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DOMAIN OPTIMIZATION IN AXISYMMETRIC ELLIPTIC
BOUNDARY VALUE PROBLEMS BY FINITE ELEMENTS

IvaN HLAVACEK

(Received March 4, 1987)

Summary. An axisymmetric second order elliptic problem with mixed boundary conditions
is considered. A part of the boundary has to be found so as to minimize one of four types of cost
functionals. The existence of an optimal boundary is proven and a convergence analysis for piece-
wise linear approximate solutions presented, using weighted Sobolev spaces.

Keywords: domain optimization, finite elements, elliptic problems.
AMS Subject class: 65N99, 65N30, 49A22.

INTRODUCTION

One often meets elliptic boundary value problems in three-dimensional domains Q,
which are generated by the rotation of a bounded plane domain D around an axis.
Then the most suitable approach is to use the cylindrical coordinates. If the data
of the problem are axially symmetric, the problem is reduced to the two-dimensional
domain D (see [2] for a detailed finite element analysis).

Let a part I' of the boundary 0D be optimized. We arrive at a generalization
of a two-dimensional domain optimization problem, which has been analyzed
thoroughly by Bégis and Glowinski in [1]. In the axisymmetric problem, however,
we are forced to employ weighted Sobolev spaces, where the radial coordinate
plays the role of the weight.

Section 1 contains some results valid for the whole family {W$')(D(«))}, « € U,q,
of the weighted spaces under consideration. In Section 2 we formulate the state
problem and prove the continuous dependence of its solution on the design variable.
Section 3 contains the definitions of four domain optimization problems and the
proof of existence of optimal solutions. Approximate problems are proposed in
Section 4 and a convergence proof is presented for three types of the cost functionals.
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1. SOME PRELIMINARY RESULTS

Let Q = R? be a bounded domain with Lipschitz boundary 8, axially symmetric

with respect to the xj-axis, if x = (xy, x,, x3) denote the Cartesian coordinates.
Let H¥(Q) denote the standard Sobolev space W***(Q), k = 1,2, ..., with the usual

norm |+[lxo. Passing to the cylindrical coordinates r, z, 9, for any function
u(xy, x5, x3) we define

6] a(r, z, 8) = u(rcos 9, rsin 9, z) .

If xeQ, then (r,z)e D, 9€[0,27) and by (1) a mapping Z: H(Q) - ZH'(D x
x [0, 27)) is defined. Introducing the norm in ZH*

(o 8+ ()

for # = Zu we obtain
(2) lall = lu]ia-

Let W, be the subspace of axisymmetric functions, i.e. A
4 1 of
W, = {iie ZH'(D x [0,271:))l5§ =0 ae}.
It is easy to see that Z is an isomorphism and W, is closed in ZH'. Moreover,

we have
A\ 2 2
i =| |«* + o\, 6—“) rdrdz Vie W,.
D or 0z

®) @)~ |
The square-root of the integral in the right-hand side represents a norm

I4] 10,0

in the weighted Sobolev space W4')(D) (see e.g. [3]). Consequently, the subspace W,
can be identified with the space W4 )(D).

In the optimization process we shall consider a specific class of admissible domains
D(e), where

D(e)={(r,2) |0 <r<ofz), 0<z<1}

and the function «(z) — the design variable — belongs to the following set of admis-
sible functions

Uy = {oc e COY([0,1]), (ie. Lipschitz functions) ,

1
Uin < 0(2) S Oy, |de/dz] £ Cy, j a*(z)dz = CZ}

(1]

214



with given positive constants i, Omae> C1, C2. Assume that i > Omax/2
Let I'(«) denote the graph of the function o,

ry=0D(@)n{z=0}, I';=08D(e)n {z=1}

(see Fig. 1).
[ K4
15 ta)
a J
[ta)
Dia)
T
[ita)
Fig. 1

Next we present several properties of the spaces Wi )(D(a)), o € U,q.

For any a € U,4 the space W§')(D(«)) is a reflexive Banach space [4] and the set
C*(D(a)) is dense in it (see e.g. [3] — chapt. 6. § 2).

Let So(x) = 09(«) be generated by the rotation of a curve segment I'g() = dD(x)
around the z-axis 0, mes, So(@) > 0. Then the Trace Theorem [3] says that a linear
mapping §: H'(Q(«)) — I*(So(x)) exists such that ju = u holds for smooth functions
and

4 7] z2gsotan = C(@) [ 1,00 -

Passing to the cylindrical coordinates, we obtain the existence of a linear mapping
y: WEAD(@) ~ Ly (To(@)) . Tol®) = 9D() = 0,

such that y# = # for smooth functions and

() [v8]0.r.rot@ = C@) 8] 1,r,0e) 5
where

Lo (o) = {vl |

v?rds = o] ro@ < +oo} .
To(a)

The constant C(«) in (5) is the same as that in (4), but it depends on the domain D(x)
and on I'o(x). Hence a question arises, if a “common” constant for all admissible
variables exists. An answer is contained in the following
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Lemma 1. There exists a positive constant C such that

[v4llo.e.riwyore S Clullrpw

holds for all a.€ U,4 and u € W§')(D(a)).

Proof. Let D, = (0, 1) x (0, 1) be the unit square.
The mapping (7, z) - (&1, £;), defined through the relations

¢ =rla(z), &=z
maps the domain D(oc) onto D,. It is readily seen that for the functions

(&5, &) = u(&2(&,), &2)

the following estimate holds

© j (Va + #) &, 2 < Coulty e Vae Us,
Do

A Y
where C, depends on o, max and Cy, but not on a. We may write

1
@) J u?r ds =f u?rdr + f uroa(z) (1 + (o)?)M?dz <
Iiul(@) ry

(1]

