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Summary. The paper deals with the Field-Koéros-Noyes’ model of the Belousov-Zhabotinskij
reaction. By means of the method of the Ljapunov function a sufficient condition is determined
that the non-trivial critical point of this model be asymptotically stable with respect to a certain
set.
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The Belousov-Zhabotinskij reaction is an oscillating oxidation reaction. There
are some mathematical models of that reaction. The best known ones have been
given by Weisbuch-Salomon-Atlan [8], [1] or by Field-Ko6rds-Noyes [2], [4], [6],
[10]. In this paper, some stability properties of the Field-Kérés-Noyes model are

investigated.
The model of the reaction is of the form
(1) X =s(Y- XY+ X — gX?)
Y =s"(fZ - Y- XY)
Z=wX-2)

where f,s,w,g are real positive parameters representing kinetic constants and
X, Y, Z are concentrations, all of them nonnegative.

The system (1) has exactly two critical equilibrium points which lie in the octant
X =0,Y=0,Z =0 and hence they have a real meaning. These points are a, =
=(0,0,0) and a; = (xo, Yo, z)- The latter point satisfies the system
(2 0 = s(yo — Xo¥o + Xo — 9%5)

0= s_l(on — Yo — Xo)’o)

0 = W(XO o Zo)

89



Clearly so does the former. The point a,(Xo, yo, Zo) has the coordinates

L—f—g+J(L—f—g)P+49(1 + 1))

3 Xo =
® : .
fxo 1 )
:-:—1"*‘ — gx
ot % 2( S = 9x0)
Zo = Xq .

Definition 1. 4 point (xy, y,, z;) of the boundary of a region B = R is said to be
a strict ingress point of B with respect to (1) if for any solution (X, Y, Z) of (1)
satisfying X(ty) = x4, Y(to) = yy, Z(to) = z, there exists an ¢ > 0 such that the
points (X(1), Y(1), Z(t)) for ty — € < t < t, belong to R® — B (B is the closure of B),
and for ty <t <ty + & they are from B. :

Lemma 1. All boundary points of the region P = {(x, y,z)eR* x > 0,y >0,
z > 0} except the point a, are strict ingress points of P with respect to (1).

Proof. The statement of the lemma follows: at points (x, y, z) of the boudary of P
such that x > 0, y > 0, z = 0 from the inequality Z > 0, at points x = 0, y > 0,
z = 0 from the relations X > 0, Z =0, Z > 0 and at points x >0, y =0,z = 0
from the inequalities Y = 0, ¥ > 0,Z > 0. In all other cases we get similar statements.

By Lemma 1 with respect to Lemma 8.1 [3] and to the uniqueness of a solution to
the initial value problem for (1), the following theorem holds.

Theorem 1. For each solution (X(1), Y(t), Z(t)) of the system (1) for which there
is a to such that (X(t,), Y(t,), Z(t,)) € P, its values for all t > t, from the interval
of its existence belong to P.

Let us investigate the stability of the critical points. To that aim let us introduce
new variables x, y, z by the relations

(4) X=X0+x
Y=yo+y
Z=zy+1z.

With respect to (3) and (2), the system (1) is transformed by means of (4) to the form
(5) % = s[y(1 — xo) + x(1 — yo — 29x%0)] + s(—xy — gx?)
y=s"fz — y(1 + x0) — xyo] — s 'xy

z=w(x — z).

Il

Il

Introducing the notation
x % s(—gx? — xy
(6) x=1Y], X = .}.) s f(x)= —S_Ixy ’
z Z 0
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s(1 — yo — 29%0), (1 — Xo)s 0
B= —s 'y, —s'(L + xo), s7f
w, 0, —-w

we can write the system (5) as the vector equation
(7) \ % = Bx + f(x),

Now, let us investigate the matrix —B. We denote

a, b, 0 s(29%0 + yo — 1), s(x, = 1), 0
—B=|c,d, e|= sy, sTi(xo + 1), —s7f].
1, 0, 7 —-w, 0, w

The principal minors of — B are

M; = 5(2gx0 + yo — 1),

M, = (xo + 1) (2g%0 + yo — 1) — yo(x0 — 1),

My = (x + 1)(2gx0 + yo — 1) w — wyo(xo — 1) + wf(xo — 1).
At the point ay(0, 0, 0) we have

I

My=—-s, My=—-1, M;=—w—wf.

