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33(1988) APLIKACE MATEMATIKY No. 2,133—144 

ON ISHLINSKirS MODEL 
FOR NON-PERFECTLY ELASTIC BODIES 

PAVEL KREJCI 

(Received December 1, 1986) 

Summary. The main goal of the paper is to formulate some new properties of the Ishlinskii 
hysteresis operator F, which characterizes e.g. the relation between the deformation and the 
stress in a non-perfectly elastic (elastico-plastic) material. We introduce two energy functionals 
and derive the energy inequalities. As an example we investigate the equation u" + F(w) = 0 
describing the motion of a mass point at the extremity of an elastico-plastic spring. 

Keywords: Ishlinskii operator, hysteresis, non-perfect elasticity, energy inequalities, damped 
vibrations. 

AMS Classification: 73E99, 34K15. 

In 1944 Ishlinskii [1] proposed to describe the relation between the internal 
stress and the prolongation (Hooke's law) in non-perfectly elastic materials by means 
of a hysteresis scheme. A very complete mathematical theory of hysteresis phenomena 
has been elaborated by Krasnoselskii and Pokrovskii [2], who introduced the 
notion of the Ishlinskii operator and studied its basic properties. 

Our aim is to derive further properties of the Ishlinskii operator. In particular, 
we introduce potential energies Pt and P2 and prove the corresponding energy 
inequalities. Next we investigate the asymptotic behaviour and oscillatory properties 
of the solution to the problem (where F is the Ishlinskii operator) 

u" + F(u) = 0 , u(0) -= K , u'(0) = 0 , 

describing the free vibrations of a mass point at the extremity of a non-perfectly 
elastic spring. We observe a strong dissipation of energy and study the relation 
between the rate of decay of the solution and the form of the corresponding hysteresis 
loop. 

This paper is supposed to be an improved version of the first two parts of [4]. 
The last part of [4] concerning a nonlinear wave equation will be published later 
in another framework. 

133 



1. HYSTERESIS OPERATORS 

We first recall the definition of hysteresis operators (cf. [2], [3]). Let C([0, T]) 
denote the B-space of all continuous functions v: [0, T] -> R1 with sup-norm 
II' l[o,T]» anc* let v e C([0, T]) be piecewise monotone. For h > 0 we define 

max {lh(v) (t0), v(t) - h) , te (t0, tt] 
... - . , v _ / if t? is nondecreasing in [*0, lx] , 

(1.1) (i) W W " \ i _ _ { Z ^ ) ( O , t < 0 + * } . te(f0,ti-} 
if i> is nonincreasing in \t0, fj] ; 

, v(0) - h if »(0) > h , 
00 /*(»)(o)=-(o if Ko)| = h, 

\ ( 0 ) + h if »(0) < - h ; 

(iii) /*00(0««<0-'*(«0(0. te[0,T]. 

The functions /A(v), f,(v) are continuous and piecewise monotone. Moreover, if 
v,we C([0, T]) are continuous and piecewise monotone, then 

(1.2) \lh(v) (0 - h(w) (0| =S ||* - w|| [0, r ], *6 [0, T] . 

This property enables us to define the values of lh(v) (fh(v)) for arbitrary v e C([0, T]) 
as lim lh(vn) (fh(vn)), where vn e C([0, T]) are piecewise monotone and \\vn — Ûro.T] "* 

n-*oo 

-> 0. Thus /,,,f. become Lipschitz continuous operators from C([0, T]) into C([0, T]). 

Further, let x e 1/(0, co) be a function such that 

(1.3) (i) * ( x ) _ 0 a.e., 

(ii) Va > 0 , x(x) dx > 0 . 

