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ON ISHLINSKII'S MODEL
FOR NON-PERFECTLY ELASTIC BODIES
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Summary. The main goal of the paper is to formulate some new properties of the Ishlinskii
hysteresis operator F, which characterizes e.g. the relation between the deformation and the
stress in a non-perfectly elastic (elastico-plastic) material. We introduce two energy functionals
and derive the energy inequalities. As an example we investigate the equation u” + F(u) = 0
describing the motion of a mass point at the extremity of an elastico-plastic spring.

Keywords: Ishlinskii operator, hysteresis, non-perfect elasticity, energy inequalities, damped

- vibrations.

AMS Classification: T3E99, 34K15.

In 1944 Ishlinskii [1] proposed to describe the relation between the internal
stress and the prolongation (Hooke’s law) in non-perfectly elastic materials by means
of a hysteresis scheme. A very complete mathematical theory of hysteresis phenomena
has been elaborated by Krasnoselskii and Pokrovskii [2], who introduced the
notion of the Ishlinskii operator and studied its basic properties.

Our aim is to derive further properties of the Ishlinskii operator. In particular,
we introduce potential energies P; and P, and prove the corresponding energy
inequalities. Next we investigate the asymptotic behaviour and oscillatory properties
of the solution to the problem (where F is the Ishlinskii operator)

u’ + Fu)=0, u(0)=K, u'(0)=0,

describing the free vibrations of a mass point at the extremity of a non-perfectly
elastic spring. We observe a strong dissipation of energy and study the relation
between the rate of decay of the solution and the form of the corresponding hysteresis
loop.

This paper is supposed to be an improved version of the first two parts of [4].
The last part of [4] concerning a nonlinear wave equation will be published later
in another framework.
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1. HYSTERESIS OPERATORS

We first recall the definition of hysteresis operators (cf. [2], [3]). Let C([0, T])
denote the B-space of all continuous functions v:[0, T] - R' with sup-norm
|+ lco, 72> and let v & C([0, TT) be piecewise monotone. For k > 0 we define

mﬁﬂ&ﬂ@ﬁ@*h%'FOﬁﬂ
. _ 1 v 1S non eCl‘easmg m to’ tl N
@D @ BOO = {min (1,0) (L), o) + b}, te (]

if v is nonincreasing in [1,, #;] ;

So(0) = kit o(0) > b,
@ WO=L0 it pofsh,
v(0) + h if v(0) < —h;

(iii) fil0) (1) = o(t) — L(v) (1), te[0,T].
The functions ,(v), fu(v) are continuous and piecewise monotone. Moreover, if
v, we C([0, T]) are continuous and piecewise monotone, then

(1.2) [1(0) (8) = W(w) (1)] = [0 = Wllgo,ry» t€[0,T].

This property enables us to define the values of I,(v) (f,(v)) for arbitrary v € C([0, T7)
as lim I,(v,) (fu(v,)), where v, € C([0, T7) are piecewise monotone and |[v, — v]|;o,7; =

n-»oo

— 0. Thus 1, f, become Lipschitz continuous operators from C([0, T7) into C([0, T]).
Further, let y € I}(0, o0) be a function such that

(13) i) xx)z0 ae,
(i) Ve>0, fax(x) dx>0.
We depote ’
(1.4) o(z) = f 0 f jx(é) dédx, ®(z) = f :(p(x) dx .
The Ishlinskii operator is given by the formula

(1.5) F(v) (1) = J‘:f,,(v) () x(n)dh for vecC([0,T]), te[0,T]

Properties of hysteresis operators

(1.6) (i) I fw F are continuous and odd operators C([0, T]) = C([0, T]),
(i) for v, we C([0, T]) we have
[F(v) (1) = F(w) (1)] < 20(]lo = w]lto,0) < 20'(0+) [[o = W0, »
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(iii) for v absolutely continuous, F(v) is absolutely continuous; if v'(e) =0,
then (F(v))' (f) = 0 and if both v'(¢) & 0, (F(v))' (¢) exist, then F(v)' (). v'(t) > 0.
Moreover, the inequality
¢'([olio.0) - '] = [(F@)) (9] = 2 @' (0+)]o'(1)]
holds almost everywhere.