As M; < 0, the corresponding characteristic equation has at least one zero-point
in the interval (0, c0) and thus the equilibrium point ao(0, 0, 0) is not stable. We shall
now investigate the stability of the critical point a,(Xo, Yo, Zo). Similarly as in [9,
p. 459] we shall use the following definition.

Definition 2. Let A = (a;;) be an n x n real matrix. We say that the matrix A
is a P-matrix iff all its principal minors are positive.

Lemma 2. If
©) A +g<1,

then matrix — B is a P-matrix for the point a,(Xo, Yo, Zo)-

Proof. In view of (3) we have

My=3[3 -3 —g+ (1 - f= 9 +49(L + )]
The inequality
3V(1=f—9) +4g(t +/)>f+3g-1

is valid. Indeed, in the case of nonnegative right-hand side, this inequality is equi-
valent to the inequalities

9L+ f*+ 9> —2f — 29 +2fg +4g + 4fg) > f> + 99 + | — 2f — 69 + 6fg,
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8f2 — 16f + 24g + 48fg + 8 > 0,
8(f = 1)° + 24 + 48fg > 0.
Hence M, > 0. Further, »
My = (xo + 1)(2g%g + yo — 1) = yo(xo — 1) = 2gx3 + 2gxo + 2y0 — Xo — 1.

Similarly as when calculating M, we get from (3)

1
My = o 29%)° + 20%(g = 1) + 2fg} >

1
> g9 =NV =S —gf + 4l +/) +1 -9~ 1}
Ifg+2f<1,thenl —g —2f>0and 1 — g — f > 0. Hence M, > 0. Finally,

My = (xo + 1) (29%0 + yo — 1) w — wyo(xo — 1) + wf(xo — 1) =
= wM, + wf(xo — 1) > 0

because x, > 1, as can be easily shown.

Remark. xo, > 1 is equivalent to the inequality

(== + VL =f=9]+4(1+]) _
29 .

as well as to the inequality
(L= = 0P +20 == ) V(L= = 9 +40(1 + 1) +
+ (1 =f—g)?+49(1 +f) > 4g>.
In view of (9), the last inequality is valid, because

41 —f—g)* +4g(1 — g) +4fg > 0.
Therefore x, > 1.

Lemma 3. Let (9) be fulfilled and let the matrix W be of the form

1, 0, 0
(10) W= |0, -lz s 0
c
0, 0, 2r(ad - bc) + bel
l di?
Then the matrix -
(11) C=W(—B)+(—B)TW,

where — B is given by (8) and (— B)" is the transpose of — B, is a P-matrix.
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Proof. Let us calculate the matrix C. With respect to (8) we have

1, 0, 0
b a, b, 0
(12) c=|o, 2, 0 ¢ d, e] +
: ¢ 1, 0, r
0, 0, 2r(ad — bc) + bel
dr?
1, 0, 0 ]
a, b, 0\T b
+|c d, e 0, -, 0 =
1, 0, r ¢
0, 0, 2r(ad — bc) + bel
dl?
2a, 2, 2r(ad — bc) + bel
dl
Ci1s Ci2 €
2bd be 11> €125 €13
= 2b, T’ — =1|C215 €22, C23
¢ €31, €32, C33
2r(ad — bec) + bel eb 2r(2r(ad — bc)) + bel
dl e’ di?

Now, let us calculate the principal minors of the matrix C. Using the denotations
from the proof of Lemma 2 and (8) we get

(13) M, =2a=2M, >0,

_ 4abd ad — bc _ 4bM,

M, 4b% = 4b >0,
¢ c c ,
2
i, - 8abdr [2r(ad — bc) + bel] + ab’e [2r(ad — bc) + bel] —
cdl? cdl .
2bd 8b2r
- [2r(ad — bc) + bel]* — —F [2r(ad — bc) + bel] —
2ab*e¢*  2b(ad — be
T2 = (czdlz ){47'26((161 — be) + bel(4rc — el)} .

Denote L = 4rc — el. With respect to (8) and (3)
-]
W

s
14+ x,

(14) L=4ws 'yo — s fw=s""wdy, — f) = f(3x, —1)>0,
because x, > 1. Then
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1\7[3=2b

23'1122 (4r*c¢M, + belL) > 0
C

and hence the matrix C is a P-matrix.