We denote 

(1.4) <?(*) = f'f"x(Z) dt dx , #(z) = [cp(x) dx . 
J 0J x Jo 

The Ishlinskii operator is given by the formula 

* 0 0 

(1.5) F(v) (t) = fh(v) (t) X(h) dh for v e C([0, T]), f e [0, T] . 
Jo 

Properties of hysteresis operators 

(1.6) (i) lh,fh, F are continuous and odd operators C([0, T]) -> C([0, T]) , 

(ii) for v, w e C([0, T]) we have 

\F(v)(t) - F(w)(0| _ 2p(||t, - W||r(M]) _ 2p'(0+) |* - Hk*]> 
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(iii) for v absolutely continuous, F(v) is absolutely continuous; if v'(t) = 0, 
then (F(v))' (t) = 0 and if both v'(t) * 0, (F(v))' (t) exist, then F(v)' (t) . v'(t) > 0. 
Moreover, the inequality 

<p'(\\v\\lo,n).\v'(t)\<\(F(v))'(t)\<2(p'(0+)\v'(t)\ 

holds almost everywhere. 

(iv) Let v e C([0, Tj) and v(tm) = - |i>||[0>r] (or v(tM) = ||t>||[0>r]).Then/„(t>) (tm) = 
= -\\fh(v)lio,T) = - min{/t, -t>(fm)} (or fh(v)(tM) = |]/*(»)||[0>T] = mm{h,v(tM)}, 
respectively) for all h > 0, and F(v)(t,„) = -<p(-v(tm))(F(v)(tM) = <p(v(tM))). 
In particular, ||F(t>) (t)||[0>r] = HHIr.o.r])- Further, let tm < T and let v be 
nondecreasing in \tm, t t] (or nonincreasing in in \tM, f.]). Then fh(v) (t) = 
= fh(v) (Q + min {2h, v(t) - v(tm)}, h > 0, t e \tm, tt] (fh(v) (i) = fh(v) (tM) -
— min {2/j, v(tM) — v(t)}, h > 0, f e \tM, rx], respectively). 

(v) Let 0 = f0 < J, = F, t>.(0 ^ t>.(t) ^ t^f.) (or t>.(*0) ^ t>,(t) = ».(*.)) for 
f 6 [t0,*.], / = 1, 2, 0l(r t) = t>2(ft), fe = 0, 1,/»(».) ( 0 = A(t>2) (t0). Then/,^,) (f.) = 
= fh(v2)(h). 

(vi) Let 0 ^ f0 < tt < t2 = T, v nonincreasing in \tt, f2], t>(t2) ^ »(f0), 
/*(«)(ti) =-/*(») (to) + min {2h,v(tt) - v(t0)}. Then for ( e [ ( „ r2] we have 
/*(») (t) = fh(v) (ti) _ min {2h, v(tt) — v(t)} (analogously, if v is nondecreasing 
in [f., r2], t>(f2) < v(t0),fh(v) (t,) = fh(v) (t0) - min {2h, v(t0) - vfa)}, then 
f„(v) (t) = fh(v) (ti) + min {2h, v(t) - v(tt)} for t e [,lt f2]). 

(vii) Let fh(v) (t) = fh(v) (t0) ± min (2/t, \v(t) - v(t0)\} for t e [f,,t2] and for all 
h > 0. Then F(v) (t) = F(v) (t0) ± 2<p(\\v(t) - v(t0)\), te\tu t2] . 

(viii) Let it, t> be absolutely continuous in [0, T~\. Then fh(u),fh(v) are absolutely 
continuous and ([(/*(«))' (t) - u'(t)] - \(fh(v))' (t) - v'(tj]) (fh(u) (t) - fh(v) (t)) < 0 
is satisfied for almost every h > 0 and almost every t e (0, T). In particular, 

J V(«) (o-) - F(t>) (<r)) (u'(<r) - „'(<-)) d<r = 

= i j\fh(u) (t) - fh(v) (t))2 - (/*(«) (s) - fh(v) (s))2] # ) dh 

holds for every s, t,0 = s < t = T. 

(ix) Let u, v be absolutely continuous and co-periodic functions. Then fh(u), fh(v), 
F(u), F(v) are co-periodic for t = co. Let us assume xQ1) > 0 a-e- i n (0> G0) a n d 

i: (E(«)(0-E(»)(0)(«'(t)-t>'(t))dt = o. 

Then u' = v' almost everywhere. 