(iv) LetveC([0, T])and v(t,) = — |v]lro,; (or (ts) = |[v[lio,71)- Then £y(v) (t,,) =
= ~[®)]to,1 = — min {h, —o(t,)} (or £u(v) (ts) = [[fu(0)llr0,ry = min {h, v(ty,)},
respectively) for all h >0, and F(v)(t,) = —o(—v(t,) (F() (ts) = @(v(ts)))-
In particular, |F(v)(?)]0,r = @(|v]0,r1). Further, let t, < T and let v be
nondecreasing in [t,,¢;] (or nonincreasing in in [ty, t;]). Then f,(v)(f) =
= f(v) (t,) + min {2k, o(t) — o(t,)}, b > 0, t € [ty t;] (Fu(v) (2) = fu(v) (1) —
— min {2k, v(ty) — v(t)}, h > 0, te[ty, t,], respectively).

(v) Let 0<1t, <t; < T ouft,) <vt) <oty (or vlte) = vi(t) = vi(t,)) for
telt, t],i=1,2,0,(t,) = vy(t), k = 0, 1, f,(v,) (t,) = fi(v2) (t,)- Then fy(v,) (1,) =
= fil2) (t).

(vi) Let 0<t,<1t, <1, £T, v nonincreasing in [t;,1,], o(t;) = v(t,),
fi0) (1)) = filv) (to) + min {2k, v(t,) — v(to)}. Then for te[t;,t,] we have
Siv) (1) = fi(v) (1) — min {2k, v(t,) — v(t)} (analogously, if v is nondecreasing
in  [r, 8], o(ty) < ot,), fi(v) (1)) = fi(v) (1,) — min {2k, v(1,) — v(t;)}, then
£il0) (1) = fulv) (1) + min {2k, o(t) — o(t,)} for te[t,1,]).

(vii) Let f,(v) (1) = fu(v) (t,) £ min {2k, |o(t) — v(to)|} for te[ty,t,] and for all
h > 0. Then F(v) (1) = F(v) (2,) + 20(3|o(r) — v(to)]), 1€ [t 1] -

(viii) Let u, v be absolutely continuous in [0, T']. Then f,(u), f,(v) are absolutely

continuous and ([(fy(w))' (1) — ()] - [(fi®)) (1) — v'())]) (/u(w) (1) = £i(0) (1)) = O

is satisfied for almost every & > 0 and almost every t € (0, T). In particular,
[0 @) = 70 0) ) - w0} a2
2 1] T0M0 () = 5O O = (16 ©) = 70) (9] 1)

holds forevery s,1,0 < s <t < T.

(ix) Let u, v be absolutely continuous and w-periodic functions. Then f,(u), fulv),
F(u), F(v) are w-periodic for t = w. Let us assume (k) > 0 a.e. in (0, c0) and

[Tewo - o @ - vya=o.

Then u’ = v' almost everywhere.

Proof of (1.6). Parts (i)—(vii) in this form are proved in [3]. The assertion of
(viii) corresponds to Sec. 36.3 of [2]. The w-periodicity of f,(u), F(u) for an w-periodic
function u is also proved in [2].
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Let us assume that the relation in (ix) is satisfied, i.e.

J:j‘:(o(fh(u) (l) - fh(v) (t)) (u’(t) — U'(t)) dt X(h) dh = 0.

By (viii) we have for almostall A > Oanda.e.t > 0

(filw) (1) = fulo) (1) (' (1) = v'(1) 2 -%—(% [/(w) (1) = fulo) (]
We conclude that '

7)) (@) () = v’ (0] = [(L@) () = o' ()] (fuu) (1) = £i0) (1) =0
is fulfilled for a.e. h > Oand t = w.

Let us choose ¢ = 2w such that u/(t), v'(f) exist. Let e.g. u’(t) > 0 and put i =
=max {t€[0, 0], |u(t)] = ||u]0,m}. For u(i)>0 we put ¢, =1 =
= max {1 €[t;, t; + o], u(r) = min {u(n), ne[t,, {; + w]}}. For u(f) < 0 we put
to =1, t; = max {t€ [ty t, + o], u(t) = max {u(n), nelty 1ty + ®]}}, t, = to +
+ . By induction we define

(1.8) trje1 = max {1 € [ty;, 1], u(r) = max {u(n), n € [15;, 1]}} ,
trjrz = Max {1 € [15;4,1], u(r) = min {u(n), n € [t5;,1, t]}},
until ¢, = t.

