
Aplikace matematiky

František Tumajer
Stability and boundedness of controllable continuous flows

Aplikace matematiky, Vol. 33 (1988), No. 6, 493–504

Persistent URL: http://dml.cz/dmlcz/104327

Terms of use:
© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104327
http://dml.cz


33(1938) APLIKACE MATEMATIKY No. 6, 493—504 

STABILITY AND BOUNDEDNESS OF CONTROLLABLE 
CONTINUOUS FLOWS 
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Dedicated to the memory of my father Frantisek Tumajer 

(Received October 9, 1987) 

Summary. In the paper the concept of a controllable continuous flow in a metric space is 
introduced as a generalization of a controllable system of differential equations in a Banach 
space, and various kinds of stability and of boundedness of this flow are defined. Theorems 
stating necessary and sufficient conditions for particular kinds of stability and boundedness 
are formulated in terms of Ljapunov functions. 
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N o t a t i o n . In the paper we introduce the concept of a controllable continuous 
flow which is a generalization of a controllable system of differential equations in 
a Banach space. Before defining a controllable flow, we introduce the necessary 
notation. By the symbol P we denote a metric space with a metric Q, by R the set 
of all real numbers with the Euclidean metric, by R+ the set of all positive numbers 
and by U a non-empty set. By the symbol t we denote a continuous flow on P over R, 
i.e. a mapping t: D = {(a, x, a) e R x P x R: a ^ a} -> P which has the following 
properties (we define Jax = t(a, x, a)): 

(i) (x,a)eP x R => atax = x; 
(ii) ytp o ptax = ytax for all y ™ j8 ^ a in JR and for any x e P; 

(iii) for any (x, a) e P x R the mapping t(% x, a): <a, + oo) -* P is continuous. 

Definition. We say that {tu: ue U} is a controllable continuous flow on P over 
R x U if and only if 

(iv) for any u e U the mapping tu is a continuous flow on P over R; 
(v) U is such a non-empty set that for any a < J? < y e R, (x, u) e P x U, y = 

= pt"x, (z,v)e P x 17 for which z = yf0y there exists at least one element 
w eU such that z = ytax. 
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The basic interpretation of the above definition is described in the following 
example: 

Let U be the set of piecewise continuous mappings of the set R into a Banach space 
Bl9 letf: B x R x Bt ~> B be such a mapping into a Banach space B that for each 
ueU the mapping fu: B x R ~> B defined by the rule fu(z, a) = f(z, a, u(o)) is 
locally Lipschitzian and for any piecewise continuous mapping z: R -> B the mapping 
fu: R -> B determined by fu

z(a) = f(z(a), a, u(o)) is piecewise continuous. The solu
tions of the differential equation z' = fu(z, a) are continuous mapping zu: R -> B, 
i.e., in Caratheodory's sense we have dzu(o)\da = f(zu(a), a, u(a)) for almost all 
a e R. The set of the differential equations of the form 

z'=fM(z,<r), ueU, 

is called a controllable system. To this controllable system we assign a controllable 
continuous flow {tu:ue U) on B over JR x U in such a way that we define y = pt

ux 
if and only if x e B, y e B, a ^ e R , ueU and there exists a solution zu of the 
controllable system of differential equations for which zu(ct) = x and zu(p) = y. 

In the sequel we suppose that a continuous mapping s: R ~> P and a set m = 
= {(s(a), a) e P x JR: a e R) are given. 

Definition. The set m is uniformly stable with respect to the controllable continu
ous flow {f: u e U) if and only if there exists a mapping zx: R+ -> R+ such that 

(1) Q(X, s(a)) ^ zt(r), ueU => Q(afax, s(a)) ^ r. 

The controllable continuous flow {tu:ueU} is uniformly bounded with respect 
to the set m, if and only if there exists a mapping z±: R+ -> R+ such that 

(2) Q(X, s(a)) <ir, u e U => Q(ju
ax, s(a)) g zx(r) . 