Proof of (1.6). Parts (i)-(vii) in this form are proved in [3]. The assertion of 
(viii) corresponds to Sec. 36.3 of [2]. The co-periodicity of fh(u), F(u) for an co-periodic 
function u is also proved in [2]. 
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Let us assume that the relation in (ix) is satisfied, i.e. 
rcxDt*2co 

(/*(«) (t) - /*(») (t)) («'(t) - v'(t)) dt X(h) Ah = 0 . 
J 0 Jco 

By (viii) we have for almost all h > 0 and a.e. t > 0 

(/»(«) (t) - /.w (t)) M O - "'(o = i ~ [/*(«) (o - m (t)]2. 
dt 

We conclude that 

(1.7) ([(/„(«))' (0 - «'(*)] - [(/,(,))' (0 - v'(t)]) (f„(u) (t) - fh(v) (0) = o 
is fulfilled for a.e. h > 0 and t ^ co. 

Let us choose f ^ 2co such that M'(t), vf(t) exist. Let e.g. w'(t) > 0 and put t = 
= max { r e [0, of], |M(T)| = ||tt| | [0>wl}. For w(t) > 0 we put tt = t, t2 = 

= max {T G [l l5 tx + of], M(T) = min {w(?/), rj e [tl91± + of]}}. For w(t) < 0 we put 
t0 = t, t± = max {T G [t0, t0 + of], M(T) = max {u(rj), rj e [t0, t0 + of]}}, t2 = t0 + 
+ OJ. By induction we define 

(1.8) t2J+i = max {T G [t2J, t], M(T) = max {u(rj), rj e [t2J, t]}} , 

t2J+2 = max {T G [t2J+lit], u(r) = min {u(n), rj e [t2J+u t]}} , 

until tk = t. 
The assumption M'(t) > 0 ensures that there exists n ^ 1 such that t = l2n+1* 

Following (1.6) (iv)-(vi) we have for all h > 0 andj = 1 , . . . , n 

(1-9) fh(u) (t2J+i) = A(M) (t2;) + min {2/i, tt(r2y+1) - M(t2;)} , 

fh(u) (t2J) = fh(u) (t2J-f) - min {2/z, u(t2J-f) - u(t2$ . 

The following lemma is obvious. 

(1.10) Lemma. Let u: [a, b] -» R1 be absolutely continuous, u(a) :£ M(T) ^ M(b) 
(u(a) ^ M(T) ^ u(b)) for T G [a, b]. Put M(T) = max {w^), a ^ rj S ?} (tt(?) = 
= min {u(rj), a % rj :§ T} , respectively). Then u is absolutely continuous and if we 
denote M = . { T G(<3, b), M'(T) + 0] , then M(T) = M(T) for every t e M and M'(T) = 
= M'(T) for a.e. T G M. 

(1.11) Lemma. Let tt be absolutely continuous, let u'(t) > 0, (F(u))'(t) exist, and let 
{tk, k = 1, ..., 2n} be the sequence (1.8). If 2h > M(^) — u(t2n), then (fh(u))' (t) = 
= ur(t), if 2h < u(t) - tt(l2n), then (fh(u))' (t) = 0. 

P r o o f of (1.11). The first part is obvious. For 2h < u(t) — u(t2n) we introduce 
the function u from (1.10) in [t2n, t]. For every T < t we have M(T) < u(t) = M(T) + 
+ §1 ur(rj) drj, hence meas ([T, t] n M) > 0. Thus we can find T0 < t such that 
M(T0) = M(T0) and for T G (T0 , l) we have M(T) — w(t2,,) > 2h, M(t) — M(T) < 2h. 
For T > T0 we have fh(u) (T) = ft and fh(u) (T) — f,,(w) (T) = M(T) — M(T). Similarly 
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we find zx > t such that u^) = u(xx) < u(t2n-^) and W(TJ) - u(x) < 2h for 
xe [t9 xt). The assertion of (1.11) follows from the fact that u'(t) = u'(t). • 

The function v in (1.7) is nonconstant. Indeed, if v(t) === Vo g 0, then for suffi­
ciently small h > 0 we have fh(u) (t) = h, (fh(u))' (t) = 0, fh(v) (t) g 0 and this 
contradicts (1.7). For v0 > 0 we find t' such that u'(t') < 0 and we proceed as above. 