The assumption u’(t) > 0 ensures that there exists n = 1 such that ¢t = #5,41-
Following (1.6) (iv)—(vi) we have forall h > Oandj = 1,...,n

(1.9) Tuw) (12541) = fulw) (1) + min (20, u(ty;. 1) — u(tz,)]
) (2,5) = fu(u) (t2;-,) — min {2h, u(ty; ;) — u(ty))} .
The following lemma is obvious.

(1.10) Lemma. Let u: [a, b] = R' be absolutely continuous, u(a) < u(r) < u(b)
(u(a) = u(r) = u(b)) for tela,b]. Put u(r) = max {u(n), a <n <<} (i(r) =
= min {u(n), a<n<t, respectively). Then @ is absolutely continuous and if we
denote M = {te(a, b),ii'(c) + 0!, then u(c) = u(r) for every e M and u'(t) =
= i'(t) for a.e. e M.

(1.11) Lemma. Let u be absolutely continuous, let u'(t) > 0, (F(u)) () exist, and let
{twk = 1,...,2n} be the sequence (1.8). If 2h > u(t) — u(t,), then (f,(u)) (1) =
= u'(t), if 2h < u(t) — u(t,,), then (fi(u)) (1) = 0.

Proof of (1.11). The first part is obvious. For 2k < u(f) — u(t,,) we introduce
the function & from (1.10) in [t,,, t]. For every t < t we have ii(t) < () = () +
+ [L@'(n) dy, hence meas ([t, ] n M) > 0. Thus we can find 7, < ¢ such that
u(ty) = ii(t,) and for te(ry, t) we have u(r) — u(ty,) > 2h, u(t) — u(r) < 2h.
For © > 1, we have f,(#1) (1) = h and f£,(@1) (v) — fy(u) (r) = @(r) — u(r). Similarly
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we find 7, >t such that i(t,) = u(r;) < u(t,,-,) and u(ty) — u(z) < 2h for
7€ [1, 7;). The assertion of (1.11) follows from the fact that @’(¢) = u'(i). 0

The function v in (1.7) is nonconstant. Indeed, if v(f) = p, < 0, then for suffi-
ciently small h >0 we have fy(u) (1) = h, (fy(u))’ () =0, fy(v)(t) <0 and this
contradicts (1.7). For vy > 0 we find ¢’ such that u'(t") < 0 and we proceed as above.

Let us denote by {s;} the sequence (1.8) corresponding to v. If {s,} is infinite,
we have for sufficiently small h > 0: f,(u) () = h, (f,(«))' () = 0, and for sufficiently
targe  J: — h < 1(0) (52) < 50) (1) < 10) Gopsn) < b (1) = (K@) () = 0,
which contradicts (1.7).

Let us assume ¢ = s,,, for some m > 1. Then v/(f) £ 0 and for sufficiently small
h > 0 we again obtain a contradiction to (1.7).

We conclude that t = s,,.,, for some m = 1 and relations analogous to (1.9)
hold for v and {s,}. Moreover, for the same reasons as above the assumption v(t) —
— 0(sy,) < 2h < u(t) — u(t,,) leads to a contradiction.

Thus we have proved (notice that the case u’(f) < 0 is analogous: the mapping
fuis odd):

(1.12) Lemma. Let the assumptions of (1.6) (ix) be satisfied and let u'(t), v'(%),
(F(u)) (1), (F(v))’ (1) exist, t = 2w.

If w'(t) > 0, then t = ty,1 = Symsy and
() u(t) — ulty,) < o(t) — v(szm)

if u'(t) <0, then t = t,, = s,,, and
(1) u(ty-q) — u(t) £ v(sym-1) — v(1).

Let us prove
(1.13) Lemma. Let the assumptions of (1.12) be satisfied, u'(t) > 0. Then t,, =
= Sy u(t) — u(ty,) = o{t) — v(s2).