Theorem 2. If (9) is satisfied, then the equilibrium point a,(x,, yo, Zo) of the
system (1) is exponentially asymptotically stable.

Proof. By Lemma 3 there exists a positive definite diagonal matrix W such that
the matrix Cis a P-matrix and as it is symmetric, C'is positive definite, too [7, p. 287].
Thus all conditions of Theorem 2 [9, p. 460] are fulfilled. Therefore the real parts of
all eigenvalues of the matrix — B are positive, i.e., the real parts of the eigenvalues
of B are all negative. This implies that the point al(xo, Yor zo) is exponentially
asymptotically stable for the system (1).

In what follows we shall use this definition (compare with Definition 1 in [9, p.
454]).

Definition 3. A positive equilibrium point a, of the system (1) is asymptotically
stable in the large with respect to the set P if and only if

1. the equilibrium point a, is stable with respect to P, namely, for every ¢ > 0
there exists 0(g, t,) > 0 such that if ||(X(z,), Y(to), Z(to)) — a4| < 9 and the solution
(X(2), Y(t), Z(z)) is in P for t = t,, then [[(X(2), Y(1), Z(t)) — a4| < & for t = t,;
" 2. every solution (X(t), Y(t), Z(t)) of (1) such that (X(t,), Y(t,), Z(t,)) € P ap-
proaches a, as t - + o0.

We shall determine the set P by means of a Ljapunov function. Let us define the
continuously differentiable function V(x, y, z) by

X
V(x, p,2z) = (x,y.2) . W.|y],
zZ

where W is the matrix defined by (10). Then
(15) V(x,y,z)20 in R?

and V(x, y, z) = 0 holds only for the point a, = (0, 0, 0). Let us calculate the time
derivative of the function V(x(f), y(t), z(t)) along the solutions of the system (5). We
get

(16) %V(x(t), W), (1) = (;it[xTWx] g

As by (7) we have T = [Bx + f(x)]T = x"BT + f"(x), we obtain from the definition
of V, taking into account (10), (11), (12), the relation
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(1) & vn2.2) = 4187 + I Wx + 2 W B + 1] -

= x"B"Wx + f"Wx + x"WBx + x"Wf = x"(B'W + WB) x + 2x"Wf =

[1. 0, 0
\ b s(—gx? — xy
= —x"Cx + 2(x,y,2). |0, —, 0 . —s"Ixy | =
¢ 0
0. 0, 2r(ad — bc) + bel
dr?
x 2
= —(x,5,2).C.|y ——2[sx2(y +g%) + 2 bx] =
. sc
= ZFi(x(0 (0, 2(0) — Fox(0 500, 2(0)
where
x
(18) Fix,y,2) =(x,5,2).C.|y ='Z lc,-jxixj ,
z b=
¢;; are defined by (12), x; = x, x, = y, x3 = z, and
2
(19) Fy(x, p,2) = |:sx2(y + gx) + 2 ble.
sc
Let us denote
(20) F(x,y,z) = Fy(x, 9, 2) + Fy(x,y,2) ((x,5,2)eR?).

The function F, does not depend on z. For fixed x, y, the function F, is a quadratic
function of z and the coefficient c5; is positive at z2. Hence for fixed x, y the function

F attains its minimum. Let us calculate BF(x, A z)/@z. We get

(21) QF_(_x_a’ v, 2)

for z = z; 1= (—c;3x — ¢a3))/c33. Then

= 20332 + 2¢43X + 2¢,3y =0

(22) min F(x, y, z) = F(X, y, 2)|,=, = ¢1;x% + 2cy,xy +
zeR

E;‘IZE)X + c22y2 + 2023}).