The controllable continuous flow {f: ue U) is uniformly bounded, if and only 
if there exists a mapping zx: K+ -> R+ such that 

(3) (o,xl,ci)eB, (o,x2,a)eD, Q(xux2)<>r, 

(uu u2) e U x U => Q(X1X19 X2X2) ^ -*i(r) • 

The set m is uniformly asymptotically stable with respect to the controllable 
continuous flow {tu: u e U}, if and only if it is uniformly stable with respect to 
{tu: u 6 U} and there exist a constant rte R+ and a mapping z2: R+—> R+ such that 

(4) Q(X, s(a)) g rx , u e U , cr = a + z2(r) => ^(^^x, s(cr)) g r. 

The controllable continuous flow {tu: u e U) is uniformly asymptotically bounded 
with respect to the set m, if and only if it is uniformly bounded with respect to m 
and there exist a constant rxe R+ and a mapping z2: R+ -> JR+ such that 

(5) #(;<;, s(a)) ^ r , u e U , cr^a-f- z2(r) => o^^x, s(a)) g ri . 
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The controllable continuous flow {tu: u e U) is uniformly asymptotically bounded, 
if and only if it is uniformly bounded and there exist a constant rxe R+ and a mapping 
z2:R

+ ->K+ such that 

(6) (a, xl9 a) e D , (a, x2, a) e D , Q(XU X2) <; r , a = a + z2(r) , 

(w1? u2) e U x U => OC^x,, 0l?x2) £ r± . 

Remark. If the set m is uniformly stable with respect to the controllable continu
ous flow {tu: ueU), then for each u e U we have 

(a, s(a), a)eD=> at
us(a) = s(a) . 

Proof. Suppose that there exists (fl,s(a), a,u)eD x U such that pt
us(a) -# 

4= s(/?), i.e. Q(pt
us(a), s(0)) = r0 > 0. For each r e (0, r0) we have 0 = Q(S(O), s(a)) = 

g zx(r), hence (1) implies the inequality O(^"s(a), s(yS)) g r, which contradicts the 
assumption that ^ ( ^ ( a ) , s(P)) > r. 

Theorem 1. The set m is uniformly stable with respect to the controllable continu
ous flow {tu: u e U}, if and only if there exist a constant 8 e R+ and partial mappings 
a: R+ -> R+, b: R+ -» R+, V: P x R -> R+ with the following properties: 

(i) domain V = {(x,a)eP x R:0 < Q(X,s(a)) = 8} 

and the implication 

(x, a) e domain V, u e U, (pt
ux, /?) e domain V=> V(^"x, /?) g V(x, a) 

ho/ds whenever V(Atux,X) is defined for all l e ( a , j8 ) ; 
(ii) a, b: (0, <5> -> i^+ are increasing continuous mappings such that lim b(r) = 0 

r-+0 + 

and 2Ke implication 

(x, a) e domain V=> a(Q(x, s(a))) ^ V(x, a) ^ &(£(x, 5(a))) 
hoWs. 

Proof. Let m be uniformly stable with respect to {tu:ueU}. Without loss of 
generality we may suppose that the mapping zt from (1) is increasing and continuous 
with lim zt(r) = 0. Choose r0 > 1, 8 e zx(R

+) and define a partial mapping V: P x 
r-*0 + 

x R-±R+ by the rule 

(7) V(x, a) = sup {Q(XX, s(a) * - + ^ ~~ a) "° : (a, a) e U x R, a :> a)} 
1 + <7 — a 

for (x, a) G P x R with 0 < Q(X, s(a)) = 5. (The factor (1 + (a - a) r0)/(l + <r - a) 
is used here only for the applications in the proofs of Theorems 4, 5, 6.) If (x, a) e 
G domain V, ueU, y = ^"x, (y, />) G domain V, then for each v G U, z = f̂jjj there 
exists w G U such that z = J™x. This and the inequality 

