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NUMERICAL ANALYSIS FOR OPTIMAL SHAPE DESIGN
IN ELLIPTIC BOUNDARY VALUE PROBLEMS

ZDENEK KESTRANEK

(Received July 28, 1987)

Summary. Shape optimization problems are optimal design problems in which the shape of
of the boundary plays the role of a design, i.e. the unknown part of the problem. Such problems
arise in structural mechanics, acoustics, electrostatics, fluid flow and other areas of engineering
and applied science. The mathematical theory of such kind of problems has been developed
during the last twelve years. Recently the theory has been extended to cover also situations in
which the behaviour of the system is governed by partial differential equations with unilateral
boundary conditions. In the paper an efficient method of nonlinear programming for solving®
optimal shape design problems is presented. The effectiveness of the technique proposed is
demonstrated by numerical examples.

Keywords: optimization, elliptic boundary value problems, nonlinear programming, finite
element method.

AMS Subject classification: 49A22, 49A29, 49D37, 65N 30.

1. INTRODUCTION

Shape optimization problems are optimal design problems in which the shape of
the boundary plays the role of a design. Such problems arise in structural mechanics,
acoustics, electrostatics, fluid flow and other areas of engineering and applied
science.

The mathematical theory of such kind of problems has been developed during
the last twelve years [7], [8], [10]. Recently the theory has been extended to cover
also situations in which the behaviour of the system is governed by partial differential
equations with unilateral boundary conditions [ 1], [3], [4]. [9]. [11], [ 14]. The relat-
ed problems are treated in [13], [15], [16].

In the present paper we focus our attention to finding an efficient method of non-
linear programming for solving the optimal shape design problems. A numerical
study is presented for several types of optimal shape design problems. Some compar-
ison is made of the exact and the numerical initial values of the cost functionals.
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2. OPTIMIZATION PROBLEMS

Let us consider the following model problems. Let Q(v) = R* be a domain (see
Fig. 1) with the following geometrical structure:

Qv) = {0 < x, <v(xz), 0 <x, <1},

0Q(v) = I'y U I'(v), the boundary of Q(v) with
r, = 09(v) — I'(v),
I'v) = {xeR? x, = v(xz), 0=<x, =<1}

where the function ve C%'(0, 1)), i.e. a Lipschitz function, is to be determined
from one of the domain optimization problems

(P;) muu}j J(y(v),v), i=1.23,4.
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Here

Uy = {veC>'(<0, 1)), 0 < a = v(x,) £ B,
[du/dle < Cy, fsvixy)dx, = Gy}
where «, ff, C,, C, are given positive constants, and the cost functionals are
J1((v), v) = faw (1(v))* dx,
Jo(y(v), v) = 12 fre) (v(v))* ds ,
J3(3(v), v) = 1/2 faqy Vy(v)* dx,
Ta(y(v), v) = [oy(©)fon|21/2,rw = [u(r(©)]3,00) -
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The function y(v) is the solution of the boundary value problem (the state problem)

(Sp,) —Ay=f in Qv),
=0 on I(v),
dylon =0 on TIy(v) = 0Q(v) — I'(v),
or
(SP,) —Ay=f in Q),

=

y=0 on Iv)=0a2)— I(v),
y=0, dylon =0, ydylon=0 on I(v)

for a given function fe I*(Q), where Q; = (0, B) x (0, 1) and dy/dn denotes the
derivative with respect to the outward normal to I'(v).
In variational formulation, (SP,) reads:
Find y = y(v) € V(v) such that
(VP)) faw Vy Vwdx = o) fwdx Ywe V(v)
where
V(v) = {we H'(Q(v)), w = 0 on I'(v)}.

We denote by H(Q) the Sobolev space WiY(Q) with the usual norm |||;.q, -
H® = I?, with the scalar product (*, *), o

The symbol ||0y/dn|| -, 2 1 represents the norm of the boundary flux in the space
H~Y*(r(v)) = [H"*(I'(v))]' (dual space). For details we refer to the paper [2].

