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DOMAIN OPTIMIZATION IN AXISYMMETRIC ELLIPTIC 
BOUNDARY VALUE PROBLEMS BY FINITE ELEMENTS 

IVAN HLAVACEK 

(Received March 4, 1987) 

Summary. An axisymmetric second order elliptic problem with mixed boundary conditions 
is considered. A part of the boundary has to be found so as to minimize one of four types of cost 
functionals. The existence of an optimal boundary is proven and a convergence analysis for piece-
wise linear approximate solutions presented, using weighted Sobolev spaces. 

Keywords: domain optimization, finite elements, elliptic problems. 
AMS Subject class: 65N99, 65N30, 49A22. 

INTRODUCTION 

One often meets elliptic boundary value problems in three-dimensional domains Q, 
which are generated by the rotation of a bounded plane domain D around an axis. 
Then the most suitable approach is to use the cylindrical coordinates. If the data 
of the problem are axially symmetric, the problem is reduced to the two-dimensional 
domain D (see [2] for a detailed finite element analysis). 

Let a part F of the boundary 3D be optimized. We arrive at a generalization 
of a two-dimensional domain optimization problem, which has been analyzed 
thoroughly by Begis and Glowinski in [1], In the axisymmetric problem, however, 
we are forced to employ weighted Sobolev spaces, where the radial coordinate 
plays the role of the weight. 

Section 1 contains some results valid for the whole family {W^(D(a))}, a e Uad, 
of the weighted spaces under consideration. In Section 2 we formulate the state 
problem and prove the continuous dependence of its solution on the design variable. 
Section 3 contains the definitions of four domain optimization problems and the 
proof of existence of optimal solutions. Approximate problems are proposed in 
Section 4 and a convergence proof is presented for three types of the cost functionals. 
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1. SOME PRELIMINARY RESULTS 

Let Q cz R3 be a bounded domain with Lipschitz boundary 8Q, axially symmetric 
with respect to the x3-axis, if x = (xl9 x2, x3) denote the Cartesian coordinates. 
Let Hk(Q) denote the standard Sobolev space W{k)t2(Q), k = 1, 2, . . . , with the usual 
norm fl'||fc,.Q. Passing to the cylindrical coordinates r, z, 9, for any function 
u(xu x2, x3) we define 
(1) u(r, z, 9) = u(r cos 9, r sin 9, z) . 

If x e Q, then (r, z)eD, 9e [0,2n) and by (l) a mapping Z: Jff̂ Q) -> ZHX(D x 
x [0, 2n)) is defined. Introducing the norm in ZH1 

*-Ш*+©" 
- 2 / 3 Ó \ rt\2 

+ r - — + — 
ЗSj 

ди' 
ðz 

r dr áz d9 
1/2 

for u = Zw we obtain 

(2) U«lli = llMlli.«-

Let W0 be the subspace of axisymmetric functions, i.e. 

W0 = \ueZH\D x [0,2TJ))|— = 0 a.e. 

It is easy to see that Z is an isomorphism and W0 is closed in ZHl. Moreover, 
we have 

(3) (-*)"1 IMIÍ = Ü-
dů\2 (du\ 

• w + w J r dr dz Vй є W0 , 

The square-root of the integral in the right-hand side represents a norm 

\l,r,D 

in the weighted Sobolev space W2\l(D) (see e.g. [3]). Consequently, the subspace W0 

can be identified with the space JV^(D). 
In the optimization process we shall consider a specific class of admissible domains 

D(a), where 

D(a) = {(r, z) | 0 < r < a(z), 0 < z < 1} 

and the function a(z) — the design variable — belongs to the following set of admis
sible functions 

L7ad = i a G Cm'x([0,1]) , (i.e. Lipschitz functions) , 

amin ^ a(z) ^ amax , |da/dz| rg Ct , f a2(z) dz = C2X 
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with given positive constants amin, amax, Cls C2. Assume that amin > amax/2. 
Let F(a) denote the graph of the function a, 

(see Ғig. 1). 

Гt = ôD(oì) n {z = 0} , Г2 = ôD(x) n {z = 1} 

Г7(a) 

Tfa) 
D(a) 

Fig. 1 

Next we present several properties of the spaces W(

2tl(D(a)), a e Uad. 
For any a e Uad the space W2

1

fl(D(a)) is a reflexive Banach space [4] and the set 
C°°(D(a)) is dense in it (see e.g. [3] - chapt. 6. § 2). 

Let 50(a) c i9;Q(a) be generated by the rotation of a curve segment r 0(a) c 3D(a) 
around the z-axis &, mes2 S0(a) > 0. Then the Trace Theorem [3] says that a linear 
mapping y: H1(Q(a)) -> L2(S0(a)) exists such that yu = u holds for smooth functions 
and 

(4) IML-(S 0(«)) ^ C(a) | i i | | l f f l ( a ) . 

Passing to the cylindrical coordinates, we obtain the existence of a linear mapping 

y; W2\l(D(a)) ~+ L2, r(r0(a)) , F0(a) cz dD(a) - 0 , 

such that yw = u for smooth functions and 

(5) |^lo.r.ro(«) = C(a)| |iJ| |1 ( r,D ( a ), 

where 

L2>r(r0(a)) = )v\ J t;2rds = Ho,r,r0(«) < +ooi . 
I J r0(a) J 

The constant C(a) in (5) is the same as that in (4), but it depends on the domain D(a) 
and on F0(a). Hence a question arises, if a "common" constant for all admissible 
variables exists. An answer is contained in the following 
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Lemma 1. There exists a positive constant C such that 

M k r . r l ( « ) u r < « ) = C H l , r , D ( a ) 

holds for all a e Uad and u e PV^r(D(a)). 

Proof. Let D0 = (0, 1) x (0, 1) be the unit square. 

The mapping (r, z) -» (£l9 Zz), defined through the relations 

i t = r/a(z) , £2 = z 

maps the domain D(a) onto D0. It is readily seen that for the functions 

Ktu ti) = «(fi«fe)» t2) 
the following estimate holds 

(6) f (| V* | 2 + u2) Zt dt; S C0[|u | |2,r,p(a) Va e Uad , 
JJDO 

\ 
where C0 depends on amin5 amax and Cl9 but not on a. We may write 

(7) f u2r ds = f u2r dr + [ u2 a(z) (1 + (a') 2) 1 / 2 dz ^ 
JTiuT(a) JTj Jo 

= «Lc f (^i)) 2 «i « , + (1 + C2)1/2 amax fff*(l, «2) d£2 ^ 
Jfi Jo 

^ C4 u2^ ds , C4 = C4(amax, d ) , 
J To 

where Fj and F0 denotes the corresponding image of Ft and F0 = Fx u F(a), 
respectively. Combining (7), (6) and the inequality (5), applied to the square D0, 
we obtain 

I u2r ås ^ CAC
2CĄu\\lr>DW Q.E.D. 