1
< oo [ (e € de, + (1 + €)YV f #(1, &) dg, <

£y 0

é C4f ﬁzfl dS N C4 = C4(“mnx7 Cl) s
o

where [y and I, denotes the corresponding image of I'; and I'y = I'; U I'(x),
respectively. Combining (7), (6) and the inequality (5), applied to the square D,

we obtain

J wrds £ C,C?Collull2 00 QED.
Io
Lemma 2. The set
M(D(x)) = {u e C*(Cl1(D(x)))] supp u N I',(x) = 0}

is dense in the subspace

V(D(®) = {ve W§')(D(«)) | yo = 0 on I'y(x)}
for any positive a e C'([0, 1]).
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Proof. Let € V(D(«)) and denote u = Z~'4. By the above mentioned density

a sequence {W,}, k — oo, exists such that W, e C*(Cl(D(«))) and

(8) ”Wk - ﬁ“l,r,p(a) - 0.
From (2), (3)
© 127"y = ufls 00 = 0

follows. It is well-known (see e.g. [3]), that a sequence {u,}, n — o, u,€

€ C*(C1(2())), exists such that
supp u, 0 S,(x) = 0,
(10) lun = 1]1,00 =0,

(where S,(«) is generated by rotation of I'y(«)).
Let us define %, = Zu, and

2z
w,(r, z) = (Zn)"lj a,(r, z, 9) d3.
0
We can see that

supp w, N [L(0) = 0, w,e C*(Cl1(D())).
Moreover, we may write

(7, 2) = (. D = (20)2 [ j (@2, 9) = Wi(r. 2) ds]’ <

0

2n
< (Zn)"lj (@, — W,)* d9,
0

2 2% /aa 2
< (211)_1‘[ (91‘— - %> d

0 R
—\®; — W
‘6)*( ) o \or or

and a similar estimate for 8(w, — W,)/0z.
Consequently, we have for n > o, k -

(11) Jeow = W 1060 =

1 a(z)
- J’ dz‘[ [0 — W) + [V (@, — 0] rdr <

0 0

< J dz f :(2)(271)‘1 '[ :"[(a,, — W+ V(@ — PP d8rdr <

0
< @m) 7 4, = Wl = Q@n)7! u, — 27 w1 0@ = 0>
since
lun = Z" el 1,00 = Jtn = )1 00 + [ = 27" 1,00 = O

on the basis of (10), (9).
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Combining (11) and (8), we derive finally
"wn - ﬁnl,r,D(a) é ”Cl),, - Wk”l,r,D(a) + ”wk - ﬁ”l,r,D(a) -0 .
Since w, € M(D(«)), the lemma is proved.

Lemma 3. There exists a positive constant C5 such that
J qulz rdrdz _>__ C3H“”ir’p(¢)
D(a)

holds for all u € V(D()) and o€ U,q.
Proof. Let us introduce a constant & € (g, 20tmia) and the rectangle
D =(0,6) x (0,1).
We shall construct an extension Eu € W$')(D) of the function u € V(D(Ot)) as follows:
(12) Eu(r,z) = u(2a(z) — r,z) on D — D(x)

and Eu = u on D(«). Then we have obviously y(Eu) = 0 on z = 1 and We can prove
that

(13) _[ [V(Eu)|>rdrdz < C| [Vul*rdrdz,
)

D(a)
(13) [Eu]s,r,0 < Cllu]1.r,00
where the constants €, C are independent of . To this end, one employs the estimate
|VEu(r, 2 < 2 + 4@)?) [Vu(2z) ~ 7, 2

for (r.z)e D — D(). ’

Then we prove by a standard way, that

’ 2
j (Eu)*rdrdz < f <@> rdrdz Vue V(D(2)).
D D 62

(First we verify this for u, € M(D)and then pass to the limit on the basis of Lemma 2.)
Therefore we have

f (Eu)®rdrdz gJ |VEu|?* rdrdz
p P

and from (13)
(14) .
f u?r drdz gf (Eu)® r drdz gf |VEu|*rdrdz < CJ |Vu|? rdrdz
D(x) D D

D(a)
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follows. The assertion of the lemma is an immediate consequence of (14), with C; =

=(1+0O)L QE.D.

Lemma 4. The embedding

WEXD) G L, (D)
is compact.

Proof. Let M be a bounded subset of W$')(D). Since

|27t =

#i = 2nfa],p,

the set Z~'M is bounded in H'(Q).
Rellich’s Theorem ([3]) implies that Z~*M is precompact in I*(Q).
Let Z~'#, - w in I*(Q). We also have

|z

|c2>.9 = 2n“ﬁ”g,r,D
and therefore
“Z_lﬁn - Znlﬁm”(),!) - 0= ”ﬁn - ﬁm”O,r,D -0

(for n — o0, m — o). Since the space L, ,(D) is complete, the sequence {#,} is
convergent in L, ,(B). Consequently, the set M is precompact in L, (D).

2. THE STATE PROBLEM AND THE CONTINUOUS DEPENDENCE
OF ITS SOLUTION ON THE DESIGN VARIABLE

We shall consider the following boundary value problem

(15) _y L (A,-(x) j—i‘) —F in ),

i=1 0x; ;

3
(16) Zv,-Aig—u =G on Sy(x)u S(),
i1 X

(17) u=0 on S,(o),

where Q(a) is generated by rotation of D(x) around the xs-axis, S;(«) by rotation
of I'(a), i = 1,2 and S(x) by rotation of I'(), (see Fig. 1), v; are components of
the unit outward normal with respect to 0Q().

Let Q be the cylindrical domain generated by rotation of the rectangle D = (0, §) x
x (0, 1), 8 > tney.

Assume that the function F in (15) is determined as the restriction to Q(a) of an
axisymmetric function F e I*(Q),

G=/0 on S(a),
T \G; on S(v),
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where G, is determined as the restriction to S;(«) of an axisymmetric function
Gy e IX(S,), $; = 02 n {x| x5 = 0}.

Assume that the coefficients A; are restrictions to («) of axisymmetric functions
A;e L“(Q), A, = A, a.e. and a positive constant a, exists such that

Af(x) = ay ae. in Q.

Let us denote 4; = 4, = a,, A3 = a,.
Passing to the cylindrical coordinate system, we transform the standard variational
formulation of the problem (15), (16), (17) to the following state problem:

find ye V(D(x) such that
(18) a(o; y,v) = L(a; v) Voe V(D()),

where
arﬁ_y@_v + aza—y—a—u rdrdz,
or or 0z 0z

a(es , 0) = f

D(a)

L(o; v) = fordrdz + j gyor ds,
i)

D(a) N

where the function fe L, (D) and geL, (I,), I'; = 8D n {z = 0}, are given.
Finally, a,, a, € L*(D),

(19) a(r,z) = ay, afr,z)=a, ae in D.

Remark 1. The variational formulation (18) corresponds with the following

“classical” one:
_1 ra,a——y _ 2 a,Q =f in D(a),
r or aor 0z 0z

v,a,gz + v,a, 0—}) = /0 on F(oc)
or 9z \g on Iy,

y=0 on I,().

Lemma 5. Positive constants C,, Cs exist such that the inequalities
(20) a(o; u, u) Z Cylul?,00 YueV(D(),
(21) |a(es 4, 0)| = Cs[[ull 106 [0] 1506 it v € WEXD()
hold for any ae U,,.