Remark 2.1. The problem (VP,) has a unique solution for any v e U,q.

The state problem (SP,) can be formulated in terms of a variational inequality as
follows.

Find y = y(v) € K(v) such that

(VP,) fow V¥ V(z = y)dx 2 oy f(z — y)dx VzeK(v)

where
K(v) = {ze H'(Q(v)), z =0 on I';(v), z = 0 on I'(v)}.

Remark 2.2. The problem (VP,) has a unique solution for any v € U,q.

Theorem 2.1. The problems (P,) for the cost functionals J; (i = 1,2, 3) with the
state problem (SP,) have at least one solution.

Proof. See [1], Th. 1.

Theorem 2.2. The problems (P,) for the cost functionals J; (i = 3, 4) with the
state problem (SP,) have at least one solution.

Proof. See [2], Th. 2.1.
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Remark 2.3. The existence theorem for the problem (P,) for the cost functional J
with the state unilateral problem (SP,) has not been proved yet. A closely related
problem has been considered in [12]. Nonetheless, the numerical results of this
optimal shape problem are presented in Sec. 4.

3. APPROXIMATE SOLUTION
3.1. The Primal Finite Element Method

The problems (P;), i = 1,2, 3 with the state problem (SP,) or (VP,) can be solved
by the “displacement” finite elements making use of the primal variational formula-
tion. To this end we follow the approach of [1], transforming each of the problems
(Pi), i =1,2,3 into an equivalent one with the state problem defined on a fixed
square domain and then employing bilinear finite elements on a uniform mesh.
The unknown part of the boundary is sought among continuous piecewise linear
functions. Thus, let N be a positive integer and h = 1/N. Denote by e;, j = 1, ..., N
the interval {(j — 1) h, jh) and introduce the set

U:; = {whe Uada Whleje Pl’ V]}

where P denotes the space of linear polynomials.
Let Q, denote the domain bounded by the graph I', of the function w, e Uly,

ie. Q, = Q(w,,).
We define
Q=(0,1) x (0, 1),
Ry =i = 1) hihy x {(j — 1) h,jh),
Ay ={Ki}j=1s
Fh:Q""Qh, F, = (FlhaFZh),
(3-1) Flh(xb jaz) =% Wh(xz) s

Fou(%1, %,) = %5,
Ki; = Fy(Ky) Vi j,
Ay = {Kij}liq.fﬂ :
Note that each K;; is a trapezoid and

Fh[Kue Qy X 0y
where Q; = {p, p = p(&1, £2) = Goo + ayo%; + Ao, %, + a;;%,%,} denotes the

space of bilinear polynomials.
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Let us consider the problem (VP,) on the domain €,. To approximate K(w,) we
introduce the set

K, = {z, z,€ K(wy) 0 C(2,), z) 0 Fylg,, € 0y Vi, j} .
Let us define the solution of the approximate state problem as

(SP,)" the solution y, € K, of (VP,) on @, for any z,e K,

Instead of (VP,), however, it is more suitable to solve numerically an equivalent
problem on , which is obtained by the transformation (3.1) of the integrals in (VP,)

[1]-
The cost functionals J;, i = 1, 2, 3 will be replaced by the approximate functionals
J% i =1,2,3. Then we will solve the problem

(P, min J(y(v), v,), i=1,2,3.

vpeUagh

Remark 3.1. A subsequence of solutions of (P;)" exists and converges in some
sense to a solution of the continuous problem (Pi), i =1,2,3,if i tends to zero (see
Th. 3.1 in [1]).

3.2. The Dual Finite Element Method

Since the cost functionals J;, i = 3,4 are expressed in terms of the gradient Vy
and not in terms of the function y itself, it seems to be of advantage to employ the
dual variational formulation of the state problem. Thus we shall calculate the gradient
Vy directly.

