
Aplikace matematiky

Petr Přikryl; Jiří Taufer; Emil Vitásek
Transfer of conditions for singular boundary value problems

Aplikace matematiky, Vol. 34 (1989), No. 3, 246–258

Persistent URL: http://dml.cz/dmlcz/104351

Terms of use:
© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104351
http://dml.cz


34(1989) APLIKACE MATEMATIKY No. 3, 246—258 

TRANSFER OF CONDITIONS FOR SINGULAR 
BOUNDARY VALUE PROBLEMS 

PETR PRIKRYL, JIRI TAUFER, EMIL VITASLK 

(Received February 5, 1988) 

Summary. Numerical solution of linear boundary value problems for ordinary differential 
equations by the method of transfer of conditions consists in replacing the problem under con
sideration by a sequence of initial value problems. The method of transfer for systems of equations 
of the first order with Lebesgue integrable coefficients was studied by one of the authors before. 
The purpose of this paper is to extend the idea of the transfer of conditions to singular boundary 
value problems for a linear second-order differential equation. 

Key words: numerical analysis, transfer of conditions, invariant imbedding, singular boundary 
value problems. 
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1. INTRODUCTION 

The boundary value problems for ordinary differential equations of the type 

(i.i) -W0/)' + «(0.v-=A0 
where q or ljp has a singularity at one of the endpoints of the interval of integration 
are subject of great interest for physicists and mathematicians. Such a problem 
arises, for example, when using the Fourier method for the Poisson equation in polar 
coordinates. Another example of a problem of this type is the eigenvalue problem 

(1.2) -/ ' (0 + [ | + w(0-^]A0 = o. 

y(0) = 0 , 

a y(b) + p y'(b) = 0 , a2 + p2 * 0 

for the radial Schrodinger equation. 

A very efficient method for solving boundary value problems for ordinary dif
ferential equations is the invariant imbedding [1], [2], [3]. In the linear case, one 
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possible derivation of the method is based on the idea of transferring the boundary 
conditions. The idea of transfer of conditions consists, roughly speaking, in the 
observation that the function y which satisfies the differential equation (1.1) and the 
condition of the type 

(1.3) M'o) + M'o)/('o) = 7 
should satisfy a linear differential equation of the first order, that is, a condition of 
the type (V3), at any point of the interval of integration. This approach was presented 
for very general multipoint boundary value problems by one of the authors in [2], 
[3], and also various algorithms resulting from it have been studied there. However, 
the results of [2], [3] apply only to such equations of type ( l . l ) that the functions ljp 
and q are Lebesgue integrable in the interval of integration. The purpose of this 
paper is to extend the method of transfer to equations for which the above assumption 
is violated. 

For the reader's convenience, the next part of the paper surveys the method (and 
the notation used) in the regular case. The only difficulty of the adaptation of the 
method to the singular case consists in transferring the boundary condition prescribed 
at the point where ljp or q has a singularity. This transfer is studied in the third 
section, namely in Theorems 3.1 and 3,2. 

2. THE METHOD OF TRANSFER OF CONDITIONS 

This section describes the transfer of boundary conditions in the regular case and 
the resulting methods for the numerical solution of boundary value problems as 
developed by Taufer in [2]. All the proofs are omitted here as they can be found in [2], 

First we give the definition of the boundary value problem we will be concerned 
with in the present section. 

Problem 1. Let [a, b] be a closed finite interval and let p, g, and / be functions 

from [a, b] to R such that ljp, g, and / are Lebesgue integrable on [a, b]. Find 

a. function y: [a, b] -» R such that 

(i) v and py' are absolutely continuous functions on [a, b]\ 

(ii) y satisfies the equation 

(2.1) -(p(t)y'(t))' + q(t)y(t)=f(t) 

a.e. (almost everywhere) on [a, b]; 

(iii) y satisfies the boundary conditions 

(2.2) <*! y(o) - px p(o) y'(o) = yt , 

(2.3) a2 y(b) + p2 p(b) y'(b) - y2 , 

where a*,Pi, 7i^R are such that a? + $\ 4= 0, i = 1, 2. 
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The fundamental idea of the method of transfer consists in constructing functions 
a, /?, and y (all from [a, b] to R) such that every solution of (2.1) satisfying the 
boundary condition (2.2) satisfies the relation 

(2.4) «(t)y(t)-ll(t)p(t)y'(t) = y(t) 

at every point t e [a, b]. We then say that the condition (2.2) has been transferred 
to the point t and call (2.4) a transferred condition. 

