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Summary. In the paper the concept of a controllable continuous flow in a metric space is
introduced as a generalization of a controllable system of differential equations in a Banach
space, and various kinds of stability and of boundedness of this flow are defined. Theorems
stating necessary and sufficient conditions for particular kinds of stability and boundedness
are formulated in terms of Ljapunov functions.
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Notation. In the paper we introduce the concept of a controllable continuous
flow which is a generalization of a controllable system of differential equations in
a Banach space. Before defining a controllable flow, we introduce the necessary
notation. By the symbol P we denote a metric space with a metric g, by R the set
of all real numbers with the Euclidean metric, by R* the set of all positive numbers
and by U a non-empty set. By the symbol ¢ we denote a continuous flow on P over R,
i.e. a mapping t: D = {(o, x,x) e R X P x R:¢ = a} — P which has the following
properties (we define ,t,x = 1(a, x, a)):

(i) (x,@)eP x R= ,t,x = x;
(i) ,tpoptex = txforally 2 B = ain R and for any x € P;
(iii) for any (x,«)e P x R the mapping #(*, x, a): {, + o) — P is continuous.

Definition. We say that {*:u e U} is a controllable continuous flow on P over
R x U if and only if
(iv) for any u € U the mapping t* is a continuous flow on P over R;

(v) U is such a non-empty set that for any « < f <yeR, (x,u)eP x U, y =

= ytux, (z,v) € P x U for which z = ,f;y there exists at least one element
we Usuchthatz = 7x.

493



The basic interpretation of the above definition is described in the following
example:

Let U be the set of piecewise continuous mappings of the set R into a Banach space
By, let f: B x R x B, — B be such a mapping into a Banach space B that for each
ue U the mapping f* B x R — B defined by the rule f*(z, 6) = f(z, o, u(0)) is
locally Lipschitzian and for any piecewise continuous mapping z: R — B the mapping
f%: R — B determined by f3(s) = f(z(0), o, u(0)) is piecewise continuous. The solu-
tions of the differential equation z’ = f*(z, ¢) are continuous mapping z*: R — B,
i.e., in Carathéodory’s sense we have dz*(s)/de = f(z*(¢), o, u(0)) for almost all
o € R. The set of the differential equations of the form '

z' = f*%z,0), ueU,

is called a controllable system. To this controllable system we assign a controllable
continuous flow {t*: u e U} on B over R x U in such a way that we define y = ,fix
if and only if xe B, ye B, « < e R, uec U and there exists a solution z* of the
controllable system of differential equations for which z*(«x) = x and z'(8) = y.

In the sequel we suppose that a continuous mapping s: R — P and a set m =
= {(s(«),x)e P x R:ae R} are given.

Definition. The set m is uniformly stable with respect to the controllable continu-
ous flow {1": u e U} if and only if there exists a mapping z,: R* - R™ such that
6y o(x, s(@)) £ z(r), ueU= of,tix,s(o)} < r.

The controllable continuous flow {t“: u € U} is uniformly bounded with respect
to the set m, if and only if there exists a mapping z,: R* — R™* such that

(2) o(x,5(0)) £ r, ueU = o(,tix,s(0)) < z,(r).

The controllable continuous flow {¢*: u e U} is uniformly bounded, if and only
if there exists a mapping z;: R* — R* such that

(3) (o, x,)eD, (0,x3,0)eD, o(x,x) = r,
(ug, u) €U x U = 0,14 x4, ;2x,) < z4(r).

The set m is uniformly asymptotically stable with respect to the controllable
continuous flow {t*:u e U}, if and only if it is uniformly stable with respect to
{t*: u € U} and there exist a constant r; € R* and a mapping z,: R* — R* such that

4) o(x,s()) <7y, uelU, o2 a+ z,(r) = ol tix, s(0)) < r.