Proof of (1.13). A. Assume s,,, < t,,-,. Following (1.10) we construct the func-
tion @ in [ty,-y, ty,]- Put ro = min{te[t,,_y, 15,], i(r) = u(t,,)}. For every
T < ro we have meas [7, ro] N M > 0, hence there exists a sequence t; # ro, ii'(t;) =
= u/(r;) < 0, v'(r;) exist. Following (1.10), (1.12) (we have t; > t,, which is sufficient
for (1.12)) we find o; € (55, 7;) such that u(t,,—,) — u(r;) £ v(o;) — v(r;). We can
assume o; — ¢, and passing to the limit as j - o0 we obtain
(1.14) u(ty,—q) — u(ty,) < vioy) — v(r,),
where v(t) = v(o,) = v(a) = v{r,) for o € [0y, ro]. Next we put

ry = max {o € [ay, t]; v(c) = min {v(n), n € [0y, 1]}},
r, = min {c € [ry, t], v(o) = v{o,)} .

We have r, > ry 2 ro, o(r,) < v(ro). Using the function & in [ry, r,] we find se-
quences a; ~ ry, T; € (15,4, 0;) such that v'(c;) > 0, u'(0;) exist and
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o(a;) = o(ry) < u(o)) = u(t)) < u(a,) — u(ty,),
o(ry) — vo(ry) < u(ry) — u(ty,)
From (1.14) we conclude u(r,) = u(t;a-1), which contradicts (1.8).

B. Assume ty,_; < Sy, < t,,. Following (1.10) we construct & in [s,,, t]. Ob-
viously #(t;,) > 0(52m). Put 7o = min {0 € [$y t2,], (6) = 5(t,,)}. We find again
the sequences a; / ro, ;€ (tyy—y, 0;)s T; = To such that v'(;) > 0, u'(s;) exist
and v(c;) — v(sy,) < u(o;) — u(zy),

(1.15) 0(ro) — v(s2m) < u(ro) — u(zo) -
We see that ry < ty,, u(ty,) < u(to) = u(t) < u(ry) for e[ty o). Put ry =
=max {t€[1o, t,,], u(r) = max {u(n), ne[1o, t2,]}}, 72 = min{ce[ry,15,]
u(t) = u(to)}. We define the function @ in [r,, r,] and find the sequences z; /' r,,
o, €(ro, 7;) such that u'(z;) < 0, v'(z;) exist and
u(ry) — u(ty) = o(9;) — o(z;) < 0(ro) — v(z)),
u(ry) = u(rz2) < v(re) = v(r) . A

Now (1.15) implies v(r,) < v(s,,,), which contradicts (1.8).

C. Assume S,,, = t,,. We define & in [s,,, {] and similarly as above we obtain

o(t) = v(s2m) < u(t) — u(ty,) .

For s,,, > t,, we use A, B, where u is replaced by v and vice versa. Lemma (1.13)
is proved. ) O

We can complete the proof of (1.6) (ix). For a fixed t = 2w such that u'(z), v'(?)
exist, u'(¢) > 0 there are two possibilities:

(@) Vse(tan t), u(s) < u(t). In [t,, t] we define # and find 7; # ¢ as above.
Following (1.13) we have u(t;) — u(t,,) = v(t;) — v(t,,), hence

() = ule) _ olt) = ofs)

t—1; t—1;

which implies v'(f) = u'(7).

(b) 3se(tam 1), u(s) = u(z). Then the derivative (F(u)) () does not exist. Since
the set of such points is of measure zero, the proof of (1.6) (ix) is complete.

Remark. In general, in the nonperiodic case the assumption that (1.7) holds
for all h > 0 and ¢ > 0 does not imply u’(¢) = v'(¢): it suffices to choose u bounded
and non-decreasing, v constant, v(f) = v, > [|u].
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Potential energies

Let us denote by W*?(0, T), k = 1,2,...,1 < p < oo the usual Sobolev space.
We define the expressions

(1.16) (i) Pl(u)(t)=%f:f,,2(u)(t) x(h)dh for wueC([0,T]),

(i) Py(u)(2) = 3(Fw)) () u'(t) for ue w:=(0, T).
(1.17) Energy inequalities.
(i) Let ue W0, T). Then Py(u)e W**(0, T) and

(P,(w))’ (t) — F(u) () w' (1) <0 a.e. in [0,T].
(i) Let us assume that there exists a positive decreasing function y such that

for all K > 0 and for almost all x € (0, K] we have x(x) = y(K). Then for every
ue W0, T) the inequality

i) () = Pa(e) (0 [ () (0) ') o <
< = #(lulon) [ o) ao

holds fora.e. t,s,0 <t <s < T

Proof. Part (i) follows immediately from (1.6) (viii).