/TO 

Lemma 2. The set 

M(D(a)) = {u e C°°(C1 (D(a)))| supp u n F2(a) = 0} 

is dense in the subspace 

V(D(oc)) = {ve Wi\l(D(<x)) | ye = 0 on T2(a)} 

for any positive a e C ( 0 ) , 1([0, 1]). 
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Proof. Let ue V(D(a)) and denote u = Z~xu. By the above mentioned density 
a sequence {wk}, k -> oo, exists such that wke C°°(C1 (D(a))) and 

||Wfc - И||l,r,D(a) 0. (8) 
From (2), (3) 

(9) \Z~Hk - u | | l t f l ( a ) - > 0 

follows. It is well-known (see e.g. [3]), that a sequence {wrt}, n -> oo, «„ e 
e C°°(C1 (Q(a))), exists such that 

supp w,, n S2(a) = 0, 

(io) k - Hk<-(«)-»o > 
(where S2(a) is generated by rotation of F2(a)). 

Let us define un — Zun and 

6D/l(r,z) = (27i)-1f \ ( r , z , S ) d 3 . 

We can see that 
supp ©„ n F2(a) = 0 , con e C°°(C1 (D(a))) . 

Moreover, we may write 

K ( r , z) - ftk(r, z)| 2 = (2*)" 2 jT*(«„(r, z, 5) - ^ ( r , z)) d s j ^ 

^(27r)-1p(«n-^)2d9, 
Jo 

ÕГ ^-f(f 2я /я.i gA \2 
^ M dð 
дr 

and a similar estimate for d(con — wn)jdz. 
Consequently, we have for n -> oo, fc -• oo 

( Ц ) K - ^||2,r,D(a) = 

= fdz r\(con - Ví>,)2 + | V K - wk)\
2] r dr ^ 

Jo Jo 

*dz [ " ' V ) " 1 \2\(u„ - \f + \S7(ún - M>k)|
2] dSrárS 

o J o Jo 

<; (2TI)-1 ||«„ - * 4 2 = (2*)--1|«. - Z-HI1Í.3C) -> o, 

since 

!«. - Z_1**Birf»w -* IK - "BLOW + II" - z _ 1 ^i i .«w "• ° 

on the basis of (10), (9). 
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Combining (11) and (8), we derive finally 

| K ~ tf||l,r,D(«) = | K - #*||l,r,D(a) + I** "" flI-.r,.D<«) "^ 0 . 

Since G>rt e M(D(a)), the lemma is proved. 

Lemma 3. There exists a positive constant C3 such that 

f \Vu\2rdrdz^C3\\u\\2
trtD(a) 

JD(ac) 

holds for all u e V(D(a)) and a e Uad. 

Proof. Let us introduce a constant 5 e (amax, 2amin) and the rectang[e 

D = (0,8) x ( 0 , l ) . 

We shall construct an extension Eu e W^r(3) of the function u e V(D(oc)) as follows: 

(12) Eu(r, z) = u(2 a(z) - r, z) on 6 - D(a) 

and Eu = u on D(a). Then we have obviously y(Eu) = 0 on z = 1 and we can prove 
that 

(13) f |Xj(Eu)\2 r dr dz g C ! | V«|2 r dr dz , 

J £> J D(a) 

(13') IN|i,M> ^ Clluld,^) 

where the constants C, C are independent of a. To this end, one employs the estimate 
\XJEu(r, z)\2 S(2 + 4(a02) | V«(2a(z) - r, z)\2 

for (r. z)eB - D(a). 
Then we prove by a standard way, that 

(Fu)2 r dr dz S f (—") r dr dz Vw e V(D(a)) . 

(First we verify this for un e M(D) and then pass to the limit on the basis of Lemma 2.) 
Therefore we have 

J (Eu)2 r dr dz g f |SJEu\2 r dr dz 

and from (13) 

(14) 

u2r dr dz ^ (Eu)2 r dr dz S \ \VEu\2 r dr dz ^ C |V«|2 r dr dz 

JD(a) JD JO JD(«0 
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follows. The assertion of the lemma is an immediate consequence of (14), with C3 = 
= (1 + C)-1. Q.E.D. 

Lemma 4. The embedding 

Wi^QL^D) 
is compact. 

Proof. Let M be a bounded subset of W2
l]{D). Since 

W Z - ' u l l ^ ||u||2 =-24u\\2
UrtD, 

the set Z~XM is bounded in H\d). 
Rellich's Theorem ([3]) implies that Z~XM is precompact in l}(Q). 
Let Z~xun -> co in L2(JQ). We also have 

llZ'^flo.O = 2 |̂|«||o,r,D 
and therefore 

||Z-1w„ - Z~Hm\o,Q -> o => 1^ - um||o,r,D -• 0 

(for n -> co, m -> oo). Since the space L2>I,(D) is complete, the sequence {w,.} is 
convergent in L2jl.(#). Consequently, the set M is precompact in L2>r(D). 

2. THE STATE PROBLEM AND THE CONTINUOUS DEPENDENCE 
OF ITS SOLUTION ON THE DESIGN VARIABLE 

We shall consider the following boundary value problem 

(15) -1±(A{X)£\-*P in Q(a), 

3 flu 

(16) I M i — = G on S 1 (a)uS(a) , 
i = l OX; 

(17) u = 0 on S2(a), 

where .Q(a) is generated by rotation of D(a) around the x3-axis, S^a) by rotation 
of Ff(a), i = 1, 2 and S(a) by rotation of F(a), (see Fig. 1), v̂  are components of 
the unit outward normal with respect to dQ(a). 

Let Ci be the cylindrical domain generated by rotation of the rectangle B = (0, 5) x 
x (0, 1), 5 > amax. 

Assume that the function F in (15) is determined as the restriction to Q(<x) of an 
axisymmetric function F e 13(d), 

/ 0 on S(a), 
\GX on ^ ( a ) , 
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where Gx is determined as the restriction to Sx(a) of an axisymmetric function 
G1 e L2(£i), §x = d& n {x | x3 = 0}. 

Assume that the coefficients Af are restrictions to Q(<x) of axisymmetric functions 
At e L°°(JQ), Ax = A2 a.e. and a positive constant a0 exists such that 

At(x) = a0 a.e. in Q. 

Let us denote A± = A2 = ar, A3 = az. 
Passing to the cylindrical coordinate system, we transform the standard variational 

formulation of the problem (15), (16), (17) to the following state problem: 

find y e V(D(a) such that 

(18) a(a; y, v) = L(a; v) Vv e V(D(a)), 

where 

a(a; y, v) = a r — - + az~- — \rdrdz, 
JD ( a) \ 8r dr dz dzj 

L(a; v) = fvr dr dz + gyvr ds , 
JD(oc) JTi(a) 

ft 

where the function feL2r(D) and aeL2,r(Fi)> Fi = dD n {z = 0}, are given. 
Finally, a„ az e L°°(D), 

(19) ar(r, z) = a0, az(r, z) ^ a0 a.e. in D . 

R e m a r k 1. The variational formulation (18) corresponds with the following 
"classical" one: 

r or \ or J dz \ dz J 

dy dy /0 on F(a) 
vrar — + vzaz— = x y 

dr dz \ g on Fi(a), 
j ; = 0 on F2(a) . 

Lemma 5. Positive constants C4, C5 exist such that the inequalities 

(20) a(a; u, u) ^ C4[|t/||
2,r,I>(a) Vu e V(D(a)) , 

(21) |a(a; u, v)| ^ C5Hi,r.D(«) |JHkr,D(a) Vu, v e PV#(D(a)) 

hold for any a e Uad. 

Proof . Using (19) and Lemma 3, we obtain 

a(a; u, u) ^ a0 |Vw|2 r dr dz = C3a0\u\\2
frMa). 