To this aim we introduce the space of solenoidal (divergence-frce) vector functions

Qo(v) = {q e [I*(Qv))]? divg =0 in Q(v), g.v =0 on dQ(v) — I'(v)} =
= {qe [(Q)]% fawq-Vwdx =0 Vwe V(v)}.
Let us construct the vector field 1 = (4, 4,):

(3.2) . Zi(xgs x5) = =[5t f(2, x,) dt,
I, =0
assuming that the integral has sense for x, = 0, x, = 1 and almost all x, € (0, 1).

It is readily seen that
div i = 0Ay[0x; = —f in Q,

Aov=2v; =0 on 092, — I,
where
Iy ={(xq, x2), Xy = B, x, =(0,1)} .
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Then a suitable dual formulation of the problem (SP;) or (VP,) is
(3.3) to find q(v) € Qo(v) such that
(4(0) Po.owr = —(% Ploawy VP € Qolv).

Remark 3.2. There exists a unique solution of (3.3) and

2+ q(v) = Vy(v)

holds. Henceforth 1 denotes everywhere the restriction of the vector field (3.2) onto
the domain under consideration and y(v) is the solution of (VP,).
The cost functionals J;, i = 3, 4, can be rewritten as

. J3(¥(v), v) = |2 + q(v)[3 0y = J3(a(v))

(34) Ja(x(v), v) = [[u(q(v)] Tiaw = T3(q(v))
where
u =u(q(v)) is the solution of the auxiliary problem

ue Vi),

Faw (Vu . Vw + uw) dx = o, (2 + q(v)) . Vw — wf) dx VYwe Vo)
where
V) = {we H(Q), yw = 0 on 0Q — Iy,

y is the trace operator, Iy is an “extension” of I' such that I’ = I'y = 8Q, Iy is
connected and open in 9Q}.
For the proof of (3.4) see [2].

Remark 3.3. Theorem 2.1 in [2] yields the existence of a solution of the equivalent

optimization problem
min J?(q(v)) , i=23,4.
veUada

The domain Q, will be divided into triangles by the moving mesh technique as
follows (Fig. 2).

We choose a, e(O, oz) and introduce a uniform triangulation of the rectangle
R = <0, ap> x <0, 1), independent of v, if h is fixed. In the remaining part Q, — R
let the nodal points divide the intervals {eg, v4(j)) into M uniform segments, where
M =1+ int((f — o) N) (“int” denotes the integer part of the number). One can
easily find that then the segments parallel to the x;-axis are not longer than h and
shorter than h(e — o)/(B — o). One also deduces the following estimate for the
interior angles w of the triangulation: )

tgo = (a0 — op)f(B — o) (1 + C; + C)7*.

Consequently, one obtains a regular family {7,(v,)} of triangulations, with
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max (diam K) < h/sin @y ,
KeTn(vn)

® = w, = aretg (o — a0)/(B — %) (1 + C; + €)™
Let us consider the space /",(v,) of piecewise linear solenoidal (divergence-free)
functions on the triangulation 7, and define ([17])
Sy = Hvn) O Qo(vs) = {Gne A (v4), g .v =0 on 0Q, — I} .

)

%o & B X
2

Instead of the problem (SP,) or (3.3) we solve the aproximate problem
(SP,)" to find q*(v,) € S, such that
(9"(on), £")o,0, = —(Z, ?")o.0. VP"ES,.
Remark 3.4. There exists a unique solution of (SPI)" for any h and any v, € U%,.

Remark 3.5. The cost functionals J;, i = 3, 4, will be replaced by approximate
functionals JF* i = 3, 4, and we then solve the problem
P, min J;*(q(vy), vy) -
vheUaah
The approximate solutions of (Pi)" converge in some sense to a solution of the con-
tinuous problem (P;), i = 3, 4 (see Th. 5.1, 6.1 in [2]).