Proof. Using (19) and Lemma 3, we obtain’

alo; u, u) = aof |Vul>rdrdz = Cyao|ul|i, nu -
D(a)
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By virtue of the boundedness of a,, a,, we may write

1,r,D(x) "U” 1,r,D() »

als; 4, 0) < csj V| [Vo] r dr dz < Csul

D(e)

where Cs = max {||a,]| 5,5, [|a2]| 0,0} -

Lemma 6. A positive constant Cg exists such that
IL(O‘; u)l =< Cs”“”l,r,p(a) Vue W(zl,»)-(D(a))
holds for any a € U,q.

Proof. Using Lemma 1, we may write

f furdrdz + j gyur dr
D(a) I'y(a)

< [ flown [llow.pe + 9]l0r.ric [0 £
< (Ifllowrs + Cllgllom ) [l 10060 -

=

(o )] =

Lemma 7. The state problem (18) has a unique solution y = y(a) for any a € U,q.

Proof — follows from the Riesz Theorem, since the space V(D(x)) can be equipped
with the inner product a(a; u, v), on the basis of Lemma 5. Moreover, we employ
Lemma 6 to show the continuity of the right-hand side in (18). Q.E.D.

Proposition 1. Assume that a sequence {0}, 1, o, € U,q, converges to a function
in C([0,1)]. Let us construct extensions E y(x,) € W$')(D) of the solutions y(a,)
of the state problem (18) by means of the formula (12).

Then

(22) Ey(@,)[ow = () (weakly) in W{X(D(),
where y(«) is the solution of the state problem (18) on D(w).

Proof. Let us denote y(«,) = y,, D(«,) = D,, D(2) = D. Using Lemmas 5 and 6,
we may write

C4‘”y””%:"’bn = a(‘xn; Yus Yu) = L(an; yn) = C6”yn”1,r,D,, .

Consequently, we have

(23) ”ynul,r,D,, é CG/C4 Vn .
On the basis of the relation (13')
(24) “Eyn”l,r,ﬁ é C"”.Vn”l,r,l),I é C7

holds. Since W§)(D) is reflexive Banach space, there exist a subsequence TANSEEA!
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and y € W§')(D) such that
(25) Ey,—~y (weakly) in W$)D).

Let us show that y|,, solves the state problem (18). It is easy to verify that the limit
function o€ U,y Let ve V(D) be arbitrary and let us construct Eve W§')(D).

Obviously, Ev e V(D), so that the restriction
Ev|,, e V(D,) Vn,

since the trace y(Ev) vanishes on I’ 2(e,). Consequently, we may insert Ev into the
definition (18) to obtain
(26) a(oy; yi» Ev) = L(o; Ev) .

Let us pass to the limit with k — oo on both sides of (26). We have
[a(a; yi» Ev) — a(%; y, v)| < |a(ous i Ev) — a(; Eyy, Ev)| +

+ |a(o; Ey, Ev) — a(e; y, )| = I + Jy,

I, gf a
A(Dk,D)

= C|VEn]or0 [VE| o, mep) >

a_E.yf@_;_azaEy"@ rdrdz <
or or 0z 0z

r

where
A(Dw, D) = (D, = D)u (D = D).
Since
lim mes (A(Dy, D)) =0
k— o
and

”vEkaO,r,ﬁ = ”Eyk”l,r,D = (s,

we conclude that I, — 0 for k — oo.
By virtue of Lemma 5 the functional

u — a(e; u, v)
is linear and continuous on W$')(D). Consequently,
Ji—>0
follows from the weak convergence (25). Thus we arrive at the conclusion

(27) - lim a(oy; yi, Ev) = a(o; y, v).
k=
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We may write

|L(ow; Ev) — L{e; v)| < +

J‘ gEvr ds — J‘ gEvrds
Iy(ax) ri(a)

+ '[ fEvrdrdz — j fEvr dr dz
Dx D

=Mk+Nky

M, < j lgB0]  dr < [glloes [Eo]ors = 0,
AT 1(ak),C1(a))

since
(28") lim mes (A(Fy (), T';y(2))) = 0.
k=
Moreover, it holds ‘
ngf |fEv| rdrdz — 0.
A(Di,D)
Altogether, we have

(28) lim L(oy; Ev) = L(a; v) .
k=

Passing to the limit in (26) and using (27), (28), we arrive at the condition (18).

It is not difficult to verify that the subspace V(D) is weakly closed in W$')(D).
Since every function Ey, € V(D), the weak limit y € V(D) and its restriction y|, e
€ V(D). Hence y|, is a solution of (18).

Since the solution of (18) is unique and (25) implies that

Eyp— y|p (weakly) in wW§)D),

the latter convergence holds for the whole sequence {Ey,|p}. Q.E.D.

3. DOMAIN OPTIMIZATION PROBLEMS AND THE EXISTENCE
OF OPTIMAL SOLUTION

We shall consider the following four types of the cost functional:

i, y) = (v — ya)? rdrdz,

D(a)
ja(o, y) = J:l)(y(rx(z), z) — y,)? dz,

where y(#(z), z) = yy denotes the trace of y on the curve I'(x), y4 € L, (D) and y, €
e I([0, 1]) are given functions,

Ja(ew y) = a(w; v, ¥),
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F 2 g 2
j4(oz, y) = [(a,a—y - Kl) + (azg—)i - Kz) ] rdrdz,
D(a) r 0z ‘

where K; € L, (D) are given functions, i = 1, 2.
We define the Domain Optimization Problems:

find «®eU,, such that
(29i) Jia®, y(@)) £ i ¥(@) VaeU,, ie{l,2,3,4},

where y(«) denotes the solution of the state problem (18).
To the proof of existence of an optimal a® we shall need the following

Proposition 2. Let the assumptions of Proposition 1 be satisfied. Then
limji(am y(an) = ji(a: y(a)) B l = 15 2; 3 3
n—oo

lim inf Ja(es Y(0)) = jaer, (@) -

Proof. Case i = 1. Denoting again y(a,) = y,, y(«) = y, D(a,,) = D,, D(2) = D,
we conclude on the basis of Proposition 1 and Lemma 4 that

(30) Eyn|n -y in L, /(D).
We may write

j [(Eyn = ya)* = (v = ya)*] rdrdz = J (Ey, — y) (Ey, + y = 2y rdrdz <

é “Eyn - y“o,r,D" Eyn +y - 2yd“0,r,D .

By virtue of (30), however, we obtain for n — oo

llE)’n - )’"o,r,n -0, ”EYn +y - 2)’4“0,:,1) =C.
Consequently,

(31) J (Eyy — yg)® rdrdz *j (y = ya?rdrdz.
D D

It is easy to see that

(32) J (yp — ya)?rdrdz = J. (Ey, — yg)?rdrdz +
Dn D

+ j (Eyy = ya)* rdrdz = '[ (Ey, — yg)* rdrdz.
Dy— D-D,

D
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Let us estimate the last two terms as follows:

jn,.—b .[D—D,.
~ 1/2 1/2

< (J r?dr dz) (J\ (Ey, — ya)*dr dz) s
A(Dp,D) Do

where Dy = D — (0, tt,i/2) x (0, 1).