The controllable continuous flow {1*: u € U} is uniformly asymptotically bounded
with respect to the set m, if and only if it is uniformly bounded with respect to m
and there exist a constant r, € R* and a mapping z,: R* — R™ such that

(5) olx,s(@) = r, uelU, o= a+ z,(r)=o(tix,s(6) < ry.
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The controllable continuous flow {1*: u € U} is uniformly asymptotically bounded,
if and only if it is uniformly bounded and there exist a constant r, € R* and a mapping
z,: RY — R* such that

(6) (6,x, ) €D, (0,x,0)eD, olxy,x) Sr, 62a+z(r),
(41, u;) €U x U= g(,titx,, ti2x;) S 7y

Remark. If the set m is uniformly stable with respect to the controllable continu-
ous flow {¢*: u € U}, then for each u € U we have

(o, s(ax), @) € D = ,t*s(ax) = (o) .

Proof. Suppose that there exists (B,s(x), o, u)e D x U such that pfis(x) +
+ s(B), i.e. o(tis(x), s(B)) = ro > 0. For each r e (0, o) we have 0 = o(s(a), s(x)) <
< zy(r), hence (1) implies the inequality o(,s(a), s(B)) < r, which contradicts the
assumption that o(,t¥s(ax), s(B)) > r.

Theorem 1. The set m is uniformly stable with respect to the controllable continu-
ous flow {t*: u € U}, if and only if there exist a constant 6 € R* and partial mappings
a: Rt - R*, b: R* > R*, V: P x R —» R with the following properties:

(i) domain ¥V = {(x,%) € P x R:0 < g(x, s(«)) < 6}

and the implication
(x, «) € domain V;, u € U, (4t4x, f) € domain V = V(stix, f) < V(x, @)

holds whenever V(;tix, ) is defined for all Ae{a, p);

(ii) a, b: (0, 8y — R* are increasing continuous mappings such that lim b(r) = 0
and the implication o

(x, ®) € domain V= a(o(x, s(«))) < V(x, %) < b(e(x, s(«)))

holds.

Proof. Let m be uniformly stable with respect to {¢*: u € U}. Without loss of
generality we may suppose that the mapping z; from (1) is increasing and continuous
with lim z,(r) = 0. Choose r, > 1, § € z,(R") and define a partial mapping V: P x

r=0+

X R — R* by the rule

(7) V(x, &) = sup {o(,14x, s(o) 1+(o=9r :(u,0)eU x R,0 2 )}
l1+0—a
for (x, @) e P x R with 0 < g(x, s(«)) < 8. (The factor (1 + (¢ — @) 1o)/(1 + 0 — a)
is used here only for the applications in the proofs of Theorems 4, 5, 6.) If (x, &) €
edomain ¥V, ue U, y = 4tix, (y, B) € domain V, then for each ve U, z = ,t3y there
exists w e U such that z = _#7'x. This and the inequality
l+(@—a)ro 1+ (c—pro

l+e—a = 1+o0-p
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mply

V(y, B) = sup {e(,t',iy, s(a))%f{f_%ﬁ :(v,6)eU x R, 6 2 B} =

= sup {Q(,t;; o gtyx, 5(0)) 1_;’—?;——!;);’ t(v,0)eU x R,o = [3} <

1 —
< sup {me, @) =0 o cux ro 2 } = V(x.0),

this shows that the mapping V has the property (i).

If 6 = o(x, s(a)) > 0, there exists re R* such that g(x, s(«)) = z,(r). Then (1)
implies that for any (4,0)eU x R,0 = «, the inequality o(,t%x, s()) S r =
= z7 ' (e(x, s(«))) holds, where zy' is the inverse mapping to z;. As
(1 + (6 — a) ro)/(1 + 0 — &) < ry, this implies

o(x, () < V(x, 0) < rozy o(x, 5(2)))

which shows that the mappings a, b: (0,6) — R* defined by a(r) =r, b(r) =
= 127 '(r) have the property (ii).