1 + (a - a) r0 > 1 + (<x - ft) r0 

1 + c r - a ~~ 1 + a - /? 
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mply 

V(y, P) = sup Utfy, .5(a)) l ± l g J l i k o : („,*) e U x R, <x i> /jl = 
I 1 + fT - 0 J 

= sup L(*'? • *C*. <*)) -1 + (* " ^ r° : (*, *) 6 U x R9 a = j?l g 
I 1 + o- - J8 J 

= sup L>(,C*, *(*)) * + (<J " ^ r° : (w, a) e U x R, a = a l = V(x, a) , 
[ 1 + cr — a J 

this shows that the mapping V has the property (i). 
If <5 ^ Q(X, s(a)) > 0, there exists reR+ such that Q(X, s(a)) = zx(r). Then (1) 

implies that for any (u, a) e U x R, a ;> a, the inequality Q(JIX, S(<T)) ^ r = 
= z^1 (Q(X, s(a))) holds, where z^1 is the inverse mapping to zt. As 
(1 + (cr — a) ro)/(l + <x — a) < r0, this implies 

Q(X, s(a)) ^ V(x, a) ^ r0z1"
1(o(x, s(a))), 

which shows that the mappings a, b: (0, <5> -> R+ defined by a(r) = r, b(r) = 
= roZ^^r) have the property (ii). 

Let there exist partial mappings a, b, Vand a constant 5 e R+ with the properties 
(i) and (ii). Choose <50 e R+, <50 < <5, define a mapping zt in such a way that 0 < 
< b(zt(r)) ^ a(r) for 0 < r 5g <50 and zx(r) = Zi(<50) for <50 < r holds. Let us show 
that (1) holds. Suppose that there exist 0 < r :g <50, (x,a,u)e P x R x U, 
Q(X, s(a)) S Z\(r) such that for some y = a we have r < Q(yfax, s(y)). Denote p0 = 
= inf {/? G R: Q(^fax, s(fi)) = r] . As the mapping <2(* fax, s(-)): <a, + co) -> <0, + oo) 
is continuous, we may suppose that g(<-i"x, s(o)) g 5 for all a e <a, y>, where y > fi0. 
Then 

a(Q(yfax,s(y))) ^ V(yfax,y) S V(x,a) ^ b(Q(x,s(a))) S b(zt(r)) ^ a(r) . 

This implies Q{yfax, s(y)) g r, which contradicts the inequality Q(yfax, s(y)) > r. 
The theorem is proved. 

Theorem 2. The controllable continuous flow {f:ueU} is uniformly bounded 
with respect to the set m, if and only if there exist 8 e R+ and partial mappings 
a: R+ -> R+, b: R+ -> JR+, V: P x R -> R+ with the following properties: 

(i) domain V = {(x, a) e P x R: 8 ^ Q(X, s(a))} 

and the implication 

(x, a) e domain V, ueU, (^", jS) e domain V=> V(pfax, jS) = V(x, a) 

ftoWs whenever V(kfax, X) is defined for all X e <a, jS>; 
(ii) a, b: <<5, + oo) -> R+ are increasing continuous mappings such that lim a(r) = 

r-> + 00 

= +oo and £/ze implication 
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(x, a) e domain V=> a(<2(x, s(a))) g V(x, a) ^ b((2(x, s(a))) 
hoMs. 

Proof. Let {tu:ueU} be uniformly bounded with respect to m. Without loss 
of generality we may suppose that the mapping zx from (2) is increasing and conti
nuous with lim zt(r) = -f- oo. Choose r0 > 1, <5 e R+ and define the partial mapping 

I—> + oo 

V:P x R-+ R+ by the rule (7) for (x, a) e P x R with Q(X, s(a)) ^ <5. According 
to the first part of the proof of Theorem 1 the mapping V has the property (i). If 
(x, a) e domain Vand Q(X, s(a)) g r, then from (2), (7) and the inequality 

1 + (a - a) r0 

1 + cr — a 
we obtain 

e(x, s(a)) g sup JOUx, S((T)) i±i^—- a-lZo : (M? <x) e 1/ x R, <r £ a l = 
( 1 + <7 - a J 

= V(x, a) ^ r0 z^r) , 

which shows that the mappings a, b: <<5, -f-oo) -> K+ defined by a(r) = r, b(r) = 
= r0 zx(r) have the property (ii). 