Let us denote by {sk) the sequence (1.8) corresponding to v. If {sk} is infinite, 
we have for sufficiently small h > 0:fh(u) (t) = h, (fh(u))' (t) = 0, and for sufficiently 
large j : - h < fh(v) (s2j) < fh(v) (t) < fh(v) (s2j+ -) < h, v'(t) = (fh(v))' (t) = 0, 
which contradicts (1.7). 

Let us assume t = s2m for some m > 1. Then v'(t) ̂  0 and for sufficiently small 
h > 0 we again obtain a contradiction to (1.7). 

We conclude that t = s2m+1 for some m ^ 1 and relations analogous to (1.9) 
hold for v and {sk}. Moreover, for the same reasons as above the assumption v(t) — 
— v(s2m) < 2h < u(t) ~ W(̂ 2M) leads to a contradiction. 

Thus we have proved (notice that the case u'(t) < 0 is analogous: the mapping 
f7jis odd): 

(1.12) Lemma. Let the assumptions of (1.6) (ix) be satisfied and let u'(t), v'(t), 

(F(u))' (t), (F(v))' (t) exist, t = 2co. 

If u'(t) > 0, then t = t2n+1 = s2m+1 and 

(i) u(t) - u(t2n) < v(t) - v(s2m) , 
if u'(t) < 0, then t = t2n = s2m and 

0 0 u(t2n-i) ~ u(t) £ v(s2m-i) - v(t). 
Let us prove 

(1.13) Lemma. Let the assumptions of (1.12) be satisfied, u'(t) > 0. Then t2n = 

= S2m, U(t) ~ u(t2n) = V(t) ~ ViS2m)-

P r o o f of (1.13). A. Assume s2m < t2n^t. Following (1.10) we construct the func­
tion u in [*2„-1? Lz,.]. Put r0 = min{xe[t2n„l9t2n], u(x) = u(t2n)}. For every 
T < r0 we have meas [T, r0] n M > 0, hence there exists a sequence Xj S r0, u'(x3) = 
= u'(xj) < 0, v'(xj) exist. Following (1.10), (1.12) (we have Xj > tl9 which is sufficient 
for (1.12)) we find aje(s2m, Xj) such that u(t2n_1) — u(xj) S v(aj) — v(xj). We can 
assume aj -> a0 and passing to the limit as j -> oo we obtain 

(1.14) "('2«-i) - u(hn) ^ v(°o) ~ v(r0) , 

where v(t) ^ v(a0) ̂  v(cx) ^ v(r0) for a e [a0, r 0 ] . Next we put 

rt = max {a e [a0, t]; v(a) = min {v(rj)9 rj e [a0, t]}} , 

r2 - min {a e [rl9 t], v(a) = v(a0)} . 

We have r2> r1>z r0, v(rx) ^ v(r0). Using the function v in [r l 5 r 2 ] we find se­
quences a} /" r2, xj e (t2n-l9 a3) such that V'(GJ) > 0, u'(Gj) exist and 
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V(GJ) - v(rt) ^ U(GJ) - u(xj) S u(an) - u(*2n) , 

v(r2) - v(rx) g u(r2) - u(l2n) . 

From (1.14) we conclude u(r2) ^ u(t2n-i), which contradicts (1.8). 

B. Assume t2n_1 < s2m < t2n. Following (1A0) we construct v in [s2m, t]. Ob­
viously v(t2n) > v(s2m). Put r0 = min {G e [s2m, t2n~], V(G) = v(t2n)}. We find again 
the sequences Gj J* r0, xje(t2n_1,GJ), Ty -> T0 such that v'(0"j) > 0, U'(GJ) exist 
and V(GJ) - v(s2m) ^ u(r/y) - u(Ty), 

(1.15) v(r0) - v(s2m) g u(r0) - u(T0) . 