Similarly, we try to find functions a, j§, y: [a, b] -> R such that every solution 
of (2A) satisfying the boundary condition (2.3) satisfies 

(2.5) Kt) y(t) + IK<) p(t) y'(t) = y(t) 
for any t e [a, b]. 

For a fixed t e [a, b] the transferred conditions (2.4) and (2.5) represent a system 
of two linear algebraic equations (with unknowns y(t) and p(t) yf(t)) that the solution 
of Problem 1 — if there is any — should satisfy. Hence, if the transfer is practicable 
(i.e. if we are able to construct the functions a, j8, y and a, /?, y) and if Problem 1 has 
a solution, then the value y(t0) of the solution at a point t0 e [a, b] may be found 
by solving the system of equations (2.4), (2.5) with t = t0. 

It has been shown [1], [2] that appropriate functions a, /?, y and a, /?, y in (2.4), 
(2.5) may be found as solutions of initial value problems for certain nonlinear ordinary 
differential equations of the first order. In such a way we arrive at a method which 
reduces the boundary value problem under consideration to solving several initial 
value problems and certain linear algebraic systems. Since the solution of initial 
value problems seems today to be a relatively easy task "due to the existence of very 
good and well-programmed methods, the above procedure for solving boundary 
value problems may be quite useful. 

Observing that multiplication of equation (2.4) or (2.5) by an arbitrary function 
different from zero leads to the same condition, we can see that there exist infinitely 
many ways of transferring boundary conditions. Hence, the general idea of the transfer 
of boundary conditions may lead to algorithms with substantially different properties. 
For example, the well-known simple shooting method is also tractable in terms of 
a transfer of boundary conditions. However, this algorithm is known to be numerical
ly unstable in general. The questions of stability were studied in detail by Taufer 
in [2] and an example of a numerically stable transfer of the left boundary condition 
is given in the next theorem. 

Theorem 2.1. Consider Problem 1 and suppose, in addition, that p(t) > 0 and 
q(t) ^ 0 a.e. on [a, b] and that at = 0, ftt = Ofor i = 1,2. Then: 

(i) If at > 0 then there are absolutely continuous functions n, t,: [a, b] -> R 
which are uniquely determined by differential equations 

(2.6) n'(t) = q(t) n2(t) - — a.e. on [a, b] , 
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(2.7) C'(t) = «(0 4(0 C(0 - 4(t)j(t) a.e. on [a, b] 

with initial conditions 

(2.8) n(a) = - jSi/a, , 

(2.9) C(a) = ?!/«! • 

These functions possess the property that every solution of (2.1) that satisfies the 
left boundary condition (2.2) satisfies also the transferred condition 

(2.10) y(t) + r,(t) p(t) y'(t) = C(t) 

for any t e [a, b] . 

(ii) If Pi > 0 then there are absolutely continuous functions w, t: [a, b] -* R 
which are uniquely determined by differential equations 

(2.11) n'(t) = — n2(r) - q(i) a.e. on [a, b] , 
XO 

(2.i2) c(0 = 4 - 4(0 c(0 - /(0 <t-e- o" [«. *] 
KO 

with initial conditions 

(2.13) « ( a ) = - « ! / / ? ! , 

(2.14) C(a) = - y d i S i . 

These functions possess the property that every solution of (2.1) that satisfies the 
left boundary condition (2.2) satisfies also the transferred condition 

(2.i5) «(OXO + KO/(0 = ^(0 
fOr any t 6 [a, b] . 

Remark 2.1. Completely analogous statements are true regarding the transfer 
of the right boundary condition (2.3), provided a2 > 0 or p2 > 0- Thus, Theorem 
2A yields a procedure for constructing functions a, /?, y and a, /?, f in the transferred 
conditions (2.4), (2.5). In addition, if these functions are constructed according to 
Theorem 2.1 it may be shown [2] that the following is true: 

(i) The system (2.4), (2.5) for y(t) and p(t) y'(t) has a solution for any t e [a, b] 
if and only if Problem 1 has a solution. 

(ii) The system (2.4), (2.5) has a unique solution for any t e [a, b] if and only if 
Problem 1 has a unique solution. 