Let there exist partial mappings a, b, Vand a constant 3 e R+ with the properties 
(i) and (ii). Define the mapping zx in such a way that a(zx(r)) > b(r) for r e <<5, -f- oo) 
and zt(r) = zt(8) for r e (0, <5) hold, and show that (2) holds. Let r ^ <5 be given. 
Suppose that there exist (x, a, u) e P x R x U, Q(X, s(a)) g r, y > a such that 
Q(yt

u.x,s(y)) > zx(r), If we denote y2 = inf {2 e <a, y>: O(A^"x, s(A)) = zt(r)} and 
yj = sup {X e <a, y2>: e(A£"x> s(X)) = r], then r g #0.0^ s(A)) g zt(r) for all X e 
e <7i, ?2>- Then 

a(^G2^,s(y2))) = a(zx(r)) ^ V(yfax,y2) ^ V(yfax,7l) rg 

Sb(Q(n?ax9s(yi))) = b(r), 

which contradicts the inequality a(z1(r)) > b(r). The theorem is proved. 

Theorem3. The controllable continuous flow {tu:ueU} is uniformly bounded, 
if and only if there exist a constant S e R+ and partial mappings a: R+ -* R+, 
b: R+ ~> R+, V: P x P x R -> R+ with the following properties: 

(i) domain V = {(xu x2, a) e P x P x R: 5 S Q(*U ^2)} 

and the implication 

(xl9 x2, a) e domain V, (ul9 u2)eU x U , (pt^x^ ptU2x2, j8) e domain V=> 

=> KGC-*!, ^ 2 X 2 , J?) ^ V(xlf x 2 , a) 

holds whenever V(xt
u
a

lxl9 kfa
2x2, X) is defined for all X e <a, jS}; 

(ii) a, b: <<5, +00) -> K+ are increasing continuous mappings such that lim a(r) = 
= 4- 00 and fhe implication 
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(xl9 x29 a) e domain V=> a(g(xl9 x2)) ^ V(xl9 xl9 a) ^ b(Q(xl9 x2)) 
holds. 

Proof. The proof of this theorem follows from the proof of Theorem 2 if in (7) 
we replace s(a) e P by the element af

2x2 e P and define the partial mapping V: P x 
x P x R-> R+ by the rule 

(8) V(xl9 x29 a) = 

- sup \Q(X1X19 £*X2) ^ > ~ *' T° : (Hi, u29a)eU x U x R,a^a\ 
{ 1 + a - a J 

for (xl9 x2, a) e P x P x R with Q(X19 X2) = <5. If (xl9 xl9 a) e domain V9 (ul9 u2) e 
eU x U9yj = $*xi9 j = 1, 2, (yl9 y2, p) e domain V, then for each Zj = Jfjyi9 

j = 1, 2, there exists (wl9 w2) eU x U such that zy = ^ x , - , I = 1, 2. From this 
and from the inequality 

1 + (a - a) r0 1 + (a - g) r0 

l + < 7 - a ~ 1 + f j - j S 

we obtain 

F(yi,y2>/J) = 

= sup W ' y , , ^ 2 ) 1 + > ~ ^ / ° : (t>lf i>2, a) 6 U x U x i*, a^p} = 
{ 1 + a - p J 

= sup \Q(atf . tfXu atf o tfx2)
 l ± (<T = ^ r° : (t>l5t>2, ex) 6 U x U x Uf 

[ 1 + a - /? 