We see that r0 < £2n, u(f2n) ^ u(T0) :§ W(T) ^ u(r0) for r e [T 0 , r 0 ] . Put rx = 
= max {T G [T 0 , r 2 J , u(x) = max {u(rj), n e [T 0 , *2J}}> r2 = min {T e [rl9 t2n~], 
u(x) = u(T0)}. We define the function u in [r1? r 2 ] and find the sequences Ty /* r2, 
Gj e (r0, Ty) such that u'(xj) < 0, v'(xj) exist and 

u(rx) - u(tj) ^ v(Gj) - v(Ty) ^ v(r0) - v(xj) , 

u(rt) - u(r2) g v(r0) - v(r2) . 

Now (1.15) implies v(r2) ^ v(s2m), which contradicts (1.8). 

C. Assume s2m ^ l2n. We define v in [s2m, t] and similarly as above we obtain 

v(t) - v(s2m) g u(t) - u(t2n) . 

For s2m > l2n we use A, B, where u is replaced by v and vice versa. Lemma (1.13) 

is proved. • 

We can complete the proof of (1.6) (ix). For a fixed t ^ 2co such that u'(t), v'(t) 

exist, u'(t) > 0 there are two possibilities: 

(a) Vs e (t2n, t), u(s) < u(t). In [t2n, t] we define u and find Ty S1 t as above. 
Following (1.13) we have u(x3) — u(t2n) = v(Ty) — v(t2n), hence 

u(l) - u(xj) = v(Q - v(Ty) 

f - T, l - Ty 

which implies v'(t) = u'(t). 

(b) 3s e (l2n, l), u(s) = u(r). Then the derivative (F(u))' (t) does not exist. Since 
the set of such points is of measure zero, the proof of (1.6) (ix) is complete. 

R e m a r k . In general, in the nonperiodic case the assumption that (1.7) holds 
for alJ h > 0 and t > 0 does not imply u'(t) = v'(l): it suffices to choose u bounded 
and non-decreasing, v constant, v(t) = v0 > ||u||. 
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Potential energies 

Let us denote by Wk'p(0, T)9 k = 1, 2 , . . . , 1 g p g oo the usual Sobolev space. 
We define the expressions 

(1.16) (i) P1(w)(0 = i j / , 2 ( « ) ( 0 ^ ) d h for ueC([0,T]), 

(ii) P2(w)(0 = K ^ ) y ( 0 " ' W ^ r u e ^ ^ O J ) . 

(1.17) Ene rgy i n e q u a l i t i e s . 

(i) Let u e Wx^(0, T). Then P±(u) e WU1(0, T) and 

(Pi(u))' (0 - F(u) (0 u'(t) S 0 a.e. in [0, T] . 

(ii) Let us assume that there exists a positive decreasing function y such that 
for all K > 0 and for almost all x e (0, K] we have x(x) ^ ?(-^)- Then for every 
ue W2'1^, T) the inequality 

P2(u) (s) - P2(u) (t) - !\F(U))' (O) U"(O) do <; 

= -h(\\u\\i0jjy(cr)\3do 

holds for a.e. t,s,0 ^ t < s ^ T. 

Proof. Part (i) follows immediately from (1.6) (viii). 

(ii) Let 0 ^ t < s S T be given. The set {a e (t, s), u'(o) + 0} is a countable 
union of open intervals. Hence it suffices to assume that u is strictly monotone in 
[t, s]. Let u be increasing in [t, s] (the other case is symmetric). Put l = max {T G [0, t], 
\U(T)\ = ||w||[0>f]}, and assume 

A. t < t. We put t = t0 for u(t) < 0 and t = tx for u(t) > 0. Let {tk} be the 
sequence (1.8), k = 0, 1, . . . ,For j such that u(t2J+1) e[u(t),u(s)] we denote by 
T2j+i G [t, s] the point where U(T2J+1) = u(^2j-+1). In the case t = l0, u(s) > \u(t0)\ 
we find T0 e (t, s), U(T0) = — u(t0). The singular points T2J+1 are those where (F(u))' 
and consequently P2(u) are not defined. Thus we deal only with the case t, s + T2J+1. 
Moreover, we can assume that t, s are separated by at most one point T2 J-+ 1 . In the 
opposite case we replace the interval [t, s] by a countable union of intervals having 
the required property (notice that the only possible limit point of T2J+1 is t, and in 
that case we have u (t) = 0, |F(u))' (o)\ ^ c|u'((r)| -» 0 for a \ t, a + T2J+1). By 
(1.6) (iv) —(vii) the following cases are possible: 