JD(a) 
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By virtue of the boundedness of ar, az, we may write 

a(a;u9v) ^ C5 |Vw| \\/v\rdrdz ^ C5||w|k 
jD(a) 

where C5 = max {l|flr||oo,0, KI|OO,D} • 

Lemma 6. A positive constant C6 exists such that 

\L(u; u)\ S c6||«l1(r,D(a) Vu G JF(
2!r(D(a)) 

holds for any a e Uad. 

Proof. Using Lemma 1, we may write 

r,D(«) |r| | l .r,D(a) > 

í в 

JT i(a) 

|L(a; u)\ = \\ fur dr dz + \ gyur dr 

IJ D(a) 

á | / f lo ,r ,D ||"||o,r,D(«) + |k | |o ,r .r i (a) M k r . r . M = 

á ( | | / | o , r > 6 + c|k||o>r.,r1)||«||l,r>D(a). 

Lemma 7. The state problem (18) has a unique solution y = y(oi)for any a e Uad. 

Proof — follows from the Riesz Theorem, since the space V(D(a)) can be equipped 
with the inner product a(a; w, v), on the basis of Lemma 5. Moreover, we employ 
Lemma 6 to show the continuity of the right-hand side in (18). Q.EJD. 

Proposition 1. Assume that a sequence {art}^°=1, ccn e Uad, converges to a function a 
in C([0, 1)]. Let us construct extensions E y(an) e W^KP) of the solutions y(ccn) 
of the state problem (18) by means of the formula (12). 

Then 

(22) Ey(an)\D{o[)-y(a) (weakly) in H^>(D(a)), 

where y(a) is the solution of the state problem (18) on D(ct). 

Proof. Let us denote j;(a„) = y„ D(a„) = D„, D(a) = D. Using Lemmas 5 and 6, 
we may write 

Q||y«||i,r,Dn ^ ci(an; yn, yn) = L(a„; yn) g C6\\yn\\UrfDn . 

Consequently, we have 

(23) lklkr,D„ S c6/c4 V«. 

On the basis of the relation (13') 

(24) |£3'B||i>.,fl ^ cWk..D„ g c7 

holds. Since W^>r(/J) is reflexive Banach space, there exist a subsequence {yk} c {yn} 
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and y e W^Jlfi) such that 

(25) Eyk-*y (weakly) in W$#p). 

Let us show that y\D solves the state problem (18). It is easy to verify that the limit 
function a e Uad. Let v e V(D) be arbitrary and let us construct Ev e W{

2tl(S). 
Obviously, Ev e V(3), so that the restriction 

Ev\DneV(Dn) Vn, 

since the trace y(Ev) vanishes on r2(an). Consequently, we may insert Ev into the 
definition (18) to obtain 

(26) a(ak; yk, Ev) = L(ak; Ev) . 

Let us pass to the limit with k -> co on both sides of (26). We have 

\a(a; yk, Ev) - a(a; y, v)\ = \a(ak; yk, Ev) - a(a; Eyk, Ev)\ + 

+ \a(a; Eyk, Ev) - a(a; y, v)\ = Ik + Jk, 

'I. 
% 

dEyk dEv dEyk dEv\ , J ^ 
ar — + az —— ráráz = 

dr dr dz dz 

where 

Since 

A(DK,D) I 

^ C\\VEyk\\0ir,Ď \\VEv\\0>r,MDkíD), 

A(Dk, D) = (Dk - D) u (D - Dk). 

\immes(/\(Dk,D)) =0 
and 

\VEyk\\Q$rtD= \\Eyk\\ltrtD=C7, 

we conclude that Ik -> 0 for k -> co. 
By virtue of Lemma 5 the functional 

u -» a(a; u, v) 

is linear and continuous on W^(D). Consequently, 

•4-0 
follows from the weak convergence (25). Thus we arrive at the conclusion 

(27) lim a(ak; yk, Ev) = a(a; y, v). 
&-*oo 
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We may write 

+ |L(afe; Ev) - L(a; i>)| = \\ gEvr ds - gEvr ds 
IJri(ak) JTi(a) 

+ fEvr dr dz - fEvr dr dz\ = Mk + Nk , 
IJDk JD I 

Mk = f \gEv\ r dr g Ha||0>r,fl ||2-t>||0,,,A - O , 
J AKrt(ak),ri(a)) 

since 
(28') lim mes ( A ^ a , ) , F^a))) = O . 

k-+co 

Moreover, it holds 

Nfc = \ \fEv\ r dr dz -> 0 . 
J A(I>fc,D) 

Altogether, we have 
(28) lim L(ak; Ev) = L(a; v) . 

k-*co 

Passing to the limit in (26) and using (27), (28), we arrive at the condition (18). 
It is not difficult to verify that the subspace V(D) is weakly closed in W2\l(£)). 

Since every function Eyn e V(3), the weak limit y e V(D) and its restriction y|De 
e V(D). Hence y|D is a solution of (18). 

Since the solution of (18) is unique and (25) implies that 

£yfc|D-*y|D (weakly) in w£l(D), 

the latter convergence holds for the whole sequence {FyM|D}- Q.E.D. 

3. DOMAIN OPTIMIZATION PROBLEMS AND THE EXISTENCE 
OF OPTIMAL SOLUTION 

We shall consider the following four types of the cost functional: 

Ji(a, y) = (y ~ yd)
2 rdrdz, 

JD(a) 

f1 

h(^ y) = (yW^ -0 - yv)
2 dz > 

where y(a(z), z) = yy denotes the trace of y on the curve F(a), yd e L2r(jD) and yy e 
e L2([0, 1]) are given functions, 

I3(a, y) = a(a; y, y) , 
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where Kt e L2,r(D) are given functions, i = 1, 2. 
We define the Domain Optimization Problems: 

find a0 e Uad such that 

(29i) ji(a°,y(a°))=ji(a,y(a)) VaGUad, z e { l , 2 , 3 , 4 } , 

where y(a) denotes the solution of the state problem (18). 
To the proof of existence of an optimal a0 we shall need the following 

Proposition 2. Let the assumptions of Proposition 1 be satisfied. Then 

limji(an, y(an) = jt(a, y(a)) , i = 1,2,3, 
n->oo 

lim inf j4(aB, y(an)) = j4(a, y(a)) . 

Proof. Case i = 1. Denoting again y(a„) = y„, y(a) = y, D(a„) = Dn, D(a) = D, 
we conclude on the basis of Proposition 1 and Lemma 4 that 

(30) Eyn\D-yy in L2, r(p). 

We may write 

f [(£y„ - yd)2 - (y - J^a)2] r dr dz = f (Ey, - y) (Eyn + y - 2yd) rdrdz^ 

^ \\Ey„ - yfl0>r>Df Ey„ + y - 2ydf l0 > r ,D . 

By virtue of (30), however, we obtain for n -* oo 

\Ey„ - y[|0,,,D -> 0 , \\Ey„ + y - 2yd||0,r,D S C • 

Consequently, 

(31) f (Ey„ - yd)
2 r dr dz -* f (y - yd)2 r dr dz . 