(X ^ fi\ £ sup JflOrJC1S ^ x a ) 1 ~ > - ° ^ : (wl5 w2, 0-) e U x U x K, <x ^ 
J ( 1 + a - a 

^ a I = V(xl9x29a) , 

which shows that the mapping V has the property (i). The rest of the proof is an 
easy modification of the proof of Theorem 2 based on the above mentioned re
placement. 

Theorem 4. The set m is uniformly asymptotically stable with respect to the 
controllable continuous flow {f: u e U}9 if and only if there exist S e R+ and 
partial mappings a: R+ -> R+

9 b: R+ -> R+
9 c: R+ -> R+

9 V: P x R -> R+ with 
the following properties: 

(i) domain V = {(x9 a) e P x R: 0 < Q(X9 s(a)) <* c5} , 

c: (0, <5> -> R+ is a continuous increasing mapping, Mm c(r) — 0, such that the 
r-+0 + 

implication 
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(x, a) e domain V, ueU => V(pfax, p) - V(x, a) S 

<-%c(Q(,fax,s(X)))AX 

holds whenever V(^"x, X) is defined for all X e <a, /?>; 

(ii) a, b: (0, <5> -.> R+ are increasing continuous mappings such that Urn b(r) = 0, 
r->0 + 

(x, a) e domain V=> a(O(x, s(a))) S V(x, a) ^ b(O(x, s(a))). 

Proof. Let m be uniformly asymptotically stable with respect to \tu:ueU). 
The mapping z2 from (4) may be supposed to be continuous and decreasing and 
lim z2(r) — +00. Choose r0 > 1, 5 e zt(R

+), 5 :g rt and define the partial map-
r-+0 + 

ping V: P x R -» & + by the rule (7) for (x, a) e P x K with 0 < Q(X, S(OC)) S S. 
According to the first part of the proof of Theorem 1 the mapping Vhas the property 
(ii). We shall show that it has the property (i). If (x, a) e domain V, u e U, then (4) 
implies that for all 

a ^ a + Z2(Q(X, s(a))/r") we have Q(J"X, s(a)) g g(x, s(a))/r" . 

Therefore 

«W!*> s (*)) ! + ( g " a ) rQ < *?(*> 5 ( °0) ,* + (g z a ) rQ < 
1 + (j — a r0 1 + or — a 

< Q(X, s(a))/r0 < O(x, s(a)) _ V(x, a ) , 
which implies 

< sup \ Q(j"x, s(a)) —-Li-? ° ^ : (u, cr) 6 U x i^? cr ^ a + z2(^(^? *(a))/ro)> 
( 1 + a - a J 

< @(x, s(a)) ^ V(x, a) . 

This implies that for each s1eR+ there exists (u0,a0)eU x i£, a0 e <a, a + 
+ z2 (Q(X, s(tx))lrZ)} such that 

(9) V(x, a) < < ? U % s(a0)) * ± (<7° - g ) "° + e, , 
1 + a0 — a 

If we denote }> = ^"x, et = s(fi ~ oc), se R+, then for ( j , /?) e domain V, we have 

v(y, fi) < Q(PotTy, s(p0))
 lJf°~p)r° + (P - «)«= 
I + Po - P 

- «u«? • /><"*> s^o)( 1 + f ° ~ ^ r o + (!?-«)« = 
I + Po ~ P 

- «<*«*. s(/?o)) 1 + ^ r ^ r ° + (/3 - a ) e -
1 + PO ~ P 

""" ! + & - « L (1 - Bo - B) (1 +- (Ba - «) r0)J + 
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+ (fi - a) a < V(x,a)[l - (t-o ~ 1) (/? ~ «) "I (p _ a ) 8 
V ^ L (l + j 8 o - / 3 ) ( l + ( / 5 o - « ) r 0 ) J 

and therefore 

(10) -X*f l -^*.«) < - ( - , - ! ) !&_) + £. 
/ » - « 7 (1 + JJ0 - ^) (1 + 05o - a) r0) 