Let there exist partial mappings a, b, ¥ and a constant § € R* with the properties
(i) and (ii). Choose &, € R*, 8, < 6, define a mapping z, in such a way that 0 <
< b(z4(r)) £ a(r) for 0 < r < &, and z,(r) = z,(8,) for 5, < r holds. Let us show
that (1) holds. Suppose that there exist 0 < r < &, (x, o, u)eP x R x U,
o(x, s(«)) < z,(r) such that for some y = « we have r < g(,tix, s(y)). Denote B, =
= inf {B e R: o(4t4x, s(B)) = r}. As the mapping (- t2x, s(*)): &, +00) > <0, + o)
is continuous, we may suppose that g(,#4x, s(¢)) < ¢ for all 6 € <a, y), where y > P,
Then

alofte, S0)) S Vi) < Vi) = o, () = bes(r) < ar).

This implies o(,téx, s(y)) < r, which contradicts the inequality o(,t%x, s(y)) > r.
The theorem is proved.

Theorem 2. The controllable continuous flow {t*: ue U} is uniformly bounded
with respect to the set m, if and only if there exist 6 € R* and partial mappings
a:RY - R*, b:R* - R*, V: P x R — R™ with the following properties:

(@) domain V = {(x,a)e P x R:§ < o(x, s(«))}
and the implication

(x,®)edomain ¥V, ueU, (4t B)edomain V=>V(stix, B) < V(x, a)

holds whenever V(,t%x, 1) is defined for all A e {a, B);

(i) a, b: {8, +0) > R* are increasing continuous mappings such that lim a(r) =
r—+ o
= -+ o0 and the implication
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(x, @) € domain V= a(g(x, s(«))) < V(x, ) £ b(o(x, s(x)))
holds.
Proof. Let {t: ue U} be uniformly bounded with respect to m. Without loss
of generality we may suppose that the mapping z, from (2) is increasing and conti-
nuous with lim z,(r) = 4 o0. Choose ry > 1,5 € R* and define the partial mapping

r-++owo

V: P x R — R* by the rule (7) for (x,a)e P x R with g(x, s(¢)) = 6. According
to the first part of the proof of Theorem 1 the mapping V has the property (i). If
(x, @) € domain Vand g(x, s(x)) < r, then from (2), (7) and the inequality

1+(0—-ojr _

fo
l14+0—a
we obtain
" 1+ (c—a)ry
o(x, s(@)) < sup {o(,t4x, s(c)) S R :(u,0)eU x Ry = al =
+0— o

= V(x,a) < 1o 2,(r),
which shows that the mappings a, b: <8, + ) - R* defined by a(r) = r, b(r) =
= r, 2,(r) have the property (i).

Let there exist partial mappings a, b, V and a constant d € R* with the properties
(i) and (ii). Define the mapping z, in such a way that a(z,(r)) > b(r) for r € (5, + )
and z,(r) = z,(8) for r €(0, 6) hold, and show that (2) holds. Let r = § be given.
Suppose that there exist (x,o,u)eP x R x U, o(x,s(®)) <r, y > « such that
o(ytax, s(y)) > zy(r), If we denote y, = inf {4 e <a, p): 0(3tix, s(1)) = z,{r}} and
71 = sup {A e <a, y2): o(atex, s(2)) = r}, then r < o(3tix, s(2)) < z,(r) for allie
€ (V1> 727 Then

alelyt25,5(2)) = a(ei(1) £ Vit 1) < Vi, tien) S
< (el tax, s(v1))) = b(r),
which contradicts the inequality a(z,(r)} > b(r). The theorem is proved.

