení a srovnání těchto energií tvoří hlavní přínos článku. 
Výpočet řešení, energií i jejich srovnání jsou provedeny v případě úlohy s porušenou i homogenní 
okrajovou podmínkou. 

Pe3K)Me 

OflHOCTOPOHHilJI KPAEBAJI 3A.H.AHA O CTEP^KHE 

MIROSLAV BOSÁK 

ABTOP paccMaTpHBaeT npo6jieMy BeTBjíeHHH peniemn*. fljifl 3a,ziaHH o crepacHe c OAHOCTOPOHHHM 
rpaiHFfflMM ycjioBHeM Ha JICBOM KOHne. BapnamioHHafl nocraHOBKa npHBe,ueHa K 3KBHBajieHTHoň 
KpaeBOH 3a^ane B KnaccnnecicoH $opMyjinpoBKe, KOTopan peniaeTca B JÍBHOM BHAC 

flaHbi $opMyjibi AJIH pemeHHH H BLipajKeHiía .ÍTJIH 3HeprHH, cooTBeTCTByiorrrHX 3THM pemeiuraM. 
BbíMHCJieHHe penieHHá H 3HepruH H HX cpaBHemie ocymecTBJíeHBi B cjiynae ofluopo^Horo H B cjry-
CflBHHyToro KpaeBoro VCJIOBHA. 
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