C33 C33 C33

+ 2¢y3% .

b 2
+ Fy(x,y,2) = d;x* + dy,p* + 2dy,xy + Z[S(xzy + x%g) + ﬂ—]
sc
where
2 2
c c
(23) du:Cu—ﬁa d22=‘722"“2}, di; =1 — —=
C33 €33 C33

—Cy3X — C3) + (Clsx + 023}’)2 +

95



Let us define a subset M() of R® for ¢ > 0 by
(24) M(o) = {(x,,2)eR*:x 20, y 20, ze R} U
' U{(xy,2)eR*>x 20, y<0, zeR} U

U{(x,y,2)eR*>0>x 2 —(x} — 1).%—9, y=0,zeR}u
Xo

U{(x,y.2)eR*0>x2 -0, 0<y, zeR}.
First we show that under the assumption (9),
(25) di; >0, di,>0, d,, >0.
In fact, since xo > 1, M, > 0, we have ¢33 > 0. Hence dy; > Qiff¢;,c35 — ¢2, > 0.
But

2
€C11€33 — C13 =
di?

2r(ad — bc) + bel [:4‘" B 2r(ad — be) + bel]
d

and the first factor is obviously positive, while the second is equal to
2
2ar + é(2rc — el) = 2ar + ws™(2y, _f)sp(x()‘—-l) =
d Xo + 1
_ 2
~oar 4wy e = g
(xo + 1)?

Thus d,y > 0.
Further, d,, > 0iff ¢;5,¢335 — ¢53¢23 > 0. But
4br be]

C{,C33 — Cy3Co5 = |2r(ad — bc) + bel| .| — — —
12¢33 13¢23 [( ) ][dlz cdl

The first factor is positive, while the second is equal to

LA —4+I— =£(—3+—1—)>0,
dl Yo dl Xo
and hence d,, > 0.

Finally, by (23) and by ¢35 > 0 we have d,, > 0iff ¢55¢53 — ¢35 > 0.
But this relation is equivalent to

b 4rc[2r(a — b) + bel] — be?1?} > 0.
CZIZ

As
b
= > 0, 4rc[2r(ad — bc)] > 0

and by (14) also
4rcbel — be?l*> = bel(4rc — el) = belL> 0, wehave d,, > 0.
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Put
d
2sg
Clearly ¢, > 0.

Let us consider the equation

xg—1, xg— 1 )
(27 259”}——9 —eofldy x + 2sgdy; | + (dyyday — di;)=0.

Xo 0
(9) implies that x, > 1. In view of (23)
2 2 2 2 -
dydyy — di, = (011022033 — €11€23 — C13C22 — Ci2C33 + 2012013623) 6331 ,

where ¢;; are given by (12). By (9) we have M, = ad — bc > 0 and thus, (12) gives
¢33 > 0.
Therefore

(28) dydy, —d?, >0

. 2 2 2
iff c11(¢22¢33 - 023) — €13C22 — €12€33 + 2€15C135C23 > 0.
The last expression can be written in the form

‘333(‘311022 - C%z) + 023(012013 - 611023) + C13(C12023 - C13022) =
and since the matrix C is symmetric,
= ¢13(C21€32 — €22€31) — €a3(c11€3 — €12€31) +
+ 033(011622 i C12621) = det C = M3 > 0 .
Thus (28) follows from (9). Then the equation (27) either has complex conjugate

roots and the inequality

x2 -1 xg — 1
(29) 2sg —Lf;—— 02 —o [d“ "}“x*‘“ + 2Sgd22:, + (dudzz - d%z) >0
) o

is true for each ¢ > 0, or it has two positive real roots or one double positive root.
In all cases there is a g5, 0 < @, such that (29) is satisfied for all 0 < ¢ < g,.

Further, consider the equation
(30) s%0% + (2s9dy; — 2sdy3) 0 + (df, — dyydyy) = 0.
In view of (28) there is a positive root ¢; of (29). Then the inequality
(31) s%0* + (2sgdy2 — 25d12) @ + (di, — dyydyy) £ 0

is valid for all 0 < ¢ < g3.
Now, we can formulate a lemma.
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Lemma 4. Let (9) be satisfied and let ¢ be such that

0 < ¢ < 4 = min (1,02, 0)-
Then the function F is positive definite in M(0).
Proof. Since

F(x,y,2z) 2 G(x,y) forall (x,y,z)eR?,
where

FE|
(32) G(x,y) = dyx* + dyy® + 2dy,xy + 25 (xzy + x%°g + y*x xof >,
Xo

we have to show that G(x, y) = 0 in M(g).
We shall investigate the following four cases.

1. x =20, y = 0. Then in view of (25) and the remark after Lemma 2 all coef-
ficients in the form G are positive and hence, G(x, y) =2 0 for all x 2 0, y = 0.
Moreover, G(x,y) > 0 for x 20, y 2 0, (x, ) + (0, 0).