Since the restriction Ey, 5, € H'(Do) and the embedding of H'(D,) into I*(Do) is
continuous, we may write

(33)

< j (Ey, — yo)*rdrdz £
A(Dyn,D)

“Eyn - yd“L‘(Do) S C"Eyn - ,Vd“1,oo =<

§ C(2/amin)l/2 "Eyn - yd”l,r,D é C )

where also (24) has been used.
Since

(34) mes (A(D,, D)) > 0,

the right-hand side of (33) tends to zero. Combining this result with (31) and (32),
the assertion of the Proposition follows.

Case i = 2. Denoting a,(z) = a(z) — 1/m, m = 2,3,

..., we may write for n
sufficiently great with respect to m:

(35) jZ(an’ yn) “jz(“’ y) = Ml + MZ + M3 ’

M, = ﬁ(l) (y”(a,,(z)) - yv)z dz — j:)(y'l(arn(z)) - y7)2 dz,

M, = F:) (-Vu(o‘m(z)) - yv)z dz - J: (y(am(z)) - y7)2 dz,

M; = M(Y(“m(z)) - )’7)2 dz - J‘l(y(“(z)) - y‘l)z dz

[

J

and estimate the individual terms.
It is readily seen that

|M1| = J:Iyn(au) - yn(am)| IYn(“n) + yn(otm) - 2yv‘ dz =

= Hy.,(fx..) - yn(“m)”o Hyn(an) + yn(am) - 2)’,"0 ?

where |- |, denotes the norm in I?([0, 1]). Furthermore,

(3) I2e) = neli = | s ([ " o, dr)z <

am(z) or
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< Jldz(ﬁ,, + 1/m) J: <%‘>2 dr < (B, + 1/m) [y.]2.000 -

0
where

Bn = max l(X"(Z) - OC(Z)I >
z€[0,1]
DS = Dn - (0, amin/z) X (07 l) >

(considering only m such that a(z) — 1/m = o,,;,/2).
By virtue of (23)

(37) ”yn”%,Dno é (2/amin)”yn“%,r.D,. g C .

For sufficiently great n, m, n > no(m), we derive
1

(38)  [yulew) + yalow) = 20,]5 = 3.[ (va(e) + ya(e,) + 4y7)dz £ C.
0

In fact, Lemma 1 and (23) yield that

1
(39) jyf(ao a < j (pw)? ds < .
I'(an)

0

é "yn”g,r,r(an) . (2/amin) é C(z/amin)”yn”%,r,Dn g 6 .
Using (39), (36) and (37), we obtain

lef(am) dz £ 2j1yf(an) dz + 2 r(yn(ozm) — yule,))?dz < C.

0

Combining (36), (37) and (38), we arrive at the estimate

(40) [M,| < C(B, + 1/m)"/>.

In a similar way we derive

(41) IMa| < [|[yuetn) = 2(0m)]o [|7a(#n) + ¥(@m) = 25, ]l0 -

It holds, however, that

6 =l = [ 04 < s s =0 for 0o oo,
I'(am)

In fact, the mapping
y: H'(Gy) —» LX(0Gy)
where .
G = G = (0, 0inf2) x (0, 1)
and
G,={(rz)|0<r<a,z), 0 <z<1},

226



is completely continuous ([3] — chapt. 2, § 6.2). The weak convergence (22) of {Ey,}
implies that

y, =y (weakly) in HY(Gy),
since H'(Gy) = W4 )(Gy) and the norms are equivalent. Consequently, y, — y

in I*(I'(w,,)) follows, i.e. (42) holds.
Thus we obtain that

43 yalem) = v éj alom) = y(@))* ds = [yn = Y35 = 0

I'(am)
for n — 0.
Using (43), it is easy to see that
(44) 1yl + () = 23,0 =

= “)"n(“m) - y(arn)]lo + 2”«‘)(“"-) - yv”() =C

for any fixed m and sufficiently great n.
Substituting (43), (44) into (41), we are led to the conclusion that

(45) M, -0 for n— o andanyfixed m.

Finally, we may write

(46) IMa| = [ y(om) = y(@)]lo [|¥(otm) + 1) = 21, [0 ,

Iy(e) = ¥ = j (o) — y(@)? dz =

1 o (2) 2 1 @ 2
:jdzq Qldr) gijdzj (@) dr <
o am(z) OF mJ, am \OT
sm Yyl s Cm ty|i,p >0

for m — oo (here D® = D = (0, ayy;0/2) % (0, 1)).
Moreover,

[9(e) + (@) = 2330 = () = y(@)]o + 2|9 = o= €
follows easily. Substituting into (46), we obtain
(47) M;—>0 for m— .

It suffices to combine (34), (40), (45) and (47) to arrive at

—

1iIan(ocm yn) = jz(“, y) .
n— o
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Case i = 3. By virtue of the definition (18) we have
Jae, ¥) = aloes y, y) = L(es y)
jJ(am yn) = a(an; ym yn) = L(d"; yu) .
Consequently, we may write

j3(an’ yn) - j3(a9 y) = Kl + KZ 3
where
Kl = L(OC"; yu) - L(O(, Eyn) 5

KZ = L((X, Eyn - V) :
Let us estimate

IKI‘ = + <

j fy,rdrdz — J fEy,rdrdz
Dy

D

j gy,rdr — ( gEy,r dr
T'i(an) o I'i(a)

='[ Iny,,[rdrdZ +f |gEy,,| rdr =K, + K,,.
A(Dp,D) AT 1(an), T1(a))

)

We obviously have

Ky = |fllow,onmy |Evafors =0
on the basis of (24), (34) and
Ki2 = [9llosr.a i [EValore, =0
on the basis of (28'), (24) and (5) (which can be applied to ofz) = §, as well), since

IEvalosr, < ClEV| 100 < C.
Altogether,
lIimK, =0.

n—oo

By virtue of Lemma 6 the functional u — L(x; u) is continuous on W$'X(D).
Consequently, the weak convergence (22) implies that

limK, = 0.

n—o

Combining these two results we are led to the assertion to be proved.
Case i = 4. We have

2 2 2
j4(‘xm yn) g j [(ar —a}%‘ - 1> + (az %yzf - 2> ] r dl‘ dZ
Gm

for any n, m such that G, < D,. The functional on the right-hand side is weakly
lower semi-continuous on W$')(G,,) (being convex and Gateaux-differentiable).
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The restrictions V,|q,. converge to y|; weakly in the space W4')(G,), as follows
from (22). Consequently, we have for any m

kil 2 ) 2
lim inf j, (o, V2) gj <a, éX - K,) + <a22—} — K2> :Irdr dz.
n-o r z

Passing to the limit with m — oo, we obtain the assertion

Bim inf jo(o v) 2 Ja(o v) - QE.D.

n— oo

Now we are able to prove the main result of the Section 3.