Remark 2.2. If the hypotheses of Theorem 2A are satisfied and, in addition, 
p(t) ^ p0 > 0 for all t e [a, b] and either (x1 + a2 > 0 or q(t) -£ 0, then Problem 1 
has a unique solution. 

249 



Remark 2.3. The generalization of the transfer of conditions described in Theorem 
2.1 to systems of linear differential equations and to multipoint boundary value 
problems with internal conditions of various types was studied by one of the authors 
in [2]. 

Theorem 2.1 assumes Lebesgue integrability of \jp, q, and f on the whole interval 
[a, b]. The rest of the paper is devoted to the study of boundary value problems 
with q or l/p having a singularity at an endpoint of [a, b] (see, for example, (1.2)). 
Our aim is to obtain a modification of Theorem 2.1 in which the transfer of the bound
ary condition from the singular point will be described. 

3. TRANSFER OF THE BOUNDARY CONDITION FROM A SINGULAR POINT 

We first describe the singular boundary value problems we will be concerned 
with in what follows. The problems are similar to Problem 1 but the assumptions 
on q or l/p are weakened. 

Problem 2. Let [a, b] be a closed bounded interval and let p, q, andf be functions 
from [a, b] to R such that l/p e &([a, b]), fe &([a, b]). Suppose further that 
q e J£([a + s, b]) for any 0 < 8 < b — a and q <£ if([O, b]). Find a function 
y: [a, b] -> R such that 

(i) y and pyr are absolutely continuous on [a, b]; 

(ii) y satisfies the equation (2.1) a.e. on [a, b]; 

(iii) y satisfies the boundary condition 

(3.1) a y(b) + p p(b) y'(b) = y , a2 + /i2 4= 0 . 

Problem 3. Let [a, b] be a closed bounded interval and let p, q, andf be functions 
from [a, b] to R such that q e JSf([a, b]), fe &([a, b]). Suppose further that 
l/p e J£([a + 8, b]) for any 0 < 8 < b — a and l/p $ ^([a, b]). Find a function 
y: [a, b] -> R such that 

(i) y and py' are absolutely continuous on [a, b]; 

(ii) y satisfies the equation (2.1) a.e. on [a, b]; 

(iii) y satisfies the boundary condition (3.1). 

At first sight it seems that Problems 2 and 3 are not boundary value problems 
since no conditions are prescribed at the left boundary point t = a, The following 
two lemmas, however, show that this is not true and that some special conditions 
of the type (2.2) are automatically satisfied at the point t = a. Before formulating 
them, it will be useful to say what we mean under a solution of the differential equation 
(2.1) in general. In what follows, a solution of (2.1) on [a, b] is any function y such 
that y and py' are absolutely continuous on [a, b] and y satisfies the equation a.e. 
oh [a, b]. 
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Lemma 3.1. Let y be a solution of Problem 2. Then 

(3.2) y(a) = 0. \ ..'; 

P roof is by contradiction. First, suppose that y(a) > 0. This and the continuity 
of y imply the existence of 5 > 0 and y0 > 0 such that 

(3.3) y(t) ^ y0 for all t e [a, a + d] . 

From (2.1) we easily obtain that qy e «£?([a, b]) for any solution of Problem 2 . 
Further, (3.3) implies that 1/y is bounded on [a, a 4- 5] and since y is continuous, 
1/y is also integrable on this interval. Thus, qy . (l\y) = qe «^([a, a 4 S]), which 
contradicts the assumption that q 4 ^ ( [ a , b]). 

Assuming y(a) < 0 we can proceed analogously. Hence y(a) = 0. : 

Lemma 3.2. Let y be a solution of Problem 3. Then 

(3.4) p(a)y'(a) = 0. ,; 

Proof of this lemma is completely analogous to that of Lemma 3.1.' 
Since the functions q and \\p are Lebesgue integrable on [a 4- e, 6] , 0 < e < 

< b — a, the transfer of the right boundary condition from b may be performed in 
the usual way based on the analogue of Theorem 2.1 for the point t = b. Our task 
here is to describe the transfer of the left boundary conditions (3.2) and (3.4). This 
may be performed with the help of the next two theorems. 