2. x 20,y < 0. By (25), (28) we have

(33) dy1x% + dypy? + 2d1,xy =0
for all points in R? and
2 1 2
2s <x2y + x3g + y?x —x—O——> = 2sx3 (uzf—u +u+ g),
Jxo fxo

where u = y/x. We consider only the points x > 0, y < 0, since at x =0, y <0
we have G(0, y) = d;,y* = 0. Then

x2 — 1
uz(—"————>+u+ggo for all u
fxo

iff
2
f—4gX =1y,
fxo

The last inequality is equivalent to

fxo < 4g(x5 — 1).
For x, we have the equality

gxz + Xo(=1+f+g9)—(f+1)=0,
therefore

4gxf = 4(f + 1) + 4xo(1 — f — g)
and hence

4gx5 — fxo — 49 = xo(4 = 5 —4g) + 41 + f — g) > 0.
The last inequality follows from (9).
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3.0>x 2 — (x5 — 1)(y/fxo) — ¢, ¥ £ 0. Then
G(x, y) = (diy — 2sg0) x* + dypy? + 2(dy, — so) xy =
= x2[d2202 + 2(d12 - SQ)U + (d“ — ZSgQ)] ,

where v = y/x. The last term is nonnegative iff (31) is valid. By the inequality 0 < ¢ <
< 05 (31) is true and hence G(x, y) Z 0 for 0 > x = —(xg — 1) (y[fxo) — ¢, ¥y £ 0.
4. 0> x = —g, 0 < y. Now we get that

5—1
G(x,y) z (dyy — 2sg0) x* + (dzz —@ ﬁ)fﬁ) ¥? + 2d,xy
Xo

for such points (x, y). By 0 < ¢ < ¢, we have d;; — 2sgo > 0. If we put w = x/y,
then

2 —
(di1 — 2sg0) W? + 2d,w + (dzz -0 all 1) =20
Xo
iff

2 xg — 1
dis — (dn - 259@) dy;, —0—)=0.
fxo

The last inequality is equivalent to the nonstrict inequality (29). In view of 0 < ¢ <
< @3, (29) is satisfied and hence G(x, ) = 0 for 0 > x = —¢,0 < y. The lemma is
proved.

Let us investigate the properties of the vector field defined by the system (1) for
05 X<0,02Y<0,0=5Z< .

a)Z=0for Z=X and 0£X <o, 0SY<o0 and Z<0 (Z>0) for
Z>X(Z<X),05X<w0,05Y<owand0=<Z< oo.

b) X = Oonthesurface Y — XY + X — gX? = 0. This surface has two branches,
a positive one and a negative one. Let us denote the positive branch as X . We have

(34) x = L= Y+ (1 -Y)+4Yg)
. P 2g '

We have X > 0for X < X,and X <Ofor X >X,and 0 X < 0,0 Y <
<00,0=7Z< o0.
Let us investigate X ,. Denoting ’= d/dY we have

@s) x, ==Ly —10= Y)2+29 _ —i.[1 b1z Y-2 ] |
29 29 J((1 - Y)? + 4Yg) 2g J(1 = Y + 4Y)
The inequality
~-Y-2 2
(36) ﬂj\/z_g_> <1
V(1 = Y)* + 4Y9)
is equivalent to the inequality 4g(g — 1) < 0 and thus to the inequality g < 1 that
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is true by the assumption (9). Therefore (36) is valid, too. By (35) it follows that
X, <0.
Further we have

o _ L1 iy —12__(1_Y_2g)'(29_(1_y)) -
Xp = Zg[ (1 = Y) + 4Yg)" Y J( = Y7 + avg)? ]~

= — ;;.[(1 — Y)? + 4Yg] 732 (4% — 4g) =

=2(1-9g)[(1 — Y)* +4Yq]7** > 0.

Hence X, is decreasing and convex for 0 £ Y < w, 0 £ Z < . Denote k =
= X,(0) = 1/g, then k — X, (Y)> 0 for all Ye (0, ). Further we put h =
=1lim X (Y) = 1, hence h — X (Y) < 0 for Ye (0, ).