It is easy to see that 

(32) f (y„ - yd)
2 r dr dz = | (£y„ - yd)2 r dr dz + 

[ (£y„ - y*)2 r dr dz - j (£y„ - yd)2 r dr dz . 
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Let us estimate the last two terms as follows: 

(33) 
JD„-D J 

r2 dr dz 

f - f ^ f (Ev„-yd)
2rdrdz^ 

JD„-D JD-D„ J A(Dn,D) 

g ( | r 2 d r d z V / 2 ( f (Ey,-yd)
Adrdzy , 

VJ A(B„,D) / VJflo / 

where D0 = D - (0, amin/2) x (0, 1). 

Since the restriction Eyn[bo e Hl(£>0) and the embedding of H ^ o ) i n t o ^(^o) i s 

continuous, we may write 

||Ey„ - J\i||i.«(flo) S C\\Eyn - yd\\i,f>o = 

g C ( 2 / a m i n y / 2 | | £ 3 ; „ - j a | 1 ) r ) 0 g c - , 

where also (24) has been used. 
Since 

(34) mes (Д(Д„ D)) -> 0 , 

the right-hand side of (33) tends to zero. Combining this result with (31) and (32), 

the assertion of the Proposition follows. 

Case i = 2. Denoting am(z) = a(z) - l/m, m = 2, 3, . . . , we may write for n 

sufficiently great with respect to m: 

(35) j 2 (a n , yn) - j 2 (a , y) = Mx + M 2 + M 3 , 

Mt = [ (yw(an(z)) - > V ) 2 dz - f (yn(am(z)) - yyfdz , 
Jo Jo 

f1 r1 

M 2 = (y„(am(z)) - yy)
2 dz - (y(am(z)) - yy)

2 dz , 
Jo Jo 

M 3 = [\y(am(z)) - yy)
2 dz - \\y(a(z)) - yy)

2 dz 
Jo Jo 

and estimate the individual terms. 

It is readily seen that 

|Af i | ^ J |y„(an) - yn(am)| |j;n(an) + yn(am) - 2yy\ dz ^ 

^ ||y„(a„) - y„(am)||0 ||yn(a„) + yn(am) - 2yy\0 , 

where | |* | | 0 denotes the norm in L2([0, 1]). Furthermore, 

(36) | M a „ ) - >>„(«m)l|o = f d z ( p df drY = 

Jo VJ.m(z) dr J 
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< f dztø, + 1/m) Г ( ^ " Y dr < (ß„ + 1/m) ||Л,||2,D„„ 

where 
ßn = max |aи(z) - a(z)| , 

S€[0,1] 

D„° = DB - (0, amin/2) x (0, 1), 

(considering only m such that a(z) — \\m ^ amin/2). 
By virtue of (23) 

(37) I W I l w ^ (2/amin)||3;w||2>rtl)n ^ C . 

For sufficiently great n, m, n > n0(m), we derive 

(38) \\yn(an) + yn{am) - 2yJ2 ^ 3 f (y2(a„) + y2(am) + 4y2) dz ^ C . 

In fact, Lemma 1 and (23) yield that 

(39) \ y2„(ccn)dzs\ (yy„)2dsS 
Jo J r(«„) 

= lb»lo,r.r(«„) • (2/amin) < C(2/amin)||yn|
2
>r,D„ <= C • 

Using (39), (36) and (37), we obtain 

f1 f1 f1 

yl(am) dz < 2 y2(an) dz + 2 (>>n(am) - j;n(a,,))2 dz < C . 
Jo Jo Jo 

Combining (36), (37) and (38), we arrive at the estimate 

(40) |M ) |<C( J 5 n + 1/m)"2. 

In a similar way we derive 

(41) \M2\ S ||y„(0 - y(O||0 ||ywW + y(0 - 2yJ0 . 

It holds, however, that 

(42) \\yn - y||o,r(«m) = (y»W - y«))2 ds -+ 0 for n 
J T(am) 

In fact, the mapping 

T.H\Gl)^L\dGm), 
where 

G°m = Gm - (0, amin/2) x (0, 1) 

and 

Gm = {(r, z) | 0 < r < am(z), 0 < z < 1} , 
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ds = | k - y\\2o T(<xm) 

is completely continuous ([3] — chapt. 2, § 6.2). The weak convergence (22) of {Eyn} 
implies that 

yn^y (weakly) in Hl(G§, 

since Hi(Gm) = W2\l(Gm) and the norms are equivalent. Consequently, yn -> y 
in L2(F(aw)) follows,'i.e. (42) holds. 

Thus we obtain that 

(43) \\yn(am) - y(am)\\2
0 = f (yw(aw) - j(aw))2 

J E(«m) 

for n —> oo. 
Using (43), it is easy to see that 

(44) ||y„(aw) + y(am) - 2yy§0 = 

= I W O - y(am)||0 + 2||y(aw) - yy\\0 = C 

for any fixed m and sufficiently great n. 
Substituting (43), (44) into (41), we are led to the conclusion that 

(45) M 2 -» 0 for n -> oo and any fixed m . 

Finally, we may write 

(46) |M3 | = ||y(aw) - y(a)||0 ||y(aw) + y(a) - 2yy\\0 , 

||y(aw) - y(a)\\2
0 = C(y(am) - y(a)f dz = 

Jo 

J o \ J « m ( z ) ^ ^ / ™Jo Jam\drJ 

£m-^y\\lJp£Cm-1ly\\lffD-+0 

for m -> oo (here D° = D -=- (0, amin/2) x (0, 1)). 
Moreover, 

||y-(aw) + y(a) - 2j;y | |0 ^ ||y(aw) - y(a)||0 + 2||j;(a) - yy\\0 = C 

follows easily. Substituting into (46), we obtain 

(47) M 3 -> 0 for m - > o o . 

It suffices to combine (34), (40), (45) and (47) to arrive at 

limj2(an,yn) = j2(a, y) . 
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Case i = 3. By virtue of the definition (18) we have 

jf3(a, y) = a(cc; y, y) = L(a; y) , 

h(*n> y„) = «(a„; y„, y„) - I-K; y„) • 

Consequently, we may write 

h(un, yn) ~ j3(a, y) = Ki + K2 , 

K! = L(a„; yn) - L(a; Eyn) , 

K2 = L(a; EyH - y) . 

where 

Let us estimate 

K Ы fEynráráz + fynr âr áz — fEynr ár áz gynr ár 
' T i ( a п ) 

gEynr ár 
J T l ( « ) 

< 

\fEyn\rdrdz + I^EyJ r dr = K1X + K12 . 

A(Dn,D) J A(Ti(an),Ti(a)) 

We obviously have 

^ 1 1 = | | / | |o , r ,A(Dn,D) | | £ yn | |o , r ,D "* 0 

on the basis of (24), (34) and 

K12 = p | |o , r ,A(r i (a„) , r i (a ) ) | p y » | | o , r , f x ""* 0 

on the basis of (28'), (24) and (5) (which can be applied to a(z) = (5, as well), since 

l-O'Jo.r.f, ^ C\\Eyn\\Ur>0 ^ € . 

Altogether, 

limK! -= 0. 
n~> oo 

By virtue of Lemma 6 the functional u —> L(a; u) is continuous on J V ^ D ) . 
Consequently, the weak convergence (22) implies that 

lim K2 = 0 . 
n->oo 

Combining these two results we are led to the assertion to be proved. 
Case i = 4. We have 

;4(a„, y„) > j (ar ^ - KX + (az ^ - K2J~\ r dr dz 

for any n, m such that Gm c Dn. The functional on the right-hand side is weakly 

lower semi-continuous on JV2lr(Gm) (being convex and Gateaux-differentiable). 
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The restrictions yn\Gm converge to y\G weakly in the space W(
2^(GW), as follows 

from (22). Consequently, we have for any m 

lim inf hK y.) = í (ar ~ - K,) + (az §? - K 

J G , „ V dr J \ dz 

2~I 

r ár áz . 