From this and from the inequalities 0 __ /?0 — /? __ z2(_*(j5 s(/?))/r0)5 0 < j80 — a __ 
__ z2G?(y- s(/?))/ro) + /? — a we obtain the inequality 

( 1 1 ) V(y,/?)-V(x,«) ^ 
/? - a 

< ( r 0 - l ) F ( x , a ) _, 
(1 + z2{Q(y, s{0))jrl)) (1 + r0 z2(e(j;, -(fl)/-*) + r0{p - a)) " 

< — 
(r0 - 1) g(x5 s(a)) 

(1 + z2(Q(y, s(P))jr2
0)) (1 + r0 z2(,(j;5 s(j?))/r^) + r0(p - a)) 

As lim ^(y, s(0)) = lim Q(ptax, s(f})) = Q(X, s(a)) for each u e U and the mapping 
p-*a+ 0-+<x + 

z2 is continuous by the assumption, (11) implies the inequality 

(12) _ _ , p p - W - - ) - ^ , » ) g 
/?-*«+ ft — a 

< — 
(r0 - 1) ø(x, s(a)) 

(1 + Z2{Q(X, s(o))/rg)) (1 + r0 z2(e(x, s(«))/rg)) 

If we define the mapping c: (0, <5> -* R+ by the rule 

, N _ (r0 - 1) r  
C[r) (l+z2(r/^))(l + r 0 z 2 ( , K ) ) ' 

we see that the mapping V determined by (7) has the property (i). 

Let there exist partial mappings a, h, c, Vand S e R+ with the properties (i)5 (ii). 
According to Theorem 1 the properties (i), (ii) imply that m is uniformly stable with 
respect to {tu: ueU). Choose <50 e JR+, <50 < S and put r_ = b"i(a(d0)). Suppose that 
there exists (x, a) e domain V, Q(X, s(a)) _g rl5 y > a, u e U such that Q(ytax, s(y)) > d0 

holds. Similarly as in the proof of Theorem 1 it can be easily shown that it is possible 
to suppose Q(xt

u
ax, s(X)) __ <5 for all Ae<a, y>. Then a(_(/"x, s(y))) __ V(yt

u
ax,y) __ 

__ V(x5 a) __ b(Q(x, s(a))) __ b(r_) = a(<50), which implies Q(ytax, s(y)) __ <50, and this 
contradicts the assumption that Q(yt"x, s(y)) > <>o- Thus if (*> a) G domain V5 #(x, 
s(a)) __ r_, u 6 U5 then also g(tff_x, s(cr)) __ d for each tr __ a. Define the mapping z2: 
R+ -+ R+ by the rule z2(r) = Kri)/Cv*i(r))> where z_ is the mapping from (1), and 
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show that rx and z2 fulfill (4). Suppose that there exist (x, a, u) e P x R x U, 
Q(X, s(a)) g rx and r e R+ such that for some ft = a + z2(r) we have ^(^x , s(/*)) > 
> r. If zt(r) < Q(afax, s(a)) = (5 for all 0- e <a, /?>> then (i) implies the inequality 

V(,fax, fi) = V(x, a) - Jf cfoGiSx, s(A))) dA < b(rx) - c(zx(r)) z2(r) = 0 , 

which contradicts the positivity of the mapping V. If there exists y e <a, /?> such that 
Q(yfax, s(y)) = zt{r), then pfax = ^ o yt£x implies the inequality Q(pfax, s(@)) ^ r, 
which contradicts the assumption Q(ptax, s(/?)) > r. From this we obtain that for 
each (a, x, a, u) e R x P x R x U, Q(X, s(a)) = r 1 ? or = a + z2(r) we have Q(jax, 
s(a)) = r. The theorem is proved. 