Yoo

c) For the Y-component we have Y = 0 on the surface fZ — Y — XY = 0 and
hence for Y = fZ|(1 + X). The intersection of this surface with the plane X = const
is a straight line, while with plane Z = const it is a hyperbola. For Y < fZ|(1 + X)
we have Y > 0 while ¥ < 0 for Y > fZ/(1 + X).

Lemma 5. Let the assumption (9) be fulfilled and let the constants X;, Y;, Z; for
i = 1,2 satisfy

(37) 0<X,<h, k <X,,
‘ 0<2Z, <X,, X,<Z,,
0<Y, < IZ, 122 2

1+X, 1+4h
Let Ry = {(X,Y,Z)eR* X, S X <X,, Y, S Y<Y,, Z, <Z < Z,)} and let R}
be the interior of R,. Then the following statements are true:

1. Each solution of (1) passing through a point of R, enters R} and remains
in RY.

2. The system (1) has a unique equilibrium point in R, namely the point
ay(xo5 Yos Zo)-

Proof. 1. The set R, is constructed in such a way that each solution of (1) which
arrives at a point of the boundary of R, goes to R}, which follows from the signs
of X, Y, Z at that point.

2. The system (1) has only two equilibrium points, ao(0, 0, 0) and a,(¥o, Yo, Zo)-
The point a, does not belong to R,, hence we investigate the point ay(xos Yo o)
where the values X, y,, z, are determined by (3).

We have to show that

(38) X1§h=1<x0<k=1<X2,
g
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that is

(L= f =g+ (L= f—9)+49(1 + /) <L
2g g

which becomes
(39) 992 —6g + 1 +6g9f —2f + f2<1+f24+g*—-2f—2g9 +

+2fg +4g +4fg <1+ f*+9>+2f +29 +2f9.
The relation (39) represents the system of inequalities
(40) 8g(g — 1) <0,

4f(g — 1) <0

which is valid because g + 2f < 1 and hence X; < xo < X,.
As zy = x4, We have

(41) Z, <X, <x0=2,<X,<2,
and by the strict monotonicity of the function fx/(1 + x) the inequalities (37), (38),
(41), imply that the inequalities ‘
fxo < fX, < fZ, <
14x0 14X, 1+4+h

(42) fXo > fX, > fZ,
1+x0 14X, 1+ X,

Y2 s

> Y,

are true. The inequalities (38), (41), (42) show that the point ay(xo, Yo, Zo) lies in RS.

Lemma 6. Let the assumption (9) be satisfied, let the constants X;, Y, Z;,i = 1, 2,
satisfy (37) and let K be such that k < K < X,.
Further let P(K) be the set

@) PK)={xvzermhsxsk L <v< K k.
1+K 1+ h

IIA

s Z

IA
lIA

Then a, € P(K) and each solution f (1) remains in P(K) for all t 2 t, if the initial
value of that solution at t, belongs to P(K).

Proof. By the inequalities (37), (38), (41) as well as by the estimate for fx,/(1 + x,)
it follows that a, € P(K) and P(K) < R,.

By the construction of the set P(K) as well as by Lemma 5 it follows that for
every ¢ > 0 the trajectory of the solution of (1) mentioned in the statement of the
lemma remains in the g-neighbourhood of P(K) and hence it lies in P(K).

The transformation (4) maps the set P(K) to the set

(44) F(K):{(x,y,z)eRszh—-xo§x§K—xo,
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IIA

f——g—— Xo yh—xg £z K — xpl .
1+h 1+4+x

f h % <y
1+K 1+ xg

Suppose that K > 1 is such that

2
(45) 1—-x0+2x0é 1 .
2(1 + x,) 1+K

Then the inequality
1 —x, < 1 X
2 14K 1+4x

is true and hence, under the assumption (45), P(K) = P,(K) where

(46) PI(K)={(x,y,z)eR3:1—x0§x§K—xo,
f(l——x—")éyéf KX)oy =z2K -l
2 1+h 14 x
If
(7) loxp> (-1 12Xy,
2x,

then x > (—(x§ — 1) (y/fxo) — @) in P4(K) and thus P,(K) = M(g) where M(g) is
defined by (24). The condition (47) is equivalent to the relation

(48) 0 > (xo — 1) (x5 + 2xo — 1)[2x, .
Lemma 7. If
(49) f=006, g=064, w=1, s=1,

then (9) is satisfied and the function F = F(x, y, z) which is defined by (20) is
positive definite in P(K) with
(50) K =198.