Passing to the limit with m —> oo, we obtain the assertion 

lim inf j4(a„, yn) ^ j4(a, y). Q.E.D. 
n-> oo 

Now we are able to prove the main result of the Section 3. 

Theorem 1. There exists at least one solution of the Domain Optimization Problem 

(29/)- ie {1,2, 3,4}. 

Proof. Let {a„}, art e Uad, be a minimizing sequence of j,(a, y(a)), where ie 

e { l , 2, 3,4}, i.e. 

(48) Hmjf(a„, y(a„)) = inf;4(a, y(a)) . 
n->oo aeUad 

By means of Arzela-Ascoli Theorem we show that the set Uad is compact in 
C([0, 1]). Hence there exist a subsequence {ak} and a0 e Uad such that 

ak --> a0 in C([0, 1]) . 

Then Proposition 2 and (48) imply that 

j;(a°, y(a0)) ^ lim infj^a^, y(ak)) = inf j ,(a, y(a)) . 
k~> co aeL/ad 

Consequently, at a0 a minimum is attained. Q.E.D. 

4. APPROXIMATIONS BY FINITE ELEMENT METHOD 

In the present Section we propose an approximate solution of the domain optimiza
tion problem, making use of piecewise linear design variable and linear triangular 
finite elements for solving the state problem. 

Let N be a positive integer and h = l/N. We denote by Aj, j = 1,2, ,..,N, 
the subintervals [(j — 1) h9jh] and introduce the set 

t/*.d = {^eU^.a^GP^Aj)^}. 

where Pt(Aj) is the set of linear functions defined on A/- Let Dh = D(och) denote the 
domain bounded by the graph Fh = F(a^) of the function ah e Uad. The polygonal 
domain Dh will be carved into triangles by the following way. We choose a0 e (0, a) 

229 



and introduce a uniform triangulation of the rectangle 01 = [0, a 0 ] x [0, 1], in
dependent of ah, if /? is fixed. 

In the remaining part Dh — 0t let the nodal points divide the segments [a 0 , ah(jlij], 
j = 1, 2, ..., N, into M equal segments, where 

M = 1 + [ ( j 8 - a 0 ) N ] 

and the square brackets denote the integer part of the number inside. 

One can verify that the segments parallel with the r-axis are not longer than h 
and shorter than h(a — a0)/(/? — a 0 ). One also deduces the following estimate for 
the interior angles co of the triangles T: 

t g c D ^ ^ ^ a + Q + C?)-1. 
p - a0 

Consequently, one obtains a regular family {^(a f t )}, h -> 0, ah e Uld, of triangula-
tions, with 

max (diam T) ^ /i/sin cO0 , 
Te;Th(ah) 

co0 = arctg [« - Ч íy 
íß - «o 

The family is even strongly regular, i.e. the ratio of the maximal and minimal side 
in ^ / 2 is not greater than a constant, independent of h and ah. 

Let us consider the standard space Vh of linear finite elements 

Vh = {vh E C(Dh) n V(D,) | v/7|r e Pt(T) VTe ^h(ah)} . 

We define the approximate state problem: 

find yh = yh(ah) e Vh such that 

(49) a(ah; yh, vh) = Lh(ah; vh) Mvh e Vh. 

Here Lh(ah; vh) denotes a suitable approximation of the functional L(ah; vh), which 

satisfies the following conditions: 

positive constants C8, C9 and 3 exist such that 

(50) \Lh(ah; vh) - L(ah; vh)\ = C8h*\\vh\\UrfDh, 

(51) \Lh(ah;vh)\ = C9||t?A||lfr>Dh 

hold for any ah e U\d and any vh e Vh. 

Let us define 

(52) L/K; vh) = £ [frvh~\G(T) mes (T) + £ [ g r v , , ] ^ mes (/) , 
V T e y h ( a h ) / e ^ h ( a h ) n r ! ( a f l ) 
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where G(T) denotes the centre of gravity of the triangle Tand G(l) the midpoint of 
the interval I = Tn F^a^). 

Lemma 8. Let Lh(<xh; vh) be defined by the formula (52). Assume that f e Hl(D) n 
n C(L>), r2Dafe l}(D) for \<x\ = 2 and g is piecewise from C2. 

Then (50), (51) hold, with & = 1. 

Proof. If we denote the local error by 

ET(w) = w dx - w(G) mes T, Te <Th(ah) 

and fr = F, we may write 

(53) fv,, r drdz - X[frv,.]G(r) mes T = 
JD, r 

= \ZET(Fvh)\ = Z ( |F r (F^(G) ) | + |Fr(F(v„ - v»(G)))|) . 
T T 

Applying the affine mapping 

(r, z) = BTx + bT, x = (r, z ) , 

which transforms the reference unit triangle r with the vertices (0, 0), (1, 0), (0, 1) 
onto T, we easily deduce 

(54) |£TO)l ^ Ch2\E(w)\ , 

where w(x) = w(BTx + bT) , 

g(w) = (w - w(y)) dx 

and y is the centroid of the triangle x. Since 

|£(w)| £ C|w| |2 , t , 

% ) = 0 VpeP.Jr) , 

the Bramble-Hilbert Lemma yields [5] 

|£0)|gc|*|2.t. 

Using the estimate ([5] - pp. 118, 122) 

|w|2,T ^ Ch |w | 2 , r , 

we obtain 

(55) |Er(w)| ^ Cft3|w|2>r . 
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Moreover, by the strong regularity of the family {^h(uh)}, we have ([5], p. 142) 

(56) \vh(G)\ 5S \\vh\\C(T) ^ ch-'l^lo.r VTe ,r„(uh), 

so that 

(57) \ET(Fvh(G))\ = \ET(F)\ \vh(G)\ = Ch2 |F |2 , r | |v , | |0 , r 

follows from (55), (56). 
Using again (54), we derive 

(58) \ET(F(vh - vh(G)))\ 5£ Ch2\E(F(vh - vh(y)))\ = Ch2 

If we define 

F(vh - vh(y)) dJř 

^(P) = Һ(vh-vh(y))áîђ 

then 

^(p) = 0 VpePo(r), 

since vh is linear and 

\.^(F)\ S Cph - vh(y)\\0,\\F\\t, . 

From the Bramble-Hilbert Lemma 

\&(P)\ = C\\vh-vh(y)\\0,x\F\Ux 

follows. Since 

\vh- vh(y)\ = |V0*.(* - y)| = |Vfi*|, 

we have 

ph - fi*(?)||o,t = |8*|l,t 

and 

| # t F ) | = C\t)h\Ux\P\Ut = C\\F\\UT\\vh\\UT . 

Substituting into (58), we arrive at 

(59) \ET(F(vh - vh(G)))\ ^ C/i2 | |Fj |1 > r \\vh\\UT . 

Combining (57), (59), we see that the upper bound in (53) is 

(60) Ef=Ch2\\F\\2,Dh\\vh\\UDh. 

For any vh e Vh the following inequality holds 

(6i) h\\UDh^ch-^2\\vh\\UrtDh. 