Theorem 1. There exists at least one solution of the Domain Optimization Problem
(29i), ie{1,2,3,4].
Proof. Let {,', a,eU,

n.o

ef{1,2,3,4}, ie.
(48) lim j(o,, (o)) = infj(o, y(x)) .

n—om aeUaq

4, be a minimizing sequence of ji(oc, y(m)), where i€

a

By means of Arzela-Ascoli Theorem we show that the set U,y is compact in
C([0, 17). Hence there exist a subsequence {«,} and o® € U,, such that

w —o® in C([0,1]).
Then Proposition 2 and (48) imply that

Jd@®, y(@°)) < liminf j (o4, (o)) = inf (o, y(a)).
k— o0

aelUqaq

Consequently, at ¢® a minimum is attained. Q.E.D.

4. APPROXIMATIONS BY FINITE ELEMENT METHOD

In the present Section we propose an approximate solution of the domain optimiza-
tion problem, making use of piecewise linear design variable and linear triangular
finite elements for solving the state problem.

Let N be a positive integer and h = 1/N. We denote by A;, j=1,2,...,N,
the subintervals [(] — 1) h, jh] and introduce the set

U:d = {‘xh € Uud: ah]Aj € PI(A_]) v’} .
where P,(/\) is the set of linear functions defined on A ;. Let D, = D(w,) denote the

domain bounded by the graph I', = I'(x,) of the function «, € U, . The polygonal
domain D,, will be carved into triangles by the following way. We choose «, € (0, «)
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and introduce a uniform triangulation of the rectangle # = [0, oco] x [0, 1], in-
dependent of «,, if h is fixed.

In the remaining part D, = 2 let the nodal points divide the segments [og, o,(jh)],
j=1,2,...,N, into M equal segments, where

M:1+[(ﬂ‘“0)N]

and the square brackets denote the integer part of the number inside.
One can verify that the segments parallel with the r-axis are not longer than h

and shorter than h(e — a,)/(B — ,). One also deduces the following estimate for
the interior angles w of the triangles T:

tgw = t—ﬂ(l +C, +CH.
— 0,

Consequently, one obtains a regular family {7 (o)}, h — 0, o, € Uy, of triangula-
tions, with

max (diam T) £ h/sin w,,

TeJ n(eh)

w, = arctg [%:ﬂ (1+¢+ Cf)”].

_ao

The family is even strongly regular, i.e. the ratio of the maximal and minimal side
in 7, is not greater than a constant, independent of 1 and o,
Let us consider the standard space V), of linear finite elements

Vi, = {v, € C(D,) 0 V(D,) | vy|r € P{(T) VT e 7 ()} .
We define the approximate state problem:
find y, = y,(e) €V, such that
(49) a(o; v v) = Ly(o; 0,) Yo, € V.

Here L,(o; v;) denotes a suitable approximation of the functional L(w,; v,), which
satisfies the following conditions:

positive constants Cg, Co and 3 exist such that
(50) th(“h; ) — L(“h? Uh)[ = Cshsﬂvh“m,m >
(51) |Lu(os vn)] £ Colloal]s 1.

hold for any o € Uzg and any v, €V,
Let us define

(52)  La(ows tn) =Teyz‘2a )[f roy]ger) mes (T) + ) Lgroiloq mes (1) ,

TeT n(an)nI'1(an)
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where G(T) denotes the centre of gravity of the triangle T and G(I) the midpoint of
the interval I = T'n I'y(o,).

Lemma 8. Let L,(x,; v,) be defined by the formula (52). Assume that f e H'(D)
n C(D), r*D*f e I*(D) for || = 2 and g is piecewise from C.
Then (50), (51) hold, with § = 1.

Proof. If we denote the local error by

Er(w) = f wdx — w(G)mes T, Te T ,(x,)
T

and fr = F, we may write

(53)

J‘ fv, rdrdz —TZ[_frvh]G(T, mes T| =
= I;ET(FUh)l = ;(‘ET(F 0(G))| + |Ex(F(vy, — 0(G)))]) -

Applying the affine mapping
(r,z) = Br2 + by, £ =(F2),

which transforms the reference unit triangle T with the vertices (0, 0), (1, 0), (0, 1)
onto T, we easily deduce

(54) |[Ex(w)| < Ch*|E(W)],
where (%) = w(Bp% + b7),

E(9) = j (% — #(y)) ds

and y is the centroid of the triangle . Since
[E®)| < Cl#]2.e
E(p) =0 VpePy(r),
the Bramble-Hilbert Lemma yields [5]
[E()] < C[#]s0-
Using the estimate ([5] — pp. 118, 122)

lwll,r é Ch|wI2,T s
we obtain
(55) |Ex(W)| < Ch3|w],,r .
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Moreover, by the strong regularity of the family {7 ()}, we have ([5], p. 142)

(56) [ow(G)] = oalcery < Ch™Hollo,r VT E T (o) s
so that
(57) |Ex(Fol(G))| = |Ex(F)| [oi(G)| £ CH?|F|,.r]vsllo.r

follows from (55), (56).
Using again (54), we derive

(58) IET(F(Uh - v,,(G)))] = ChZIE(F(f’h - '71,()’)))‘ = Ch?

If we define

L F(b, — 0,(7)) dﬁ’ .