Proof. First of all, on the basis of (3), (49) implies that x, = 1-542496, y, =
= 0-036401 and hence, the left-hand side of (45) is equal to 0-33544. This implies
that (45) is satisfied with K given by (50). Clearly, (49) implies (9).

Denote the right-hand side of the inequality (48) by g,. If 0o < @4 With g, men-
tioned in Lemma 4, then for all ¢ € (o, 04) Lemma 4 as well as (48) are true. Hence,
by Lemma 4 F is positive definite in M(g), and since for such ¢ both (48) and (47)
are true, P,(K) = M(g), which implies that the function F is positive definite in
P,(K). By (49) we have that (45) is satisfied with K determined in (50) and thus
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P(K) = P,(K). Hence we have to show that o < €1, Qo < @2, Qo < @3. Direct
calculation yields

00 = 0785046 , o, = 0792314, g, = 0-787336, o5 = 0-792069.

This completes the proof of the lemma.

Theorem 3. If (49) is satisfied, then the equilibrium point ay(xo» Yo, 2o) of the
system (1) is asymptotically stable in the large with respect to the set

(51) P(198) = {(X,Y,Z)e R*: 1 < X £ 198, 0020134 £ Y <
' < 00594, 1 < Z < 1-98}

in the sense of Definition 3.

Proof. By Lemma 7, the conditions (49) imply that (9) is satisfied and that k
determined by (38) is equal to 1-5625. Hence we can consider the set P(K) given by
(43) forK = 1:98 > k and h = 1, f = 0-06. This set is defined by (51). For its image
P(1-98) under the transformation (4) the following statements are true.

1. By virtue of Lemma 6 and the transformation (4), each solution of (5) remains
in P(1-98) for all t = t, if its initial value lies in P(1-98) at t = t,.

2. P(1-98) is a compact set and (0, 0, 0) € P(1-98).

3. There exists a continuously differentiable function V(x, y, z) defined by

x
V(x,y,2) = (x,y,2) . W.|y]|,
z
where W is the matrix defined by (10), with the following properties:
a) By (15), ¥(x, y, z) is positive definite in P(1-98).
b) By Lemma 7 the time derivative V(x(t), y(1), z(t))|¢s, of the function V(x(¢),
¥(1), z(t)) along a solution of the system (5)

V(x(8): y(1), 2(D)]sy) = —F(x(1), ¥(1), (1))
is negative definite.

Then by the La Salle theorem [5, p. 76] on the stability in the large, the equilibrium
point (0, 0, 0) of the system (5) is stable with respect to the set P(1-98) and each
solution system which begins in P(1-98) is approaching the origin (0, 0, 0) as t — 0.
Similar properties are exhibited by the solutions of (1) in P(1-98), and hence the
equilibrium point a,(xo, yo, zo) of the system (1) is asymptotically stable in the
large with respect to the set P(1-98).
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Sthrn
STABILITA MODELI BELOUSOVEJ-ZABOTINSKEHO REAKCIE

VLADIMIR HALUSKA

V praci sa pojednava o Fieldovom-Korésovom-Noyesovom modeli Belousovej-Zabotinského
reakcie. Metodou Ljapunovovej funkcie je stanovena postaujuca podmienka na to, aby netri-
vialny kriticky bod tohoto modelu bol asymptoticky stabilny vzhladom na istd mnoZinu.

Pesrome
VCTOMYUBOCTh MOJEJIN PEAKIIUM BEJIOYCOBA-XKABOTHMHCKOI'O
VLADIMIR HALUSKA
Hacrosimmass pa6ora 3asuMaeTcs Mogensio ®uibpma-Kepema-Hoiteca peaxuun Benoycosa-
XKaborurckoro. MetonoM OyHkIuu JIsnyHOBa YCTAHOBJIEHO HOCTATOYHOE YCIIOBHE IS TOTO,
yTOOBl HETPHBHAJBHAS KPHTHYECKAs] TOYKA 3TOK MOJSIH ObLIAa aCHMOTOTHYECKH YCTOXYMBOM

OTHOCHTEJIBHO ONPSHJICHHOTO MHOXECTBA.
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