Theorem 3.1. Consider Problem 2 and suppose that p(t) > 0 and q(t) = 0 a.e. 
on [a, b]. Then there is a unique pair of absolutely continuous functions rj, £: 
[a, b] —> R which satisfy the differential equations 

(3.5) r,'(t) = q(t) n\t) - - | T a.e. on [a, b] , 

KO 
(3.6) c(0 = «(01(0 c(0 -1(0/(0 «•*• °» [«'b] 
and the initial conditions 

(3.7) 1(a) = 0 , ; 

(3.8) *f(f) g O in a right neighbourhood U+(a) of a , 

and 

(3.9) C(a) = 0 . 

The functions r\ and C possess the property that any solution y of the equation 
(2.1) on [a, b] satisfies the condition 

(3.10) y(t) + n(t) p(t) y'(t) = £(t) 

for any t e [a, b]. .' 

251 



Theorem 3.2. Consider Problem 3 and suppose that p(t) > 0 and q(t) ^ 0 a.e. 
on [a, b]. Then there is a unique pair of absolutely continuous functions ^, £: 
[a, b] —> R which satisfy the differential equations 

(3.11) n'(t) = — n\t) - q(t) a.e. on [a, b] , 
Hv) 

(3.12) C'(0 = ~ f { l ( 0 C(0 - f(t) a.e. on [a, b] 

arci the initial conditions (3.7) —(3.9). The functions ^,C possess the property that 
any solution y of the equation (2A) on [a, b] satisfies the condition 

(3.13) n(t) y(t) + P(t) y'(t) = (,(t) 

for any te [a, b]. 

Thus, the conditions (3.10) and (3A3) may be viewed as the transferred conditions 
(3.2) and (3.4), respectively. 

To prove Theorems 3.1 and 3.2 we need several simple lemmas. 

Lemma 3.3. Let P, Qe J*?([a, b]) be nonnegative a.e. on [a, b] and let ^0 S 0. 
Then there exists a unique function ^ which is absolutely continuous on [a, b] 
and satisfies the differential equation 

(3A4) rf(t) = Q(t) tf(t) - P(t) a.e. on [a, b] 

along with the initial condition 

(3.15) ??(a) = " 0 . 

Moreover, for the function ^ and all t e [a, b] we have the bound 

(3A6) r1o-j'aP(s)ds^r1(t) = 0. 

Proof. The existence and uniqueness of ^ has been proved in [2], Lemma 1.1. 
The proof of q(i) ^ 0 may be found there as well. The remaining part of (3A6) 
follows from (3.14) by integration. For the reader's convenience we briefly sketch 
the existence proof as the uniqueness part follows from the well-known general 
theorems on ordinary differential equations. 

The solution of (3A4) may be found in the form — ujv where u and v are solutions 
of the linear system 

(3.17) u'(t) = P(t)v(t), 

v'(t) = Q(t)u(t) 
with the initial conditions 

(3.18) u(a) = -rj0, v(a) = 1 . 
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For the system (3.17), (3.18) one can easily show that u(t) v(t) ^ 0 for any t e [a, b] 
and, moreover, that v(t) > 0 in [a, b\. The last inequality shows that the ratio —ujv 
is well defined in the whole interval [a, b]. 

Lemma 3.4. Let P, Qe J£([a, b\) be nonnegative a.e. on [a, b\ and suppose 
that f/i, n2 are two nonpositive solutions of (3A4) on [a, b\. Let fli(f0) ^ ^2(^0) 
for some t0 e [a, b\. Then 

(3.19) rji(t) ^ n2(t) _S 0 for all t e [a, b] 

and for any pair t', t" e [a, b] such that t' ^ t" we have 

(3.20) r,2(r) - t,t(t') ^ n2(f) - nx(t"). 

Proof. The inequality (3.19) may be proved by contradiction using the continuity 
°f *h> *fc a n ( i t n e uniqueness statement of Lemma 3.3. To prove (3.20) we first use 
(3A4) to write 

(3.21) (n2(i) - ni(t))' = Q(t) (rj2(t) + !,,(*)) (n2(t) - rj^t)) . 

Since Q is nonnegative a.e. on [a, b\ and, furthermore, r\2(t) + n^t) g 0 for ail 
t e [a, b\ we find from (3.19) and (3.21) that (n2(i) - rj^t))' ^ 0 a.e. on [a, b]. 
This inequality and the absolute continuity of qu n2 yield (3.20). 