3.3. Algorithm
The problems (P;)" have to be solved iteratively. Let v* € Ul be a given function.

We will denote the functions v* and the vectors {v*(jh)}}-,, where h = 1N, by the
same symbol. ‘
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We want to find a new iteration, say v**! € Uy, such that
F(y(vk‘i'l), vk+l) < F(y(vk), Dk)

F=J¢ or J*.

where

More precisely, the algorithm for solving the problems (P;)" reads:

Algorithm 3.1. (Method of feasible direction [5], [6])
Step 0. Choose v° € Upy arbitrarily. Set k = 0, Q* = Q(v*).
Step 1. Solve the state y* = y(v*) in the domain Q* from the problem (SP))*, j = 1
or 2.
Step 2. Find a feasible direction of descent d € C°'(<0, 1)). If this is not possible
stop, otherwise go to Step 3.
Step 3. Find A > g; such that

F(y(v* + Ad), v* + 2d) < F(y(v"),v") — e, , o* + Ad e Uly
where &, &, > 0 are given constants. If this is not possible then stop, otherwise set
vt = ok 4+ Ad,
Qk+1 — Q(vk+l)

k=k+1

and go to Step 1.

A natural choice for the direction of descent is the negative gradient of the cost
functional.

Thus we are led to the following questions:
— Do the gradients of the cost functionals exist?
— How does one get the gradients of the cost functionals with respect to the func-

tion v*?

Some answers to these questions are given in the paper [4], where the gradients
are obtained in different ways.

In the present paper we compute an approximate gradient of F by finite differences

OF(y(v"), v)fav* = (F(y(v* + Ae)), v* + Aej) — F(y(v*), v¥))/A
where
Jj-th
e;=(0,...,1,...,0),
A = 0-001 (for example).

Remark 3.6. Note that the function v* — J¥%y(v*),v*) need not be convex.
Consequently, Algorithm 3.1 cannot guarantee obtaining more than a local minimum.
However, in many practical applications this suffices to improve the performance
of a system.
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Remark 3.7. The approximate problem (P;)*, i = 1,2, 3, 4, is a nonlinear program-
ming problem with constraints. One possible approach to solve it is to use Algorithm
3.1. The state problem (SP,)" can be solved by the primal finite element method
(see sec. 3.1) with the SSOR and the projection method [18].

4. NUMERICAL TESTS

Several numerical tests carried out in order to study the performance of the
method proposed.

The results of the shape optimization problems (P;)", i = 1, 2, 3 or (P;)" with the
state problem (SP,)" or (SP,)" have been presented in [4] and [7], respectively.
Therefore we focus our attention to the problems (P,)* and (P;)* with the state
problem (SP,)" and (SP, )", respectively. The functional J4 has been replaced by

jfi(y;n Uk) = fé (aJ’h/a”)Z dx, .

The results are presented in Table 4.1.

In the first five examples we solved the shape optimization problem {P,)* with the
state problem (SP,)" using the primal finite element method (Sec. 3.1). The right
hand side f of the (SP,)" was either

(3.5) fi=—1

or

(3.6) £, = 4sin2nx,

(3.7) f5 = 8sin 2mx, sin 27x, ,

(3.8) fa=2((1)o + v'x}[v®) x5(x; — 1) +

+ (1 = 2x,) xFv' o + xy(x,fv — 1)),
(3.9) fs = 5sin 2mx, sin mx, .

We chose the constants « = 0-5, f = 1:5, C; = 1, C, = 1. The domain Q(v*)
was divided into 128 (h = 1/8) triangles. The initial value of the unknown boundary
was chosen to be v° = 1.