To prove this, we consider the subset 5 r J 1 ) of triangles Te ^h(ah), such that 

TnO 4= 0 
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(where (9 is the z-axis). Let us use the mapping r = hxf, z = zT + h2, which trans
forms the "unit" triangle T onto Te 3T{

h
ly. On T we have ! 

(62) 

o? + iVu*|2 = P2 + c2 , pe P.(T) , c e P 0 (T), 

t T =[{p2 + c2) ár dz = h\h f (p2 + c2) dřdž , 1 - . П -

where j3(̂ , t) = p(hxr, zT + M). Since in the finite-dimensional space ^ ( T ) X 
x P0(T) all norms are equivalent, we have 

f (p2 + c2)drdz^ c[(p2 + c2)rdrd£. 

Substituting into (62) leads us to the following estimate 

(63) hh\\tT = Ch,h f (p2 + c2) rdrdz S 

= Ch'1 f (p2 + c2)rdrdz = Ch-^llr.T-
JT 

If Te #~h(ah) - 2T{
h\ then ht S r so that 1 ^ Ch_1r and 

(64) WVh\\l,T = (ü
2 + |VfA | 2)drdz^Ch- 1 | J y / 1 | 2

) r t r , 

Adding the results (63) and (64), we arrive at (61). 
Consequently, instead of (60) we may write 

(65) -V.SC*«»|F|aAMI(rA--. 
Next we have 

(66) gvhr dr - X! L> v]G(I) m e s l 

J Гi(oth)
 J 

= Z |£/(w)| 

where the local error is defined by the formula 

Er(w) = \ w dr — w(G) ht, h7 = mes I , 

It is easy to see that by means of the mapping 

r = rT + hj^ 

which maps the unit interval a onto I, we obtain 

Ej(w) = ! (w - 0(1/2)) A, dr = ft, £(0) , 

$(r) = w ( r j + / i / r) . 
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Since 
|.fi(*)| ^ C\ti\2,a , E(p) = 0 Vi»6P.(«7), 

the Bramble-Hilbert Lemma yields that 

|£(w)| = C|ft|2>, • 

Making use of the relation 

ML, = fc?Mi,, 
we obtain 

|E2(w)| ^ Cft|.fi(tf)| ^ Ch5/2|w|2,r VweH2(I) . 

If we insert w == grvh, then 

M L = \grvh\
2

2tI = C||alca M ? f l , 
where 

||a||c2 = max ||fl||C2(Si) 
i 

and Si cz Fx are subintervals, where g|s, e C2(St). 
Consequently, we obtain the following upper bound for the right-hand side in (66) 

(67) Eg^ £ h5/2Ia||c2 Ihlh,, rg Ch2||a||ca \\vh\uri(ah). 
JeT! 

Here we have also used the estimate Ch"1 for the number of subintervals I e rl. 
One can show that 

MkiM.) = ^"'ll^llo.r.rK^ 

by an argument similar to that of (61). Furthermore, we have 

ldt>„ 
ЫЪ = 

Һ 

àr 
h,£ht\vJ(l.I(mesŤ)-1£Ch-1\vh\l1 

since 

mes T ̂  Ch2 

holds by virtue of the strong regularity of {^ h((xh)}. Consequently, we may write 

\\M\lr1 = h\\lrl+Yh\lI^Ch-i\vh\ir,ri + 
JeTi 

+ Ch- 1 | | ! ;A | | lD h^Ch- 2 | |^ | | t ,D h , 

using again (61). Substituting into (67), we obtain 

(68) Eg^Ch\\gy\\vh\^Dh. 
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Finally, it is easy to combine (65) and (68) to get 

\Lh(och; vh) - L(cch; vh)\ <> Ef + Eg S 

Consequently, the condition (50) is satisfied with 9 = 1. 
Note that if fe H\D) and r2DjeL2(D) for |a| = 2, then fr e H2(D). 
To verify the condition (51), we employ Lemma 6 in the following estimate 

\Lh(cch; vh)\ ^ \L(cch; vh)\ + \Lh(och; vh) - L(cch; vh)\ ^ 

^ Q||^| |l ,r,Dh + C^\vh\UrtDh ^ C9|K||l,,,Dh. 

Lemma 9. The approximate state problem (49) has a unique solution for any 

Proof. Lemmas 5 and 8 guarantee that was can apply Riesz-Theorem in the space 
Vh with the inner product (u, v) = a(cth;u,v). 

Proposition 3. Let the assumptions of Lemma 8 be satisfied. Let {a,,}, h -> 0, 
be a sequence of ah e U

h
ad, converging to a in C([0, 1]). Let us construct extensions 

Eyh of the solutions yh(ah) of the approximate state problem (49) by means of the 
formula (12). 

Then 

(69) Eyh\B(x) - - y(a) {weakly) in W(
2!>0(«)) > 

where y(cc) is the solution of the state problem (18) on D(a). 

Proof. Let us define yh e Vh to be the solution of the following problem 

(70) a(ah; y*, vh) = L(a„; vh) Vv„ e Vh . 

Recall that yh e Vh satisfies the condition 

«(«*; y/i> Vh) = Lh(och; vh) Vvh e Vh. 

Subtracting, we obtain 

«(«*; y* - yh, Vh) = L ( ^ ; y/.) - ^(«*; vh) 

and inserting v„ : = y* — j ^ , we arrive at 

(71) C4||y* ~ y/»||l,r,Dh = fl(«*; y* ~ y/r y/t ~ y/.) = 

= L(cch; yt - yh) - Lh(cch; y* - j/,.) = C8h||y* - y„||i,r,Dh > 

using Lemma 5 and Lemma 8. 
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For the extensions we make use of (13') and (71) to obtain 

(72) \\Ey*h - £yA||!,,.*> § c\\yt - yh\\ur,Dh S Ch . 

From (70) it follows that 

c4yt\\t,Dh ^ L{ah;yt) ^ C9\\yt\\Ur,Dh, 

by virtue of Lemma 5 and Lemma 8. 
Consequently, 

(73) \\Eyi\\Ur9D ^ C||y*||ljr,Dh _ C 

follows and there exists a subsequence (we shall denote it by the same symbol) and 
y e W2\l(D) such that 

(74) Ey*-»y (weakly) in W2\l(D). 

Let v e V(D(a)) be given. Let us construct the extension Ev e V(D) by the formula 
(12). By virtue of Lemma 2, there exists a sequence {vx}, K -> 0, such that vx e 
e C°°(C1 (D)) supp vx n 12 = 0 and 

(75) \\vx - Ev\\Urtt>->0 for K - * 0 . 

Consider the Lagrange linear interpolate nhvx of vx\Dh over the triangulation 
ZTh(ah). Obviously, we have nhvx e Vh. Let K be fixed, for a time being. We can insert 
nhvx into (70) to obtain 

(76) a(ah; j ; * , nhvx) = L(ah; nhvx). 

We shall pases to the limit with h -» 0. Let again am = a(z) — 1/m, where m = 
= 2 , 3 , . . . , . 

Gm = {(r, z)\ 0 < r g am(z), 0 < z < 1} . 