(i) Let 0 <t <s = T be given. The set {o€(t,s),u'(s) + 0} is a countable
union of open intervals. Hence it suffices to assume that u is strictly monotone in
[t, 5] Let u be increasing in [, s] (the other case is symmetric). Put # = max {z € [0, t],
[u(z)| = |[[o,}> and assume

A. I <t We put =ty for u(f) <0 and 7 = t; for u(f) > 0. Let {z,} be the
sequence (1.8), k =0, 1, ..., For j such that u(t,;,,) € [u(f), u(s)] we denote by
Taj41 €[ 1, 5] the point where u(t,;41) = u(ty;+,). In the case = to, u(s) > |u(to)|
we find 7, € (1, 5), u(to) = —u(t,). The singular points 7, are those where (F(u))’
and consequently P,(u) are not defined. Thus we deal only with the case ¢, s = 75;44.
Moreover, we can assume that ¢, s are separated by at most one point 7,;, ;. In the
opposite case we replace the interval [z, s] by a countable union of intervals having
the required property (notice that the only possible limit point of 7,;44 is ¢, and in
that case we have u'(t) = 0, |F(u)) (0)| < c|u'(c)] = 0 for o \ 1, 6 & 75;44). By
(1.6) (iv)—(vii) the following cases are possible:

(118) () F(u)(0) = Fu) (t2) + 20(3(u(o) = (1)) o[t 5]
(i) F@) (o) = Fu) (to) + 20(3(u(o) - u(t)» o[t,7),

o(u(o)), oelr,s];
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() ) (0) = F(u) (105) + 20(3(u(0) — ltsgs2) s o<[19),
F(u) (13,) + 20(3(u(o) — u(t,,))), oelr,s],

where u(t,,) < u(ty,+2)-
B. 7 = t. For u(f) < 0 we have (1.18) (i) or (ii), for u(f) > 0 we obtain
(1.18) (iv) F(u)(o) = o(u(o)), oelts].
The proof follows from an easy integration by parts.

(1.19) Remark. Integrating directly in (1.16) (i) we obtain another expression for
P,(u):
Pu(w) (1) = u(t) 9(u(9) — #(u() i Fu) (1) = o(u(r),
Py(u) (1) = Py(w) (to) + 3(u() — u(to)) (Fu) (10) + F(u) (1))
if
F(u) (1) = F(u) (to) + 20(3(u(r) — u(10)) ,

and similarly for u nonincreasing.
2. AN ORDINARY DIFFERENTIAL EQUATION %

Let us consider the problem
(2.1) (i) u +Fu)=0,
(i) u(0)=K=>0, u'(0)=0,
where F is given by (1.3), (1.5).

(2.2) Theorem. There exists a unique classical solution u: [0, o) - R* to the
problem (2.1) (i), (ii) and this solution has the following properties:

(i) There exists a sequence O = t, < t; < t, < ...such that (—1)" u is decreasing
in[t,, t,.,] and '

. T
llm (t"+1 - tn) = m .

(ii) There exist positive decreasing functions R(f), o(t) such that

t— 0 t—> 0

limR(t) =0, ]iml—og—(t@: 0

and
e(t) = [uw (9] + |F(w) (1)] = R(D) -

Proof. The existence and uniqueness of the solution follows from the Lipschitz
continuity (1.6) (ii) of F. The total energy of the system is given by

(2.3) E (1) = 3u"*(t) + Py(u) (1) .
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From (1.17) (i) we immediately have E{(f) < 0 a.e. Let us denote Fo = F(u) (0) =
= ¢(K). There exists t; > 0 such that u is decreasing in [0, #,]. In the case u(t;) <
< —K we have

El(tl) = Pl(“) (tl) > Pl(u) (0) = EI(O) 5

which contradicts the energy inequality. Hence u(t;) = —K, u'(t{) = 0 and (cf.
(1.6) (iv)) F(u) (1) = Fo — 29(3(K — u(t))) for te[O0,t,]. Consequently, u'*(t) =
= 2Fo(K — u(t)) — 8®(HK — u(t))). Putting z(t) = (K — u()) we obtain z'(f) =
= /(Foz — 2 ®(2)), z(0) = 0.