Lemma 3.5. Let P, Qe J£([a, b\) be nonnegative a.e. on [a, b\ and let n0 ^ 0. 
Then there exists a unique function n which is absolutely continuous on [a,b\ 
and satisfies the differential equation (3A4) a.e. on [a, b\ along with the initial 
condition 

(3.22) n(b) = rj0 . 

Moreover, for the function n and all te [a, b\ we have the bound 

(3.23) 0 ^ ti(t) S no + Jr P(s) ds . 

P roof follows from Lemma 3.3 by substitution. 

Lemma 3.6. Let P, Qe J£([a, b\) be nonnegative a.e. on [a, b\ and suppose that 
nx, n2 are two nonnegative solutions of (3.14) on [a, b\. Let n2(t0) ^ ni(t0) for 
some t0 e [a, b\. Then 

(3.24) t]2(t) £ nx(t) £ 0 for all t e [a, b\ 

and for any pair t', t" e [a, b\ such that t' ^ t" we have 

(3.25) n2(t') - m(t') ^ ni(t") - n,(t"). 

Proof is quite analogous to that of Lemma 3.4. 
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i Lemma 3.7. Let P e &([a, b]). Further, let Q e &([a + e, b]) for any 0 < e < 
< b — a and suppose Q $ i f([a, b]). Finally let P and Q be nonnegative a.e. 
on [a, b]. Then there exists one and only one function 77: [a, b] -> R which is 
absolutely continuous on [a, b], satisfies the differential equation (3.14) a.e. on 
\_a, b] and is nonpositive in some right neighbourhood U+(a) of the point a. 

Proof. Let i e ( a , b] and ^x ^ 0. Let c be an arbitrary number satisfying a < 
< c < T. Then, by Lemma 3.5 there exists a solution ^(•; T, ̂ x) of (3.14) in [c, T] 
satisfying the initial condition 

(3.26) ^(T; T, ?,T) = ^ . 

Since c > a was arbitrary, the function .*/(•; T, ^x) is well defined in (a, T] . Let us 
now investigate its limit for t -> a + . 

From (3.14) we have 

(3.27) n(t; T, nt) = nx - fl [Q(s) n
2(s; T, IJ,) - P(s)] ds = 

- = ^ - f f Q ( s ) ^ 2 ( s ; T ^ t ) d S l + K P ( s ) d s 

for any t e (a, T] as the right-hand side of (3.27) has sense. Since Q(') fy2(-; T, ̂ x) is, 
obviously, measurable and nonnegative on (a, T] and P e =£?([a, b]) we can pass in 
(3.27) to the limit as t -> a + obtaining 

(3.28) lim n(t; T, ̂ ) = r\x - \x
a Q(s) n

2(s; T, n%) ds + JJ P(s) ds = A . 

Lemma 3.5 yields that r7(t; T, 771) is nonnegative and therefore A is also nonnegative. 
This fact and the summability of P imply that A is finite and ()(•) w2(-; T, r/T) e 
E X([a9 T]). 

Thus, we have proved that there exists a finite limit of ^(t; T, */r) as t -» a + . We 
define the value of the function ^ at the point a by this limit. In this way we obviously 
get a function which is continuous on [a, T] . Further, we necessarily have 

(3.29) n(a;T,^) = 0 

since in the opposite case the function Q would be integrable on [a, a -f- S] for some 
S > 0. (Indeed, if (3.29) were not satisfied then \\r\2 would be measurable and 
bounded in some neighbourhood of a and it would be sufficient to take into account 
that g/72 is integrable.) 

Let us now consider the function ^",T) which is defined as ^(t; T, 0) on [a, T] 
(hence nonnegative there) and as the solution of (3A4) with zero initial condition 
at the point T on [T, b] (such a function is defined uniquely and is nonpositive on 
[T, b] according to Lemma 3.3). Therefore, the function ^(•; T) represents a solution 
of (3.14) on any interval [a 4- e, b] with 0 < s < b — a. It is, moreover, continuous 
on [a, b] and satisfies the conditions 

(3.30) ^a;T) = >?(T; T) = 0 . 
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Further, for rj we have the estimates 

(3.31) 0 g n(t; T) ^ JJ P(s) ds for f e [ a , f ) , 

and 

(3.32) - \\ P(s) ds S n(t\ T) = 0 for * e [T, b] , 

which follow from (3.27) and Lemma 3.3, respectively. 
Choose now a < x^ g T2 ^ b and investigate the difference n(t; T2) — j?(t; TX) 

for te(a, b]. For f e (a, r j both functions ^ ( s ^ i ) and ^ ( s ^ ) a r e nonnegative 
according to (3.31). From this and (3.32) we see that the assumptions of Lemma 3.6 
are satisfied on any interval [a + e, x{\. Thus, supposing t e [a 4- e, TX] we have 