Theorem 3. The controllable continuous flow {t*:u € U} is uniformly bounded,
if and only if there exist a constant § € R* and partial mappings a: R* - R*,
b:R* - R*, V: P x P x R > R™ with the following properties:

(i) domain V = {(x;, x;, )€ P x P x R: & < 0(x, X2)}
and the implication
(%15 x5, @) e domain V, (ug, u)eU x U, (41x,, gta2x,, ) € domain V=
= V(pthix,, git2x,, B) < V(xy, x5, %)

holds whenever V(;1%x,, ,12x,, 2) is defined for all A e {«, B};
(ii) a, b: (8, + @) — R* areincreasing continuous mappings such that lim a(r) =
= 4o and the implication e
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(%1, X3, &) € domain V= a(g(x;, x,)) < V(xy, x5, @) < b(o(x,, x,))
holds.

Proof. The proof of this theorem follows from the proof of Theorem 2 if in (7)
we replace s(c) € P by the element ,#%*x, € P and define the partial mapping V: P x
x P x R — R* by the rule

(8) V(xy, x5, @) =
= sup {Q(,t:‘xl, #1423, Lt(e-ar :(uy,uy,0)eU x U x Ryo = a}
" l4o0-u

for (x,, x5, @) e P x P x R with g(x;, X;) = 8. If (xy, x,, ) € domain V, (uy, u) €
eU x U, y; = gt?x;, j=1,2,(y1,y;, B)edomain V, then for each z; = ,tjy,,
j = 1,2, there exists (w,, wz)e U x U such that z; = ,#;’x;, j = 1,2. From this
and from the inequality

L+ (@ —ajry 1+ (c—B)ro

l+o—a =~ 1+0-p
we obtain *
V(y1, y2, B) =
= sup {Q(at?yl’ o‘tzzyl) ’l_—TFM}gI”O :(7-71, V3, O')G UxUx R’ 4 g p} =
+ 0 -

14+ (c—-p)r
sup {Q(,t,'?‘ o glEIXy, S5 0 p182X,) R i . B)ﬁ :(vy,v5,0)eU x U x R,
Lo —

o= ﬂ} < sup {Q(,t:"xl, atyxz)l;}—_(a:_m :(wy, wy,0)eU x U x Ry 2
+0—a

2 a} = V(xb X25 u) s

which shows that the mapping V has the property (i). The rest of the proof is an
easy modification of the proof of Theorem 2 based on the above mentioned re-
placement.

Theorem 4. The set m is uniformly asymptotically stable with respect to the
controllable continuous flow {t*:u e U}, if and only if there exist 6 R* and
partial mappings a: R*¥ - R*, b: R* - R* c:R* - R*, V: P x R > R* with
the following properties:

(i) domain V = {(x,x)e P x R:0 < é(x, s(o)) < 6},
c: (0,8) > R* is a continuous increasing mapping, lim c(r) = 0, such that the

r—-0+
implication

498



(x,®)edomain ¥V, ueU = V(ytix, f) — V(x,a) <
< - [2 dle(ix, s(2))) d4

holds whenever V(;1ix, 2) is defined for all A e {a, B);

(ii) @, b: (0, 8y - R™ are increasing continuous mappings such that lim b(r) = 0,
r=-0+

(x, %) € domain V= a(o(x, s(x))) = V(x, ) < b(o(x, s(2))) «
Proof. Let m be uniformly asymptotically stable with respect to f t":ueU}.
The mapping z, from (4) may be supposed to be continuous and decreasing and

lim z,(r) = +o0. Choose ry > 1, e z,(R*), § < r; and define the partial map-
r—>0+

ping V: P x R - R* by the rule (7) for (x,x)e P x R with 0 < g(x, s(a)) < 4.
According to the first part of the proof of Theorem 1 the mapping V has the property
(ii). We shall show that it has the property (i). If (x, «) € domain ¥, u € U, then (4)
implies that for all

g 2 o+ z(o(x, s(x))fry) wehave of,t4x, (o)) < ofx, s(a))/r5 .