F(F) = J F(b, — 04(y)) d%,
then
F(p) =0 Vpe Py(r),
since ¥, is linear and

|¢(F)| = C”‘% - ﬁh(Y)Ho.r ”FHIJ- A

From the Bramble-Hilbert Lemma

Pll,r

0,t

|Z(F)| £ C|loy — 8,(y)]
follows. Since
'5;: - ﬁh(y)i = |Vﬁh-(f - )’)l =< IVﬁhl s
we have
”ﬁh - ﬁh(y)’io,r = |ﬁhl1.r
and
|7 (F)| = Cloulsc |Flie = CIF]ir oaflsr -

Substituting into (58), we arrive at
(59) |Ex(F (v, — ol @) = Ch?|[F|ly  oull 1,7 -
Combining (57), (59), we see that the upper bound in (53) is
(60) E; = Ch*[[Fll2,, [0, 1,0,
For any v, € V, the following inequality holds
(61) loalls,0. = CH™ 0] 1. -
To prove this, we consider the subset 75" of triangles Te (), such that

TAO + 0
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(where 0 is the z—axis). Let us use the mapping » = h#, z = z; + h2, which trans-
forms the “unit” triangle = onto T'e 7 §". On T we have

v + |[Vol> = p* + 2, pePy(T), céPo(T),
(62) loall?,r = J (p* + ¢?)drdz = hlhf (p* + ¢?) drdz,

where p(F, 2) = p(h,#, zr + h2). Since in the finite-dimensional space Pl(r) X
x Po(t) all norms are equivalent, we have

j (p* + ¢*)drdz = Cf (p* + c?) pdrdz.
Substituting into (62) leads us to the following estimate
(63) [oall.r = Chlhf (p* + ¢?) rdrds <
< Ch“lj (P* + ) rdrdz = Ch™u,|i,.r-
If Te Ty(w,) ~ T, then hy < rso that 1 < Ch™'r and
(64) ol 2 = j (0 + (Vo) drdz < OH i,

Adding the results (63) and (64), we arrive at (61).
Consequently, instead of (60) we may write

(65) E; £ Ch*P|F|3,, [0 1.r,0 -

Next we have

(66)

where the local error is defined by the formula

f goyr dr — 3 [gvir]eay mes 1| < 3 |E(gvyr)| ,
I'y(ar) ! e

E/(w) = jwdr —w(G)hy, hy = mesI.
I

It is easy to see that by means of the mapping
' r=r;+ ht

which maps the unit interval o onto I, we obtain
1
E(w) = f (® = w(1/2)) hy dF = hy E(9) ,
0
W(#) = w(ry + h#).
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Since
|EW)| < C|#]s..» E(p) =0 VpePy(o),

the Bramble-Hilbert Lemma yields that

|E()| = €[]z -
Making use of the relation

3.0 = hilwl2.r,
we obtain

|E/(w)| < ChIEW)| £ Ch*?|w|,,, Vwe H*(I).
If we insert w = grv,, then
]wlg,l = lg”’hlg,r = C“Q“éz th“%,z >
where
lglc: = max [lg]cas,

and S; < I'y are subintervals, where g|s, € C*(S)).
Consequently, we obtain the following upper bound for the right-hand side in (66)

7 £, 2 32 1ol [l < gl [l

Here we have also used the estimate Ch™! for the number of subintervals I € I';.
One can show that

loall3. e < CB0a]5,0,r ey

by an argument similar to that of (61). Furthermore, we have

2

do, hr £ hy|v,|? r(mes T)™' < Ch™v,|} 1

|”h|f,1 =

since
mes T = Ch?

holds by virtue of the strong regularity of {77,(«,)}. Consequently, we may write
loal.ry = Il + 3 onfin = CH™ oulsr, +
+ Ch™ o35, = Ch72|0a] 3,0, 5
using again (61). Substituting into (67), we obtain
(68) E, < Chllg|c: ol 1.r,0 -
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Finally, it is easy to combine (65) and (68) to get
|Lh(ah; vy) — L{ous Uh)l SE +E =
< C(h*2|frll2,0, + Rllgllc:) loul 1 -

Consequently, the condition (50) is satisfied with § = 1.
Note that if fe H'(D) and r>D*f e I?(D) for |a| = 2, then fr e H*(D).
To verify the condition (51), we employ Lemma 6 in the following estimate

ILh('xh; Uh)[ = IL(“;.; Uh)l + ‘Lh(‘xh; Uh) - L(O% le)l <

= CGHUhHI,r,Dh + Cshsnvhum,nh = CQHDhHI,r,D;. .

Lemma 9. The approximate state problem (49) has a unique solution for any
ay € Ugd‘

Proof. Lemmas 5 and 8 guarantee that was can apply Riesz-Theorem in the space
V, with the inner product (u, v) = a(a; u, v).

Proposition 3. Let the assumptions of Lemma 8 be satisfied. Let {a,}, h — 0,
be a sequence of w, € ULy, converging to o in C([0, 1]). Let us construct extensions
Ey, of the solutions y,(a) of the approximate state problem (49) by means of the
formula (12).

Then

(69) Eyplpw = y(«) (weakly) in W$AD()),
where y(a) is the solution of the state problem (18) on D(a).
Proof. Let us define y; € ¥, to be the solution of the following problem
(70) a(oy; vy, vp) = L(oy; v,) Vo, € V.
Recall that y, € V,, satisfies the condition

a(oys v, Uh) = Lh(“h? Uh) Vo, € V.
Subtracting, we obtain

a(os v — ya 0n) = Llow; 03) — Ly(ou; v)
and inserting v, := y; — y,, we arrive at
(71) Callyi = valltwpn < alows i — v i = w) =
= L(ow; yir = ) = Liows vir = ) = Csh|lyid = vl vrmn s

using Lemma 5 and Lemma 8.
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For the extensions we make use of (13’) and (71) to obtain

(72) “Ey: — Eyh”1,r,i§ AN C||y§f - J’h”1,r,n,. < Ch.
From (70) it follows that
C4“J’;.k %,r,Dn = L(OC;.; yif) = C9”J’:“1,r,u,. »

by virtue of Lemma 5 and Lemma 8.
Consequently,

(73) IEvill e < Clyillirm = €

follows and there exists a subsequence (we shall denote it by the same symbol) and
y € W§')(D) such that
(74) Eyf —y (weakly) in W$'XD).

Let v € V(D()) be given. Let us construct the extension Ev e V(D) by the formula
(12). By virtue of Lemma 2, there exists a sequence {v,}, x — 0, such that v, e
€ C*(C1(D)) suppv, n ', = 0 and

%

(75) o, — Ev”U,D -0 for k—0.

Consider the Lagrange linear interpolate v, of v,(l p, Over the triangulation
T (o). Obviously, we have mp, € V,. Let x be fixed, for a time being. We can insert
T, into (70) to obtain

(76) a(e; yi's mw,) = L(oy; ma0,,) -
We shall pases to the limit with h— 0. Let again o, = a(z) — 1/m, where m =
=2,3..,
G,={(r,z)]0<r=a,),0<z<1}.