(1.18) (i) F(u) (o) = F(u) (t2n) + 2<p(i(u(a) - u(t2n))), ae[t9s]; 

(ii) F(u) (a) = F(u) (t0) + 2(p(i(u(o) - u(t0))) , a e [t, T) , 
(p(u(o)), a e [T, S] ; 
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(iii) F(u) (o) = F(u) (t2n+2) + 2(p(i(u(o) - u(t2n+2))) , o e [t, T) , 
F(u) (t2n) + 2cp{i(u(o) - u(t2„))), o e [T, S] , 

where u(t2„) < u(*2„ + 2 ) . 

B. ! = L For u(t) < 0 we have (1.18) (i) or (ii), for u(t) > 0 we obtain 

(1.18) (iv) F(u)(o) = <p(u(o)), os[t,s]. 

The proof follows from an easy integration by parts. 

(1.19) R e m a r k . Integrating directly in (1.16) (i) we obtain another expression for 

Pi(u): 

Pi(u) (t) = u(t) <p(u(t)) - $(u(t)) if F(u) (t) = <p(u(t)) , 

Px(u) (t) = P,(u) (to) + i(u(t) - u(t0)) (F(u) (to) + F(u) (t)) 

if 

F(u) (t) = F(u) (t0) + 2(p(i(u(t) - u(l0))), 

and similarly for u nonincreasing. 

2. AN ORDINARY DIFFERENTIAL EQUATION 

Let US consider the problem 

(2.1) (i) u" + F(u) = 0 , 

(ii) u(0) = K > 0 , u'(0) = 0 , 

where F is given by (1.3), (1.5). 

(2.2) Theorem. There exists a unique classical solution u: [0, oo) -> R1 to the 
problem (2.1) (i), (ii) and this solution has the following properties: 

(i) There exists a sequence 0 = t0 < tt < t2 < . . . such that (—1)" u is decreasing 
in[tn9 tn+1~] and 

lim(tn+l -tn)= * . 
n-^oo V ^ ( 0 + ) 

(ii) There exist positive decreasing functions R(t), g(t) such that 

KmR(t) = 0, l i m ^ i M ) = 0 
f-»oo f~>oo t 

and 
e(t)^\u'(t)\ + \F(u)(t)\SR(t). 

Proof. The existence and uniqueness of the solution follows from the Lipschitz 
continuity (1.6) (ii) of F. The total energy of the system is given by 

(2.3) E1(l) = iu'2(t) + P1(u)(t). 
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From (1.17) (i) we immediately have E[(t) __\ 0 a.e. Let us denote F0 = F(w) (0) = 
= (p(K). There exists t_ > 0 such that u is decreasing in [0, t_~\. In the case u(t_) < 
< — K we have 

£i(ti) = Px(u) (h) > Pt(u) (0) = £,(0) , 

which contradicts the energy inequality. Hence u(t_) __ —K, u'(t_) = 0 and (cf. 
(1.6) (iv)) F(u)(t) = F0 - 2<p(i(K - u(t))) for le[0, t_]. Consequently, ut2(t) = 
= 2F0(K - u(t)) - 8<l>(i(K - u(t))). Putting z(t) = i(K ~ u(t)) we obtain z'(t) = 
= V(F0z - 2 ^(z)), z(0) = 0. 

Let 0 < z_ < K be the unique positive root of the equation F0z = 2 $(z). We 
have z(li) = z_ and ^'(zt) > 0. Put Kt = K - 2z! and Fx = -F(w)(^) = 
= -F(u)(t_) - -F0 + 2<p(z_) = -(2$(z_)lz_) + 2<p(z_) > 0. 