Theorem 5. The controllable continuous flow {f:ue U] is uniformly asymptotic
ally bounded with respect to the set m, if and only if there exist 5 e R+ and partial 
mappings a: R+ ~» R+, b: R+ -> JR+, c: R+->R+, V: P x R -> R+ with the 
following properties: 

(i) domain V = {(x, a)eP x R: d ^ Q(X, s(a))} , 

c: <£», +00) -* R+ is a continuous mapping such that 

(x, a) e domain V, ueU => V(fifax, p) - V(x, a) ^ 

= -Jfc(O(At«x,^)))dA, 

whenever V(kfax, X) is defined for all X e <a, j8>; 

(ii) a, b: <<5, +00) -> JR+ are increasing continuous mappings, lim a(r) = 

= +00 , SWCh fhar 

(x, a) e domain V=> a(^(x, s(a))) = V(x, a) g fe(0(x, s(a))) . 

Proof. Let {f: ueU) be uniformly asymptotically bounded with respect to m. 
Choose r0 > 1, 8 > r0rx and define the partial mapping V: P x R -» R+ by (7) 
for (x, a) e P x .R with Q(X, s(a)) ^ (5. According to the first part of the proof 
of Theorem 2 the mapping V has the property (ii). We show that it has also the 
property (i). The mapping z2 from (5) may be supposed to be continuous. If (x, a) e 
e domain V, u e U, then (5) implies that for all a = a + Z2(Q(X, s(a))) we have 
Q(jax, s(a)) ^ rv Therefore 

8(Xx, s(g))* + ( g - g ) r o < r o r i < 5 g e (x> s ( a ) ) <; F ( x > a ) , 
1 + a — a 

which implies 

sup l e U x , ^ ) ) 1 . T ( ( r ^ a ) r g :(u,a)eU xR,a^a + Z2(Q(X, s(a)))l < 
( 1 + a - a J 

< £(x, s(a)) g V(x, a) . 
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This implies that for each sxeR+ there exists (u0,a0)eU x R, <70 e <a, a + 
+ Z2(Q(X, s(a)))> such that (9) holds. If we denote y = pt

ux, ex = (jS — a) s, s e R+, 
then for (y, /?) e domain Vthe relation (10) holds. From this and from 0 = /?0 — p g 
-S z2(Q(y, s(fi))), 0 < p0 — a = z2(O(y, s(fi))) + ft - a we obtain the inequality 

(13) 

r O > , / ? ) - V ( x , g ) ^ ( r 0 - l ) V ( x , a ) ^ 

P - a [1 + z 2 ( 0 ( j , </?)))] [1 + ro ̂ feCe, s(fi))) + r0()S - a)] ~ 

< 
(r0 - 1) Q(X, s(a)) 

[1 + Z2(o(j;, s(ß)))] [1 + r0 Z2(^(j, s(ß))) + r0(/? - a)] 

As lim Q(y, s(fij) = lim Q(pt
ux, s(fi)) = ^(x, s(a)) for each ueU and the mapping z2 

fi~*a + 0->a + 

is continuous by the assumption, (13) implies the inequality 

(14) l i m s u p ^ ^ - * ^ 
fi-*a + P — a 

X 

(r0 - 1) Q(X, s(a)) [1 + Z2(Q(X, s(a)))] [1 + r0 Z2(Q(X, s(a)))] 

If we define the mapping c: <«5, + co) -> K+ by the rule 

c{r) = fcLZill , 
[ l + z 2 ( r ) ] [ l + r 0 ~ 2 ( r ) ] 

we see that the mapping V determined by (7) has the property (i). 
Let there exist partial mappings a, b, c, Vand 8 e R+ with the properties (i), (ii). 