Therefore
o4, s()) - F (0= o)ro _ofxs@) 1+ (0 —a)r _
l+o—ua s l1+0—a

< ofx, s(a))/ro < o(x, s()) = V{x, «),

which implies

sup { o(,14x, s(o)) (G — a) 0 (u,0)eU x R, 0 = a + z,(o(x, s(oc))/ro)}

< g(x, s(@) < V(x, ).
This implies that for each & eR™ there exists (uy, 0o)eU x R, ope{a, & +
+ 2, (a(x, s(2))/r3)> such that

©) V(x, ) < ol,ytiox, s(og)) (%0 = %) 7o

1+0y—a

+ & -

If we denote y = ptix, e, = &(f — a), ¢€ R*, then for (y, f) e domain V, we have

WMR%WMW)H%ﬂM+Waﬁ=

+ Bo— B
= g 10 o ptix, s(ﬂo))+—(ﬁ;0—_—l)—3~—9+(ﬁ—a)s=
= ’x, § ——-——~+(ﬂ°_ﬂ)r° —a)e =
Q(ﬂota > (ﬁo)) 1+ ﬂo _ ﬂ + (ﬂ )
_ or. s(fo L+ (Bo—a)ro[, (ro = 1)(B — @)
%t m»1+m—«P‘u—m-mo+w—@m]*
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< V(x,a - (ro =D (B—a) —a)e
+(ﬂ—°‘)'€=V(’)[1 (1+ﬁo—ﬁ)(1+(ﬁo‘“)’°)]+(ﬁ )

and therefore

V0B = Vo) _ Vi, o)
(10) 5« < =(ro—1) (1 + B — B)(1 + (Bo — @) ro)

From this and from the inequalities 0 < By — B < z,(e(y, s(B))/r3), 0 < Bo — @ <
< z,(e(y, s(B))/r3) + B — o we obtain the inequality

(11) M;WE_;V_Q"_E‘_) <

(ro — ) V(x, &)
T {1+ 2ae0 SN (1 + o 2ale SO + rofB - @)

_ (ro = 1) el 5@) |
(1% 2alelo, ) (1 + 7o 22(e s(B)3) + rolF — 2)

As lim o(y, s(B)) = lLim o(yt%x, s(B)) = e(x, s(x)) for each ueU and the mapping
pa+ pra+

z, is continuous by the assumption, (11) implies the inequality

(12) lim sup Vlytax, B) = V(. 2)
B—at ﬁ — -
i (0 — 1) ol 5(0) |
(1 + 2a(0(x, s(@))[r)) (1 + ro z2(e(x, s(@))/r3))

I we define the mapping c: (0, §) — R* by the rule

o(r) = (ro = U)r
(1 + 2o(r[r§)) (1 + 7o 22(r[r3))

we see that the mapping V determined by (7) has the property (i).

Let there exist partial mappings a, b, ¢, V and § e R* with the properties (i), (ii).
According to Theorem 1 the properties (i), (ii) imply that m is uniformly stable with
respect to {1*: u € U}. Choose §, € R*, §, < 6 and put r; = b~ '(a(5,)). Suppose that
there exists (x, ) € domain V, o(x, s(«)) < ry,7 > o, u € U such that o{,tax, s(y)) > &,
holds. Similarly as in the proof of Theorem 1 it can be easily shown that it is possible
to suppose o{;t4x, s(1)) < & for all Ae (o, y>. Then a(o(,fex, s(7))) £ V(,tux,y) <
< V(x, @) < ble(x, s())) < b(ry) = a(8,), which implies o(,tex, s(y)) = J, and this
contradicts the assumption that o(,fsx, s()) > do. Thus if (x, «) € domain V, o(x,
s(®)) £ r,, u € U, then also g(,4x, s(s)) < 6 for each ¢ = «. Define the mapping z,:
R* - R* by the rule z,(r) = b(r,)/c(z,(r)), Where z, is the mapping {rom (1), and
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show that r; and z, fulfill (4). Suppose that there exist (x,o, u)e P x R x U,
o(x, s(a)) < ry and r € R* such that for some B > o + z,(r) we have (4, s(B)) >
> r. If z,(r) < o(,1%x, s(0)) < & for all o€ {a, B), then (i) implies the inequality