Let 0 < z; < K be the unique positive root of the equation Fyz = 2 &(z). We
have z(t;) =z, and ¢'(z;) > 0. Put K, =K — 2z, and F; = —F(u)(t}) =
= —F(u)(t;) = —Fo + 2 ¢(z;) = —(2 9(z4)[z;) + 2 ¢(z) > 0.

We continue by induction, finding the sequences z,, F,, t,, K, such that 0 = ¢, <
<ty <..,u(t)=K, u(t)=0, F,=(=1YF@u)(,) >0 2z, =3-1)y.
(K, = Kys1)s Fuzyi1 = 28(z,,,), and for te[t,, t,.,] the function (—1)"u is
decreasing and F(u) (1) = (—1)"[F, — 2 p(3(=1)" (K, — u()))]. In particular,
F,i1 = —F, + 2 ¢(z,+,), hence

d 2 Zn+1 ¢
Fn_Fn+1=2(2LG+—l)—'(p(zn+l))= j J.ﬂX(’?)d’?df>O-
o 0

n+1 Zn+1

Let us introduce the function a: [0, 2 ¢(+ o)) > R', «(x) = 2(x — ¢(z)), where
x = 2 ¢(z)/z. We have «(0) = 0,

0= (- ) - (rres) (o) o

and lim o/(x) = 0. Moreover, a(x)/x < 1 for every x > 0. Put

x=0+ F
6(x) = — | 9E
= #(¢)
We see that G is increasing, lim G(x) = —oo and lim log x/G(x) = lim «(x)/x = 0.
We have x=0+ x=0+ x-0+
Fn - Fn+1 0‘(Fn)

GF,, _GFn = =
( ) ( +1) OC(Fn+1 + 0,,(F,, - Fn+1)) a(F'l“'l + 9"(F" - Fn+1))

for some 6, € [0, 1], hence
«F,) «(F,)
1 < G(F,) — G(F,,,) < = W
S 6(F) = 6(Far) WFpsq)  oF, — «(F,))
We immediately obtain G(F,) < —n, hence F, £ G™!(—n) > 0 (and therefore
z, —» 0) as n - + oo. Further,

limg—(ic———-——o‘@:l—lim———

x=0+ a(x) x=+0+ OC(X) x—a(x)

A dE =1,
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and consequently
(2.4) F, > G~ *(—oen) forsome oy > 1.
Let us estimate the difference t,+1 — t,. We have
i1 — by = o dz =2"+1Jq do
" o JEzZ=292) 2 )5 (o B(zs1) - B(oz,,,)
On the other hand, the relation

0 9(z) = 9(0z) = 0 f f;,,x,,) dn

implies
19'(z) 2%0(1 ~ 0) < 0 B(2) — ¥(0z) < 3 ¢'(0+) 2%(1 — o).

This yields

(2.5) métnn—tném,

and (2.2) (i) is proved.

Let us now choose t € (t,, t,+1), n 2 1. We have u'%(f) = 4(F, z(t) — 2 ®(z(?))) and
(F(u) (8))* = (F, — 2 9(2(2))>, where z(t) = 3(—1)"(K, — u(t)). We obtain
[w'(8)] + |F(u) ()| £ ¢;F, S ¢,F,+; (notice that

lim £241 _ 1 and t<t,, é1r(n+ 1)),
n—ow F,, \/q)'(zl)
hence
O]+ IR O] 5 e 671 JVo'z) ).
T
On the other hand,

(F 0 + 5 200 oy -

=F. =222 -¢)F,0(z) + 49%(z) — 48M.