Then

_ Gn < D,
for h < ho(m) and we may write
(77) la(ous iy mv,) — a(oms v, v)| =

= |a(ow; yi, v,) + a(; Vis T, — ) +

d(“h = Uy y:’ nhuﬂ) - a(ocm; Vs Ux) é

N+

,a(oc,,,; y;l: - vu)l + la(QCm; y:: Ty, — Dx)l +

+ 'a((xh - am; y;lk’ Tclx””)' )
where

o, — a3+, +) = aloy; -, Y = ale; -, +).
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Consider a positive . From (74) we conclude that the first term on the right-hand
side of (77) is not greater than ¢/6 if h < h,(e, m).
To estimate the second term, we employ the well-known inequality (see e.g. [5])

(78) [mi0x = 21,00 < Chljo,]2,0, = Chloe]2,5-
Combining (73) and (78) we obtain
(79) |a(tms yi's 10, — 0] £ Cs|lyi |16, [0 = 106 =
< Chlv,|l2p < ¢f6 for h <h,.
It remains to estimate the third term. To this end, we realize that
lmodlie < Cloear VA

holds for all triangles Te 7 ,(a,). :
Let G}, be the smallest union U of triangles Te 7 ,(«,) such that D, = G, = U.
Obviously, we have .

(80) mes Gy < 1fm + 2h + |y, — o, ,
where ||, denotes the norm in C([0, 1]). Consequently,
[0t o = [m0lfcm = 2 Jmvelir < C¥lod,em -
TeGmMP .
Using again (73), we may write
(81) Id(“h — %l Vi» n,,v,,)| = CSHyIT“hP,Dh "nhvxlll,r,D;,—G,,. = C“”.x"LG,,.». .
Combining (77), (79), (81), we deduce the following inequality S
la(es yiis mio,) — a(os v, v,)| <
§ |a(ah; y:: nhvx) - a(“m; Vs vk)l +
< ¢f3 + Cloaaom + 910 [oxliro_g, for b < hyle,m).
Making use of (80), we conclude that

(o — o, y,lv,,)| <

(82) }11_1;1(1) a(o; yir, me) = a2y, v,).
Next we may write
|L(os mp,) — Ll 0,)| <
S (s mve — 2)| + |L(es 0) — Lo v,)] = £ + &5,
|21] £ Collmuve ~ vill1.r.0n < Ch|lo, |20,

lgzlé‘[ |fv,,|rd,-dzl|-J~ . lé”xlrdr ; ‘ : "‘('.;‘
A(Dw,D) SRl iy i

A(Ty(an),T1)
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and since
A(Dy, D) =0, A(Ts(o), T1) =0
for h — 0, we conclude that
(83) lim L(oy; mpv,) = L(ot; v,,) .
h—0
Passing to the limit with h — 0 in (76) and using (82), (83), we arrive at
a(e; y, v,) = L(o; v,) .
Passing to the limit with ¥ — 0 and using Lemma 5, Lemma 6 and (75), we obtain
a(o; y, v) = Lo v) .

The space V(D) is weakly closed in W§')(D) and every function Ey; belongs to
V(D). Hence the weak limit y € V(D) and its restriction to D = D(x) belongs to
V(D). Consequently, yID is a solution of (18). Since the solution is unique, le = y()
and (74) implies that
(84) Eyilo = y(2) (weakly) in W5)(D);
the latter convergence holds for the whole sequence {Ey;|}.

The remainder of the proof is an easy consequence of (72). Q.E.D.

For a fixed parameter h, we define the Approximate Domain Optimization
Problems:

find o« e U"; such that
(85i) J i(“;? > J’h(“i?)) =j i(“tn J’h(“h)) Ve, € Uyg
where i€ {1, 2, 3} and y,(w,) is the solution of the approximate state problem (49).
Proposition 4. The Approximate Domain Optimization Problems have at least
one solution for any i€ {1,2,3} and any h = 1IN, N = 2,3, ....
Proof. It is readily seen that
weUliwaecd,

if ae R¥** denotes the vector of a(jh), j = 0,1,...,N, and &/ is a compact set
in R¥*1, One can show that the nodal values of y,(«,) depend continuously on a;
the same assertion can be then verified for j(o, yu()) = Ji(a). Consequently,
the function J(a) attains its minimum on the set <.

Proposition 5. Let the assumptions of Proposition 3 be satisfied. Then
lifr(l)f (o (o)) = jilos y(2))
h—

holds for i€ {1,2, 3}, where y,(o,) and y(a) is the solution of the problem (49) and
(18), respectively.
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Proofis parallel to that of Proposition 2. We replace «, by o, y, by v, D, by D,,
instead of Proposition 1 and Lemma 6 we make use of Proposition 3 and Lemma 6,
respectively. The boundedness of all |y,]|, , p, follows from (72) and (73).

In proving the assertion for j;(e, ¥;), we have moreover to estimate the following
term by means of Lemma 8 (50)

|Lh(ah; J’h) - L(“hi }’h)l =< CshH}’h"1,r,n,. S Ch.

Theorem 2. Let the assumptions of Lemma 8 hold. Let {o,}, h — 0, be a sequence
of solutions of the Approximate Domain Optimization Problem (85i), ie{1,2,3}.
Then a subsequence {az} exists such that

(86) =’ in C([0,1]),
(87) Eyilpaoy = (@) (weakly) in WSA(D(«%)),
where o is a solution of the Domain Optimization Problem (29i), Ey; are the

solutions y;(0), extended according to the formula (12), y(a°) is the solution of
the state problem (18) on D(a°).

The limit of any uniformly convergent subsequence of {®,} represents a solution
of (29i) and an analogue of (87) holds.

Proof. Since U,q is compact in C([0, 1]), a subsequence {a;} = {&,} exists such
that (86) holds and a°® € U,,.

Let a e U,y be given. There exists a sequence {B,}, i€ Uly, such that B, - «
in C([0, 1]). This follows from Lemma Al below (Appendix).

We have

Jilon vilen) < B va(Br) VA

by definition.

Passing to the limit with i — 0 and using Proposition 5 on both sides, we obtain

Ji(@®, y(@°)) £ jilw, y(«)) -

Consequently, ° is a solution of the problem (29i).
The convergence (87) follows from Proposition 3. The rest of the Theorem is
obvious.

APPENDIX

Lemma Al. To any a e U,y there exists a sequence {&}, h — 0, o, € Uy, such
that o, — o in C([0, 17).

Proof. 1° If & = const, then &, = a. Consequently, we assume that o % const.
Let the mean value of « be denoted by S, i.e.

Szroc(z)dz.