V(stax, B) < V(x, @) — (8 c(e(utix, s(4))) dA < b(r,) — c(z4(r)) z(r) = 0,

which contradicts the positivity of the mapping V. If there exists y € {a, ) such that
o(,t4x, s(y)) < z,(r), then stix = ,f4o tx implies the inequality o(stax, s(B)) < r,
which contradicts the assumption o{zt%x, s(8)) > r. From this we obtain that for
each (o,x,0,u)eR x P x R x U, o(x,s(a)) < ry, 0 = a + z,(r) we have g(,t%x,
s(¢)) < r. The theorem is proved.

Theorem 5. The controllable continuous flow {t“: u € U} is uniformly asymptotic-
ally bounded with respect to the set m, if and only if there exist 6 € R* and partial
mappings a:R* - R* b:R* - R*, ¢ R* - R*, V:P x R— R* with the
following properties:

(@) domain ¥V = {(x,@)e P x R:d < o(x, s(2))} ,
¢: {8, +©) = R* is a continuous mapping such that
(x,®)e domain ¥V, ue U = V(ytix, f) — V(x,a) <
< — [z cle(itex, s(2))) da,
whenever V(,1ix, 1) is defined for all A € {a, B;

(i) a,b: (8, +0) > R* are increasing continuous mappings, lim a(r) =
r*+w

= + o0, such that
(x, @) € domain V= a(g(x, s(2))) < V(x, a) < b(o(x, s(«))) .

Proof. Let {t*:ue U} be uniformly asymptotically bounded with respect to m.
Choose ry > 1, 6 > rory and define the partial mapping V: P x R = R* by (7)
for (x,a)e P x R with g(x, s(«)) = 8. According to the first part of the proof
of Theorem 2 the mapping V has the property (ii). We show that it has also the
property (i). The mapping z, from (5) may be supposed to be continuous. If (x, &) e

edomain ¥, ue U, then (5) implies that for all o = a + z,(e(x, (%)) we have
o(,t4x, s(¢)) < ry. Therefore

)1+(o'—oz)ro

t“x, s(o
e(stx, s(o) P

< rory < 8 < o(x, s(0)) £ V(x,0),
which implies
sup {Q(«t:% s(o)) L;—%Q :(u,0)eU x R, 0 = a + z5(e(x, s(a)))} <
< o(x, s(0)) < V(x, a).
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This implies that for each ¢ € R* there exists (uq, 69)€U x R, goe <, a +
+ z,(g(x, s(2)))) such that (9) holds. If we denote y = 4tix, & = (B — a) ¢, e R¥,
then for (y, B) € domain V the relation (10) holds. From this and from 0 < f, — <
< z,(e(y, s(B))), 0 < Bo — a < z5(0(y, s(B))) + B — & we obtain the inequality

(13)
V(y, B) — V(x, «) < _ (ro — D V(x, ) <
p—ua T [+ zae(vs SB[ + 7o za0(v, S(B))) + ro(B — )]

__ (ro ~ 1) ol 5(2) |
=TT (el O[T+ 7o zale s(B)) + rolf — 2]

As lim o(y, s(B)) = lim o(,t2x, s(B)) = e(x, s(«)) for each u € U and the mapping z,
B-a+ B—ra+

is continuous by the assumption, (13) implies the inequality

(14) lim sup V(ptex, ) = V(x, %) <
Ba+t B - o

_ (ro = 1) e, 5(2) .
= T+ zalele s@) [+ ro za(ele (@)]

If we define the mapping c: (8, + ) — R* by the rule

o) = (ro — 1) r
") [1+ z(r)] [1 + 7o 25(r)] ’

we see that the mapping V determined by (7) has the property (i).