Substituting &(z) < #z ¢(z) for z€[0, z,], where » = (1 — ?'(z)2 ¢'(0+)) < 1,
we obtain

(F) (0)* + 3o ' (0+) W(0)* 2 F7 = 2(2 = &) F, 9(2) + 4(1 — xe) 9*(2) 2
= c;F?

provided & < 4(1 — ). Therefore (cf. (2.4), (2.5)).

) 0] + O] 2 esot (- 20200,
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We put
o(t) = ¢,G™1 (— ai‘/Lnl(O—” t) , R(t)=c,G7! (— ﬂ;’fz—‘) t).

Indeed,
lim log o(t) _ n . log (c4x) _0
t— o t oo \/(p'(0+) x=0+ G(x)

and the proof is complete.

(2.6) Examples. (i) Let us assume that for every K > 0 and for almost all x € (0, K]
we have
I'(K) x* = x(x) = y(K) x*

for some p = g > —1, where y = 0 does not vanish identically. We obtain
et < ()] + [F) (0] S et

(cf. [4] for p = g = 0).

(ii) Theorem (2.2) does not imply u(f) — 0 for t - + co. Let, for example, &(x) =
= cx'** for x 2 x,, ¢ €(0, 1). For sufficiently large K we have F, = ¢(1 + «) K%,
zy = (a« + 1/2)"*K. By 1nduct10n we obtain z,, , = a'/*z, until z,,; < x,. We have

= hm u(f) =K + 22( 1)" z,. The sequence {z,} is decreasing, hence the
1nequa11t1es ' .

2N
0K +2Y(=1)z, — Uy £ 225y
n=1

1/a
A=1- (21 2 .o,
2 1+ ol

For ¢ € (0, 1) we find N > 0 such that

ot N2 e < o
2 1+ ol '

Choose K such that z,y > x,. Then we have A(l + &) > (U,/K) > A(1 — ¢).
Therefore lim (U,/K) = A. Notice that in general cases the problem of determina-

K=o
tion of U,, remains open.
(iii) In the last example the energy (2.3) of the solution of (2.1) does not tend
to zero as t— +oo. By (1.19) we have E, = hm E(t) = K ¢(K) — &(K) —

hold for all N > 0.
Put

Z Zy41(Fy — Fat1). A computation analogous to (11) yields

1+1/a _
lim E°°+=a_2(“+l) ILL>0
o

2 1+1/a
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(notice that for f(x) = x'*!* we have [f(x) — fx - )’_) > f'[(x + »)/2]
provided x =+ y). This shows that the initial mechanical energy is not completely
dissipated. The quantity E, corresponds to the inaccessible remainder of the potential

energy.
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Souhrn
O ISLINSKEHO MODELU PRO NE ZCELA PRUZNA TELESA
PaveL KRrejCi

Hlavnim obsahem prace je formulace nékterych novych vlastnosti hysterezniho operatoru
Islinského, ktery vyjadifuje napi. vztah mezi deformaci a napétim v ne zcela pruzném (pruzné
plastickém) materidlu. Jsou zde definovany dva funkciondly energie a odvozeny energetické
nerovnosti. Jako priklad je zkouména rovnice u” 4+ F(u) = 0, kterd popisuje volné kmity hmot-
ného bodu na pruzné plastické pruzing.

Pe3ome
O MOJEJI MIUIMHCKOI'O JIsI HE BITOJIHE VIIPYIUX TEJI
PAvEL KREJCi

T'napHOM nenpio paboTh! ABIAeTCA HOPMYIMPOBKA HEKOTOPHIX HOBBIX CBOMCTB IMCTEPE3HCHOTO
oneparopa Munumackoro F, KOTOpbIA BBIPAXaeT HAmp. COOTHOIICHWE Mexzay aedopmarmeil #
HAaIPSHKCHUEM B HE BIOJIHE YIPYTOM (yOpPYyro-IlacTHYeCKOM) MaTepraie. Beonsrces nsa ¢gyHkmmona-
Jla 3HEPTMM H [JOKa3blBalOTCsS 3HEPreTHYECKHE HepaBeHCTBA. B KadyeCcTBe IpHMepa HCCIIeHyeTCs
ypaBaenne u” + F(u) = 0, OIHMCHIBAIOLIE ABHKEHHE MACCOBOHM TOYKH HA yHPYroO-IJIaCTHYECKOM
UpYXHHE.
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