Then 

Cm <= Dft 

for h < h0(m) and we may write 

(77) |a(aA; j * , 7r,.v„) - a(am; y, vx)\ = 

= W<*m; yt, vx) + a(ocm; y*9 nhvx - vx) + 

+ «(«* ~ ^ ; y*, %*>*) - a(am; y, vx) S 

_ !«(«*.; y* - y, Ol + K?m; y*> *w>* - Ol + 

+ K « A - aw; j * 5 T T ^ ) | , 

where 
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Consider a positive e. From (74) we conclude that the first term on the right-hand 
side of (77) is not greater than e/6 if h < hx(g, m). 

To estimate the second term, we employ the well-known inequality (see e.g. [5]) 

(78) \\nhvx - vx\UDh = Ch\\vx\2>Dh = Ch\vx\2tD. : • : 

Combining (73) and (78) we obtain 

(79) |a(am; y\, nhvx - vx)\ = C5\yt\Ur,Gm \\^hvx ~ ^Ji,r,Gm = 

= Ch\\vx\\2>D <sj6 for h <h2.
 l «•-

It remains to estimate the third term. To this end, we realize that 

l ^ x l i . r = C[|vx||2,r V1z 

holds for all triangles Te ^~h(ah)-
 ! 

Let Gm be the smallest union U of triangles Te ^h(ah) such that D̂  -̂ Gm cz U. 
Obviously, we have 

(80) mes Gm = 1/m + 2h + fla* - a j ^ , 

where |] • [[̂  denotes the norm in C([0, 1]). Consequently, 

M U - C m = [|^l|l,Gm, = _ l ^ l l . T ^ C2||Ux||2
2
)Gmh . ' 

TeGm
h 

Using again (73), we may write 

(81) \a(cch - ocm; y*9 %hvx)\ = C5\\y*\UrfDh \nhvx\\Ur}Dh_Gm = C[ox | |2f0^ . 

Combining (77), (79), (81), we deduce the following inequality 

Ka„; >'*, nhvx) - a(oc; y, vx)\ = 

= |a(a*5 y*> nflt?x) " fl(am; y> O l + |a(a - am; y, t>x)| = 

= s/3 + C|i?x||2fGwh + C5||j;||1>r(p||t7x||lfrfl)_Gm for h<h3(s,fny 

Making use of (80), we conclude that 

(82) lim a(och; j / * , nhvx) = a(oc;y, vx) . 

Next we may write 

\L(och; nhvk) - L(a; vx)\ = 

S \L(ah; nhvx - vx)\ + \l(ah; vx) - L(afi?x)| = &t + J ^ , 

1^1 = C6\\lthVx ^ Vx\\Ur,Dh g ChJt?x||2,D, 

| ^ i | k f H r d r d Z + f - , | ^ x | r d r 
J A(Dh,D) J A(r!(ah),ri) : 
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and since 

A(Dh, D) - 0 , A(-Ti(«*), A ) -» 0 

for h -» 0, we conclude that 
(83) lim L(ah; nhvH) = L(a; vx) . 

h->0 

Passing to the limit with h -> 0 in (76) and using (82), (83), we arrive at 

«(«; y> *>*) = L ( a ; yx) • 

Passing to the limit with K -> 0 and using Lemma 5, Lemma 6 and (75), we obtain 

a(a; y, v) = L(a; v). 

The space V(D) is weakly closed in W^r(P) an(* every function Eyh belongs to 
V(S). Hence the weak limit y e V(L>) and its restriction to D = D(a) belongs to 
V(D). Consequently, y\D is a solution of (18). Since the solution is unique, y\D = y(a) 
and (74) implies that 

(84) Ey*\D - y(a) (weakly) in W2\l(D) ; 

the latter convergence holds for the whole sequence {Fy*^}. 
The remainder of the proof is an easy consequence of (72). Q.E.D. 

For a fixed parameter h, we define the Approximate Domain Optimization 
Problems: 

find ah e U*d such that 

(85i) J K , yh(a°h)) ^ hK M«*)) Va, e Ua
ft

d , 

where i e {1, 2, 3} and yh(ah) is the solution of the approximate state problem (49). 

Proposition 4, The Approximate Domain Optimization Problems have at least 
one solution for any i e {1, 2, 3} and any h = 1/N, N = 2, 3, ... . 

Proof. It is readily seen that 

^heU\do aes4, 

if aeRN+1 denotes the vector of ah(jh), j = 0, 1, ...,N, and stf is a compact set 
in RN+1. One can show that the nodal values of yh(uh) depend continuously on a; 
the same assertion can be then verified for jt(ah, yh(ah)) = Jt(a). Consequently, 
the function Jt(a) attains its minimum on the set s/. 

Proposition 5. Let the assumptions of Proposition 3 be satisfied. Then 

limjt(ah9 yh(ah)) = jt(a, y(a)) 
h-*0 

holds for i e {1, 2, 3}, where yh(ah) and y(a) is the solution of the problem (49) and 
(18), respectively. 
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Proof is parallel to that of Proposition 2. We replace a„ by a,,, yn by yh, Dn by Dh, 
instead of Proposition 1 and Lemma 6 we make use of Proposition 3 and Lemma 6, 
respectively. The boundedness of all ||yA|]ljr>I)|i follows from (72) and (73). 

In proving the assertion for j3(<xh, yh), we have moreover to estimate the following 
term by means of Lemma 8 (50) 

\Lh(och; yh) - L(cch; yh)\ = CBh\\yh\\ltrtDh S Ch . 

Theorem 2. Let the assumptions of Lemma 8 hold. Let {aA}, h -> 0, be a sequence 
of solutions of the Approximate Domain Optimization Problem (851), i e {1, 2, 3}. 

Then a subsequence {(xh} exists such that 

(86) â  -> a0 in C([0, 1]) , 

(87) Eyn\Dia0) - y(a°) (weakly) in W{\l(D(aQ)), 

where a0 is a solution of the Domain Optimization Problem (29i), Eyh are the 
solutions y/i(a^), extended according to the formula (12), y(a°) is the solution of 
the state problem (18) on D(a°). 

The limit of any uniformly convergent subsequence of {<xh} represents a solution 
of (29i) and an analogue of (87) holds. 

Proof. Since Uad is compact in C([0, 1]), a subsequence {un} cz {ah} exists such 
that (86) holds and a0 e Uad. 

Let aeUa d be given. There exists a sequence {/?/,}, PheUtd> s u ch that flh -*• a 
in C([0,1]). This follows from Lemma Al below (Appendix). 

We have 

hKyi*n))^h(fo,yn(Pn)) vH 
by definition. 

Passing to the limit with U -> 0 and using Proposition 5 on both sides, we obtain 

^ ( a 0 , ^ 0 ) ) ^ ; ^ ^ ) ) . 

Consequently, a0 is a solution of the problem (29f). 
The convergence (87) follows from Proposition 3. The rest of the Theorem is 

obvious. 

APPENDIX 

Lemma Al. To any a e Uad there exists a sequence {ah}9 h -> 0, ccheU\A, such 
that ah —> a in C([0, 1]). 

Proof. 1° If a = const, then ah = a. Consequently, we assume that a 4= const. 
Let the mean value of a be denoted by S, i.e. 

= f a ( z ) 
Jo 

dz. 
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Let us define the sets J = [0,1], . 