Let there exist partial mappings a, b, ¢, V and § € R* with the properties (i), (ii).
According to Theorem 2 the properties (i), (i) imply that {¢: u € U} is uniformly
bounded with respect to m. If z; is the mapping from (2), put o(r) = inf {c(r):
d < r < z(r)) and define r; = z,(8), z,(r) = b(r)[x(r). Suppose that there exists
(x,a,u)e P x R x U, o(x, s(¢)) < r such that for some B = & + z,(r) we have
o(s1"x, s(B)) > ry. If & < o(,tix, 5(c)) < z,(r) for all o e (o, By, then (i) implies
the inequality V(st'x, B) < V(x, a) — [£ c(o(atex, s(4))) dA < b(r) — o{r) z,(r) = 0,
which contradicts the positivity of the mapping V. If there exists y € o, 8) such that
o(,#x, 5(y)) < &, then zt%x = 4% o ,t“x implies the inequality o(ytex, s(f)) < z,(6) =
= r,, which contradicts the assumption g(st4x, s{B)) > r;. The theorem is proved.

Theorem 6. The controllable continucus flow {1*: u € U} is uniformly asymptotic-
ally bounded, if and only if there exist € R* and partial mappings a: R* — R,
b:R* - R*, ¢:R* > R*, V:P x P x R— R*Y with the following properties:

(i) domain V = {(x;, x5, 0)e P x P x R:8 < o(xy, X5)} »

c: {8, + ) — R* is a continuous mapping such that
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(%15 X2, @) € domain V, (u;,u,)eU x U=
='V(nt1‘x1, a2, ﬁ) - V(xl, X2, 05) < - Ig C(Q(A‘zlxu at:’xz)) da,

whenever V(;15'x,, 114x,, 2) is defined for all ) e {a, B);
(ii) a, b: <8, +00) —» R* are increasing continuous mappings, lim a(r) = + oo,

r—>+ow

such that
(x4, X2, &) € domain V= a(o(x;. x,)) £ V(x1, X5, @) < ble(xy, x2)) .

Proof. The proof of the theorem follows from the proof of Theorem 5 if in (7)
we replace s(c) e P by the element ,#“*x, € P and define the partial mapping V:
P x P x R— R* by the rule (8) for (xy, x5, @) P x P x R with g(xy, x;) = 4.
The rest of the proof is an easy modification of the proof of Theorem 5 based on the
above mentioned replacement.
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Souhrn
STABILITA A OHRANICENOST REGULOVATELNYCH SPOJITYCH TOKU
FRANTISEK TUMAIJER
V ¢élanku je zaveden pojem regulovatelného spojitého toku v metrickém prostoru jako zobec-
néni regulovatelného systému diferencidlnich rovnic v Banachové prostoru a jsou definovany

ruzné druhy stability a ohranienosti tohoto toku. Pomoci ljapunovskych funkci jsou formulovany
véty davajici nutné a postacujici podminky pro jednotlivé druhy stability a ohrani¢enosti.

Pesrome

VCTOMYHMBOCTb I OTPAHUYEHHOCTE PEI'VJIMPYEMBIX
HEITPEPBIBHBIX ITOTOKOB

FRANTISEK TUMAJER

B craThbe BBEAEHO HOHSITHE PEryIHPYEMOrO HENPEPHIBHOTO IOTOKA B METPHYECKOM IPOCTpaH-
cTBe KaK O0OOIEeHHe perynMpyeMoil cHCTeMbl Au((epeHIMansHEIX YPaBHEHHH B NPOCTPAaHCTBE
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Bagaxa ¥ ONpENeNeHHB! Pa3lIYHbIC BANHI YCTOMYMBOCTA ¥ OrPAaHMYCHHOCTH T2KOTO MOToKa. IIpr
nomon dyrxmmi JisnyHOBa CHOPMYIEPOBAaHB!I TEOPEMBI, JAIOIMMe HEOOXOOMMBIE B AOCTATOYHbIE
YCIIOBRS ISt OTHEIBHBIX BANOB YCTOKYIABOCTHE B OrPaHAYCHHOCTH.
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