We continue by induction, finding the sequences z„, Fn, tn, Kn such that 0 = t0 < 
< * - . < . . . , 11(0 = K„, ti'fo) = 0, Fw = (-1)" F(w) ( 0 > 0, z„+1 = i ( - l ) " . 
. (K„ - K „ + 1 ) , Fnzw + 1 = 2 # ( z „ + 1 ) , and for te[frt, ^ + 1 ] the function (~l)n u is 
decreasing and F(u) (t) = (~l)n [Fn - 2 ^ ( - l ) " ^ - ii(f)))]. In particular, 
^*+i = - -? , , + 2(p(zw + 1), hence 

Fu- Fn+1 = 2 ( 2 ^ - ± l } _ ^ ( ^ = _A_ r + 1 p , z ( i , ) d i , d « > 0. 
\ Z»+l / zn+lJo Jo 

Let us introduce the function a: [0, 2<p(+oo)) -> K1, a(x) = 2(x — (p(z)), where 
x = 2 $(z)/z. We have a(0) = 0, 

'w - (2 - ̂ y - o**»«) (I? *® df)_1 > ° 
and lim a'(x) = 0. Moreover, (x(x)jx < 1 for every x > 0. Put 

JC-*0 + 

r( \ r° ^ 
J* «(£) 

We see that G is increasing, lim G(x) = — oo and lim log xJG(x) = lim a(x)jx = 0. 
We have x~*0+ *"*0+ * - ° + 

G(Fn) - G(Fn+1) = - - F"Fn+1 «(Fn) 

<Fn+1 + dn(Fn - Fn+1)) a(Fn+1 + 0n(Fn - Fn+.)) 

for some 6n e [0, 1], hence 

i<r(F\ r(p \ < -iEA «(FJ 
1 < G(F„) - G(Fn+1) < - — —— . 

a(E n + 1 ) a(E„ - a(E„)) 
We immediately obtain G(Fn) ^ — n, hence F„ ^ G_ 1(—n) -* 0 (and therefore 

z„ -* 0) as n -» +oo. Further, 
a(x - a(x)) _ 

lim-i Ґ «'(č)dČ = 
*-0+ «WJ»-ф) 

a(x) 
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and consequently 

(2.4) Fn = G - 1(-a0 / i ) for some a0 > 1 . 

Let us estimate the difference t„+1 — tn. We have 

t t = r+i dz— -Zn+i r da 
n+± n Jo J(Fnz~2<P(z)) V ^ J o V M v ^ ^ ^ 

On the other hand, the relation 
a <P(z) - <P(az) = a f | q>'(tj) dt] d£ 

Jo Jat 
implies 

i <p'(z) z2a(l ~a)^a *(z) - * ( « ) ^ \ <p'(0+) z2a(l - a) . 

This yields 

(2-5) - T T ^ T T ^ < » - - <» = 
V(y(o+)r " = V(^n+1))' 

and (2.2) (i) is proved. 
Let us now choose t e (t„, tn+t), n = 1. We have w'2(t) = 4(F„ z(t) - 2 #(z(f))) and 

W ( f = ft^^(f, where z(t) = i(-l)» (K„ - u(t)). We obtain 
|w'(r)| + \F(u)(t)\ = ClFn S c2Fn+1 (notice that 

\[mlz±l = l and t^ tn+l ^ n(n + *) ) , 
n"+°° *» vV( z i ) 

hence 

KOI + |Jt«) (01 = c2 G - » ( - vMfi) A 

On the other hand, 

2 z(ř) 

= Ғ 2 - 2(2 - e) Ғ„ ę(z) + 4 <p2(z) - 4є ę(z) Ф(z) 

Substituting <P(z) ^ xz <p(z) for z e [0, z j , where % = (1 - <p'(z^)j2 <p'(0+)) < 1, 
we obtain 

(F(u) (t))2 + is <p'(0+) (u'(t))2 ^ F2 - 2(2 - e) Fn <p(z) + 4(1 - *,) <p2(z) ^ 

^ c3FB

2 

provided e < 4(1 - %). Therefore (cf. (2.4), (2.5)). 