J0
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Let us define the sets I = [0, 1],
R I* ={ze[0,1]]Ja - S =0}, .
I" ={ze[0,1]]Ja =S <0
and the following modified function |
“Z = {S—l— (1- kﬂ)(a¥S), zel*,
uk S+ -p(x—18), zel,

where 'k and g are. positive real parameters, k is fixed (k = k(«)) and u — 0. Note
that mes (I*) > 0, mes (I7) > 0.
It is easy to see that

(A1) 1Zuo — | or < pmax (1, k) |l& — S|,

L ld o,
(A2) = @uw)| S |defdz|,p S Cy,
, ‘ dz ° " o
(A'3) Xnax — Zuka = Xmax — a+ kﬂ(& - S) = k.u(& - S) >

where & is the maximum of & on [o, 17, _
(A9 Zp0 = Oy = 0% — oy + p(S — o) = p(S — a¥),
where o* is the minimum of « on [0,1].

2° We apply Lemma 7.1 of [1] to obtain a sequence {f,}, h — 0, such that

(A5) By— Zya in C([0,1]) for h—0,
ﬂh[AJePI(Aj)’ ]= 1,2""3N3 Bhec([oi 1])3

(A6) - min(Zu) < Bi(z) £ max(Zuw), [dB,fdz| < C,,
zel zel

1 1
J‘kﬁhdz=J\ Zyodz.
A 0 0

1 1
Jﬁ,fdz#:'[azdz
0 0

in general, we define a constant a, by the relation

(A7) Jq By + ay)?dz = flaz dz
SR A ‘ J 0

Since

0o
and show that k = k() exists such that
%, = P+ a,

satisfies the conditions of the Lemma.
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Denoting

1 : 1
c“h=f(ﬂ,f—oc2)dz, qukadz=u,
0 0
we obtain from (A.7)

(A8) - a, = —u + (u® — c,,))"/%,

1
w =l + o A = (0 - (e,
0

(A9) o = j (2o — o) dz = J (2ot — 0) (Zut + o) dz

0 0

= —u2S(kj ydz+J. ydz)—ku(Z——ku)J yzdz—,u(2——y)j y2dz,
1+ I- I+ I-

where y = o — S.
3° Let us show that a positive constant k = k(a) exists such that

(A.10) 0 < a, < ku(a — S)

holds for sufficiently small u and h < ho(u).

First we choose k such that cf,z) < 0 for u sufficiently small. To this end we
distinguish two cases.
1. Case:

S?gj yedz, (5= (a-89)).
I+
Let us put k = 1 to obtain
1
P = —p2 - u)j y?dz <0 Vue(0,2).
0
2. Case:
Sy <j' yadz .
I+
Then if

1 -1
(A.11) : k>1-— J‘ y2dz <J‘ 'yozdz) ,
: ; 0 I+

we derive easily that

(A.12) lim ¢)(24) = —S(k' I ydz + f ydz) -
n—>0+ I+ I~

, 1 A
—-kf'j’azdz-—I y’dz-—-f—-J"yzdz—-(k-'—l)J‘ yadz <0.
I+ - . J0 I+
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Consequently, we have
6 <0 for HEOp).

By virtue of (A.5) we have
C,(J.’—’O for h<

(A.13)
and
(A.14) Can = ¢l + ¢ <0 Vh < h1(,u) s m<u.

Then from (A.7) we conclude that

(A.15) 0 < a, < ~Cul(2u).
Let us show that k exists such that
(A.16) 0 < —c® < 2uk(@ — $)u

holds for u sufficiently small.
In fact, let us first consider the case

and set k = 1. Then

0 0

1 1
lim (u(z — S) + ¢®)(24)) = sy-f y2dz>f vocdz+f yadz—fyzdz=0.'
=0 I+ I-

Consequently,
2uu(@—S) + ¢ >0, O<pu<y,

and (A.16) is fulfilled.
Second, let

(A.17) Sy <f yodz
I+

and set

-1
(A.18) k<—f ycxdz(f yadz——S?) .
I- I+

Note, that (A.18) is compatible with (A.11), since

(o) (e fre)
(o) (o Jre)
(o= () =)
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Then
lim [ku(@ — S) + ¢2/(20)] <
n—=0

=kS?~S(kf ydz+f ydz)—kf )’Zdz—J~
I+ I-
=k(S?——Sf ydz—j yzdz>——<J‘ ?dz-l—J. )
I+ I+
=k(S?—J yadz)—J‘ yeadz > 0.
I+ I~

Consequently, we easily deduce

lI

2uku(& — S) + cflz) >0 for u<p,
and (A.16) holds. '
Since

(A.19) —cf(2u) = —cD)(2u) — ¢P[(2u) < ku(a — S)
follows from (A.4), (A.13) and (A.16) for h < hy(1), we arrive at (A.10), making

use of (A.15).
4° Combining (A.10) with (A.6), (A.3), we obtain

oy = B + a < max (Zuo) + kp(8 = S) < oty -

The lower bound is obvious.
Finally, we may write

lon = ollwr < an + 1By = Zutl ot + [ Zust = -
It is easy to see that (A.15), (A.19) imply that
(A.20) lima, =0.

h—0

Then the uniform convergence of {a,} to « follows from (A.20), (A.5) and (A.1).
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Souhrn

OPTIMALIZACE OBLASTI V OSOVE SYMETRICKYCH ELIPTICKYCH
ULOHACH METODOU KONECNYCH ELEMENTU

IvAN HLAVACEK

UvaZuje se osové symetrickd eliptické uloha druhého ¥adu s kombinovanymi okrajovymi
podminkami. Je tieba nalézt ¢dst hranice oblasti tak, aby minimalizovala jeden ze &tyf typa
uéelového funkciondlu. Dokazuje se existence optimdlni hranice a konvergence pfibliznych,
po ¢&astech linearnich feSeni, a to prostfednictvim teorie Sobolevovych prostorit s vahou.

Pesome

OIITUMMBALIA OBJIACTI B OCECUMMETPUYECKUX 3AJAYAX METOIOM .
KOHEYHBIX 3JIEMEHTOB

IVvAN HLAVACEK

PaccmaTpuBaeTCcs OceCHMMeTpHYeckasl 3JUIMNTHYECKas 3ajada BTOPOTO MOPSIKA C CMEIIaHHbI-
MM KpaeBBIMH yCIOBHsMU. TpebyeTcst HaiiTH 4acTh rpaHuIbl 06JIaCTH TaK, YTO6E MUHEMHM3HPOBATD
OOMH M3 YeTHIpeX THIIOB LiesieBOro (yHKIMOHAA. JlOKa3bIBaeTCs CyHIECTBOBAaHHE ONTMMAJILHOM
TrPaHyLBL ¥ CXOJMMOCTH NPUOIIMKEHHBIX II0 YaCTAM JIMHEHHBIX PElIeHuil. B aHa/IM3e UCTIONB3YIOTCA
npocrpancrBa CobosieBa C BECOM. )
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