According to Theorem 2 the properties (i), (ii) imply that {tu: u e U} is uniformly 
bounded with respect to m. If zx is the mapping from (2), put r(r) = inf (c(r): 
8 S r = zi(r)} and define r1 = zt(8), z2(r) = b(r)/r(r). Suppose that there exists 
(x, a, u) e P x R x U, Q(X, s(a)) = r such that for some p = a + z2(r) we have 
Q(ptux,s(p)) > r±. If 8 < Q(ja

x>s(a)) <: zx(r) for all <re<a, /?>, then (i) implies 
the inequality V(^x, j?) ^ V(x, a) - Jf c(eG*>, s(X))) dX ^ b(r) - r(r) z2(r) = 0, 
which contradicts the positivity of the mapping V. If there exists y e <a, /?> such that 
g(yt

ux, s(y)) £ <5, then pt
ux = ^ o yfax implies the inequality O^x, s(P)) ^ z - ^ ) = 

= r1? which contradicts the assumption Q(ptux, s(/})) > rv The theorem is proved. 

Theorem 6. The controllable continuous flow {tu: ueU} is uniformly asymptotic
ally bounded, if and only if there exist 8 e R+ and partial mappings a: R+ -> R + , 
b: R+ -> R+, c: R+ -* R + , V: P x P x R -+ R+ with the following properties: 

(i) domain V = {(xl9 x2, a) e P x P x R: 8 g Q(XU X2)} , 

c: <<5, +oo) -> R+ is a continuous mapping such that 
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(xl9 x29 a) e domain V, (ul9 u2)eU x U => 

= ^ G C * i , ^ a * 2 , # - V(x1? x2, a) ^ - Jí cfoGC1*!. ^ 2 ) ) dA , 

wfteneuer VGC*^ AC X 2 5 A) w defined for all X e <a, /?>; 
(ii) a, b: <<5, +00) -> R+ are increasing continuous mappings, lim a(r) = +00, 

r-* + oo 

st/ch řhař 

(x l 9 x2 ? a) G domain V=> a(q(xx. x2)) g V(x1? x2, a) ^ 6(g(xi, x2)) , 

Proof. The proof of the theorem foliows from the proof of Theorem 5 if in (7) 
we replace 5(0-) e P by the element ať

2x2 e P and define the partial mapping V: 
P x P x R -> R+ by the rule (8) for (x l 9 x2, a) e P x P x R with O(xl9 x2) i> <5. 
The rest of the proof is an easy modification of the proof of Theorem 5 based on the 
above mentioned replacement. 
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S o u h r n 

STABILITA A OHRANIČENOST REGULOVATELNÝCH SPOJITÝCH TOKŮ 

FRANTIŠEK TUMAJER 

V článku je zaveden pojem regulovatelného spojitého toku v metrickém prostoru jako zobec
nění regulovatelného systému diferenciálních rovnic v Banachově prostoru a jsou definovány 
různé druhy stability a ohraničenosti tohoto toku. Pomocí Ijapunovských funkcí jsou formulovány 
věty dávající nutné a postačující podmínky pro jednotlivé druhy stability a ohraničenosti. 

Pe3IOMe 

yCTOÍÍHHBOCTB H OrPAHHHEHHOCTB PEryjIHPyEMBIX 
HEIIPEPBIBHBLX ITOTOKOB 

FRANTIŠEK TUMAJER 

B craTLe BBeAeHO noHflTHe peryjiHpyeMoro HenpeptiBHoro noioKa B MeTpBraecKOM npocTpaH-
CTBC KaK o6o6rneHne peryjrapyeMoň CHCTCMBI #H(})<í)epeHHHanBHi>ix ypaBHeHHH B npocTpancTBe 
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Банаха и определенны различные виды устойчивости и ограниченности такого потока. При 
помощи функций Ляпунова сформулированы теоремы, дающие необходимые й достаточные 
условия для отдельных видов устойчивости и ограниченности. 

Лшког'5 аМгезз: 1ШВг„ РгапШек Тита/ег, С8с, кагсска пШетайку V88Т, Ш1коуа 6, 
461 17 ЬШегес. 
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