\F(u) (0| + K(0| ^ c4G-> ( - W ^ P + ) \ 
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Weput 

Indeed, 

,(o = oG-i l- ^M^±),), m = ̂  (- 4&à <) 

r-+oo t a0 X/V(0+) *->o + G(x) 

and the proof is complete. 

(2.6) Examples, (i) Let us assume that for every K > 0 and for almost all x e (0, K] 
we have 

r(K) xq
 = x(x) = y(K) xp 

for some p = q > — 1, where y = 0 does not vanish identically. We obtain 

Clr^+q
 = \uf(t)\ + |F(tt)(r)| _ c2r^+*> 

(cf. [4] for p = q = 0). 

(ii) Theorem (2.2) does not imply u(t) -> 0 for t -> + oo. Let, for example, $(x) = 
= cx1+a for x = x0, a e (0, 1). For sufficiently large K we have F0 = c(l + a) Ka, 
zx = (a + l/2)1/aK. By induction we obtain zw+1 = a1/az„ until zn+l < x0. We have 

2N 

U^ = limw(t) = K + 2 £ (—l)nzw. The sequence {zn} is decreasing, hence the 
t-Kx> n=l 

inequalities 
2N 

0^K + 2X(-l)"z„-Uoo = 2z2N 
/ I - = l 

hold for all N > 0. 
Put 

^ i - ( « ± i Y * _ _ _ > 0 . 
V 2 J 1 + a1/x 

For e e (0, 1) we find N > 0 such that 

B T ( T S - ) ° — 
Choose K such that z2N = x0. Then we have A(l + s) > (UjK) > A(l - e). 
Therefore lim (U^JK) = A. Notice that in general cases the problem of determina-

K-*oo 

tion of Uoo remains open, 

(iii) In the last example the energy (2.3) of the solution of (2.1) does not tend 
to zero as t -+ +00. By (1.19) we have E^ = lim Ex(t) = Kcp(K) - <P(K) -

00 ( -+00 

~" T,zn+i(F„ — Fn+1). A computation analogous to (ii) yields 
n = 0 

E„ lim 
K-*oo cK i+« V 2 1 1 - cc1 + 1/« 
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(notice that for f(x) - x1 + 1 / a we háve [f(x) - /(y)]/(* - y) > / ' [ (* + y)/2] 
provided x 4= y). This shows that the initial mechanical energy is not completely 
dissipated. The quantity E„ corresponds to the inaccessible remainder of the potential 
energy. 
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S o u h r n 

O IŠLINSKÉHO MODELU PRO NE ZCELA PRUŽNÁ TĚLESA 

PAVEL KREJČÍ 

Hlavním obsahem práce je formulace některých nových vlastností hysterezního operátoru 
Išlinského, který vyjadřuje např. vztah mezi deformací a napětím v ne zcela pružném (pružně 
plastickém) materiálu. Jsou zde definovány dva funkcionály energie a odvozeny energetické 
nerovnosti. Jako příklad je zkoumána rovnice u" + F(w) = 0, která popisuje volné kmity hmot­
ného bodu na pružně plastické pružině. 

Pe3K>Me 

o MOAEJIH HnuiHHCKoro fljiii HE BnojiHE ynpyrHX TEJI 

PAVEL KREJČÍ 

rjiaBHOH nejibio pa6oTBi HBJuieTCfl ýopMyjiHpoBKa HeKOTOptix HOBBIX CBOEÍCTB rHCTepe3HCHoro 
onepaTOpa HnuiHHCKoro F, KOTOPBIH BBipaacaeT Hanp. cooTHomenHe Meayry flecfropMaimeň H 
HanpJDKemieM B He Bnojme ynpyroM (ynpyro-njiacTHHecKOM) MaTepnajie. BBOAJITCH JXBSL ^ymcuHOHa-
na 3HeprHH H AOKa3BiBaK>TCfl 3HepreTHHecKHe HepaBeHCTBa. B KanecTBe npHMepa nccjie^yeTCH 
ypaBHeHHe ď + F(u) — 0, onncbiBaroniee flBH5KeHHe MaccoBOH TO^KH Ha ynpyro-nnacra-ieCKOH 
npyacHHe. 
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