The final three applications test the shape optimization problem (P3)'l with the
state problem (SP;)". In this case we applied the dual finite element method (Sec. 3.2).
The right hand side f of the (SP,)* was either (3.5) or
(3.10) fo = =x3(1 — x,)* (2Jv* + 6v*xi[v*) +

+ 80'xi[v3(x, — x3) (1 — 2x,) +

+2(1 = 6x, + 6x3) (1 — xi[v?),
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Table 4.1 Numerical Tests (v = v™"(jh)

Nro. B SR S T JESG Jime | CPU[S]

1 T4 (SP?)" (3:5) 00451 - 0-0451 12
U =11, 1 L 11)11 1.

2 Jh (SP,)*  (36)  0-0351 - 0-0318 301
vTin = 0-98, 0:99, 1-05, 1-04, 17-761, 0-97, 098, 0-98, 0-97 |

3 g4 (SP)*  (37) 00918 - 0-0155 387
" = 097, 110, 122, 110, 097, 093, 07, 0:88, 089

4 J4 (SP,)"  (38) 00259  1/30 00168 370
o7 = 0-83, 0-95, 1-06, 1-10, 110, 1-07, 1-00, 0-88, 0-86

5 J4 (SP,*  (39) 01872 2/z* 01712 401
v = 0-82, 0:94, 1-03, 1:09, 1~i1, 1-08, 1~ozt 0_-97;,10-80

6 J4 (SP)*  (35) 4.-;234 - 27298 520
v = 1:40, 1-31, 1-11, o~971v,7 0-71,5-_5?“ -

7 Jh (SP,)*  (3:10)  0-0417 00123 00332 610
o7 = 1-10, 1-01, 1-05, 1-021‘,767-'97, 0-77 7

8 J4 (SP)"  (311) 00542 - 0-0520 605
VT = 092, 1:01, 1:06, 1-02, 0-98, 0'93“7 _

exact

B
Jiinit T€8P. J min
initial value of v°,

~J} min — the numerical value of the cost functional for the value of v

min
.

— the numerical resp. exact value of the cost functional for the
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(3.11) f1==2x5(3x, — 1) (2x, — 3) — 6x3(x; — 1) (2x, — 1).

The domain Q(v*) was divided into 50 (h = 1/5) triangles. The other constants
used were the same as in the first five tests.

By comparison we see that in the cases 4, 5 and 7 the method seems to provide
reasonably good results of the exact and numerical values of the cost functionals
for the initial value of v° even for relatively coarse element mesh.

Note that for other initial values of v° we can obtain lower values of the local
minimum of J;.

The tests were carried out with ICL 2958 computer.

5. CONCLUSIONS

From the numerical study we have seen a good performance of the method
proposed. As a summary we may conclude that the numerical gradient gives valuable
results. It is a most straightforward and widely used method in practice.
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Souhrn

NUMERICKA ANALYZA PRO OPTIMALNI NAVRH OBLASTI
V ELIPTICKYCH OKRAJOVYCH PROBLEMECH

ZDENEK KESTRANEK

V ¢&lanku je uZito numerické analyzy k vybéru vhodné nelinedrni optimalizani metody pro
feSeni navrhu oblasti v eliptickych problémech s jednostrannymi okrajovymi podminkami.
K aproximaci tlohy je uzito primarni i dudlni formulace metody koneénych prvki. Na nu-
merickych prikladech je ukdzdno chovani navrzené metody.

Pesome

YUCJIEHHBIN AHAJIA3 JJIST OIITUMUBALIMY ®OPMBI OBJIACTU
B SJUVIMITTUYECKHMX KPAEBBIX IMTPOBJIEMAX

ZDENEK KESTRANEK

B craTbhe NpUMEHSACTCS YHCICHHBIH aHAM3 K ONPEIC/ICHAIO HEJIMHEHHOTO METOAa ONTHMH3ALMHA
dopMel 00NaCTH [UIsl SJUIMIITHYECKUX 3aJa4 C OAHOCTOPOHHMMH KpPAeBbIMHM YCIIOBHAMH. JIns
aNNPOKCHMALIAM 3a11a4M MCIOJL3YIOTCS NEepPBOHAYAIbHAs M IBOMCTBEHHAsl GOPMYJIMPOBKA METOMAA
KOHEYHBIX JIeMeHTOB. Ha YHCIIEeHHBIX TIpAMepax MOKa3aHbl CBOMCTBA YKa3aHHOIO METoJa.
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