/ + = {ze[0, l ] | a - 5 ^ 0 } 

/ " = {z e [0,1]| a - S < 0 

and the following modified function 

_ ÍS + (1 - kџ) (a - S) ,' zєl+ , 
kX-\s,+ (í-џ)(a-S), zєГ , 

where k and ft are positive real parameters, k is fixed (k = k(a)) and \i -> 0. Note 
that mes (J+) > 0, mes (/") > 0. 

It is easy to see that 

(A.1) flZ^a - a f l ^ __ ix max (1, fc) ||a - S|| „,_•.,. 

d 
(A-2) , ( z » dz 

< flda/dzl^C,.. 
0 0 , 1 

(A.3) amax - ZMa __ amax - a + fc/*(a - S) __ fc/*(a - S), 

where a is the maximum of a on [0, 1], \ 

(A.4) ZMa - amin __ a* - amin + ft(S - a*) __ /i(S - a * ) , 

where a* is the minimum of a on [0,1]. 

2* We apply Lemma 7.1 of [1] to obtain a sequence {/?,,}, h —> 0, such that 

(A.5) Ph->Znk* in C([0,1]) f o r A->0, 

AUi e pi(AJ) , J = 1, 2,..., N , p h e C([0,1]), 

(A.6) min (ZMa) ^ ft(z) S max (Z^a) , |djS,/dz| __ C_ , 

Since 

f/?Adz = í ZMad: 
Jo Jo 

f fádz* í a2dz 
Jo Jo 

in general, we define a constant ah by the relation 

(A.7) f(/5, + aA)2dz=f1a2dz 
v :; Jo Jo 

and show that k = fc(a) exists such that 

<*h = Ph + «* 

satisfies the conditions of the Lemma. 
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Denoting 

ьџh = f (j?2 - a2)dz, \Zllk<xdz = u, 
Jo Jo 

we obtain from (A.7) 

(A.8) ah= -u + (u2-c^2, 

c _ ЛD , Л2) Al) _ 
^џh ~ ^џh ' ^џ •> ьџh ~~ {fil - (-V02) dz v 

(A.9) c<2) = ((Z^a)2 - a2) dz = (ZMa - a) (Z„fca + a) dz = 
Jo 

= -// 2S ( fc y dz + 7 dz] - k\i(l - fc^) y2 dz - \x{2 - fi) \ y2 dz , 

where y = a — S. 
3° Let us show that a positive constant fc = fc(a) exists such that 

(A.Ю) 0 < ah < kџ(a - S) 

holds for sufficiently small ja and h < h0(fi). 
First we choose fc such that c(2) < 0 for JH sufficiently small. To this end we 

distinguish two cases. 
1. Case: 

Let us put fc = 1 to obtain 

Sӯ _: ya dz , ( = (Ś - S)) . 

in 

i 2 ) = -џ(2-џ)[ y 2 d z < 0 V/гє(0,2) 

J> 
fc > 1 - y2 dz j yoí dz J 

2. Case: 

Sy < | ya dz . 

Then if 

(A.11) 

we derive easily that 

(A. 12) lim^2)/(2^) = - s f f c f y d z + f y dz\ -

- k f f ӯ2 dz - í y2 dz = - [y2 dz - (k - 1) j ya. dz < 0 
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Consequently, we have 
c<2><0 & A. 6(0,,. .) . 

By virtue of (A.5) we have 
(A.13) c » > ^ 0 f o r h~~*0 
and 

(A.14) clth = c^ + ci2)<0 V l t < ^ ) , n<nt 

Then from (A.7) we conclude that 

(A.15) 0 < ah^ ~cJ(2u). 

Let us show that k exists such that 

(A.16) 0 < - 4 2 ) ^2uk(a^ S)fi 

holds for pi sufficiently small. 
In fact, let us first consider the case 

Sӯ g yoc dz 

and set k = 1. Then 
u == -5, 

lim (u(S - S) + c<2)/(2/i)) = Sy - f y2 dz > ya dz + f ya dz - f \ 
f»-0 J 0 J/ + J , - J Q 

Consequently, 
2/iw(a - S) + 4 2 ) > 0, 0 < 0 < ^ 2 

and (A.16) is fulfilled. 
Second, let 

(A. 17) Sy < yocdz 

and set 

(A.18) k < - J yoc dz ( I ya dz - Sy J . 

Note, that (A.18) is compatible with (A. 11), since 

1 - y2 dz J ya dz j = / ya dz - y2 dz J. 

. M yadz) < M y a d z - y 2 dz) . 

./ y a d z - S y \ = ( - ] y a d z J U yadz - Sf\ 
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Then 
lim [fci*(« - S) + i f >/(2.u)] = 
M-*0 

= fcSy - s(k f y dz + f y dz ) - k y2 dz - f y2 dz = 

= fc ( STy - S f y dz - f y2 dz j - ( S\ y dz + f y2 dz\ = 

= k (sy - f yadz) - j r« dz > o . 

Consequently, we easily deduce 

2fiku(a - S) + 4 2 ) > 0 for n < n3 

and (A. 16) holds. 
Since 

(A.19) -<W(2«) = -cji>/(2a) - #>/(2«) < fc^g - S) 

follows from (A.4), (A.13) and (A.16) for h < h2(A0> we arrive at (A.10), making 
use of (A.15). 

4° Combining (A. 10) with (A.6), (A.3), we obtain 

ah s h + ahS max (Z^cc) + klz(a - S) = amax . 

The lower bound is obvious. 
Finally, we may write 

||«* ~ aIU,/ = ah+ \\ph - Z^jflW^j + \\Zllk(x - a j ^ j . 

It is easy to see that (A.15), (A.19) imply that 

(A.20) lim ah = 0 . 
h-+0 

Then the uniform convergence of {<xh} to a follows from (A.20), (A.5) and (A.l). 
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S o u h r n 

OPTIMALIZACE OBLASTI V OSOVĚ SYMETRICKÝCH ELIPTICKÝCH 
ÚLOHÁCH METODOU KONEČNÝCH ELEMENTŮ 

IVAN HLAVAČEK 

Uvažuje se osově symetrická eliptická úloha druhého řádu s kombinovanými okrajovými 
podmínkami. Je třeba nalézt část hranice oblasti tak, aby minimalizovala jeden ze čtyř typů 
účelového funkcionálu. Dokazuje se existence optimální hranice a konvergence přibližných, 
po částech lineárních řešení, a to prostřednictvím teorie Sobolevových prostorů s vahou. 

PesioMe 

OnTHMH3ALIHJI OBJIACTH B OCECHMMETPHHECKHX 3AAAHAX METOtfOM 
KOHEHHLIX 3JIEMEHTOB 

IVAN HLAVÁČEK 

PaccMaTpHBaeTCH ocecHMMeTpiraecKaíi 3HjnmTHHecKaíi 3aflana BTOporo nopjmKa c CMeniamibi-
MH KpaeBbíMH ycjioBHHMH. Tpe6yeTC*i HaHTH nacTt rpaHHHbi o6nacTH TaK, HTO6M MHHHMH3HpoBaTi> 
o,zrHH H3 neTbipex THnoB uejieBoro <j)yHKHHOHajia. JXoKS&hmaQTCtí. cymecTBOBaHHe onrHMajibHOH 
rpaHKHbi H cxoflHMOCTb npHÓJiHaceHHBix no nacT5iM jiHHeHHbix penieHHH. B aHajiH3e Hcnojib3yK)Tca 
npocTpaHCTBa Co6ojieBa c BecoM. 
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