(3.33) 0 £ ^(t; T2) - n(t; T-) ^ f|(Tx; T2) - ^ j Tt) = ^ ( T I ; T2) ^ ft P(s) ds , 

where the last inequality follows from (3.31). From the continuity of r\(';t2) — 
— //(•; TX) it follows that the estimate 

(3.34) 0 ^ f / ( ( ; T 2 ) - ^ ; T 1 ) r S j ^ P ( s ) d s 

holds for any t e [a, T J . Using inequalities (3.31), (3.32) and Lemma 3.4 in a similar 
way we can conclude that (3.34) holds on the whole interval [a, b]. 

Finally, put 

(3.35) nn(t) = n ft; a + * - = - * \ , n == 1, 2 , . . . . 

From (3.34) it follows immediately that the sequence n„ forms a fundamental 
sequence in the space C of functions continuous on [a, b]. Thus, {r/n} is uniformly 
convergent. Denote its limit by f\. The sequence w„(t) is nonincreasing for any t as 
follows from Lemmas 3.4 and 3.6. Hence, we have 

(3.36) nx(t) ^ n2(t) = ... £ f/„(0 ^ ... ^ /?(') , te[a,b]. 

Since ^n(t) ^ 0 for t ^ a -f (b — a)jn, we have 

(3.37) fj(t)S0 for ? e [ a , & ] . 

Every function /?„ satisfies (3.14) on any [a + £, b] and, moreover, it satisfies the 
condition n„(a) = 0 (cf. (3.30)). Thus 

(3.38) „„(f) = j : 6(S) ^ ( s ) ds - j ; P(s) ds 

for any t e [a, b]. Using (3.38) with t = b and taking into account that f]n(b) ^ 0 we 
obtain 

(3.39) J * Q ( s ) „ 2 ( s ) d s ^ P ( s ) d s . 

The Fatou lemma implies that 

(3.40) J* S(s) f?
2(s) ds <; lim inf J> Q(s) -£(-) dS , 
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which together with (3.39) proves that 

(3.41) QtfeJ?([a,b]). 

We have 0 g nn(t) S rji(t) for t e [a, a + (6 - a)\n] and 0 ^ nn(t) = f}(t) for 
t e [a + (b — a)/n, b], which yields 

(3.42) Q(t) n
2

n(t) g Q(t) n\(t) + Q(0 f (0 a.e. on [a, b] . 

Since Qn\ + Q/72 is integrable we can perform the passage to the limit as n ~> oo 
under the integration sign in (3.38) obtaining an identity which proves that fj is 
a solution of (3A4) on [a, b\ 

It remains to prove the uniqueness. We will prove it by contradiction. Thus, let rjt 

and -72 be two different solutions of (3A4) which are nonpositive in [a, a + d] for 
some d > 0. For any t > a we have, say, 

(3.43) ni(t) < n2(i) 

as a consequence of the uniqueness theorem for the nonsingular case. Hence, we have 

(3.44) (t,2(t) - ni(t))' = Q(t) (n2(t) + ni(t)) (n2(t) - ni(t)) = 0 

a.e. on [a, b]. But (3.44) implies r\2{t) = ^i(0 o n \.a> a + <5] which contradicts 
(3.43). Lemma is proved. 

Remark 3.1. It follows from the proof of Lemma 3.7 that in the singular case the 
differential equation (3.14) has infinitely many solutions satisfying the zero initial 
condition but only one of them is nonpositive in the whole interval [a, b]. 

Lemma 3.8. Let P e &([a, b]). Further, let Q e &([a + e, b]) for any 0 < e < 
< b — a and suppose Q <fc J£([a, b]). Finally, let Q be nonpositive a.e. on [a, b]. 
Then there exists one and only one absolutely continuous function £: [a, b] ~> R 
such that 

(3.45) C(t) = Q(t)t(t) + P(t) a.e. on [a, b] 

and 

(3.46) C(fl) = 0 . 

Proof. To prove the existence it is sufficient to observe that the function cp given 
by the formula 

(3.47) cp(t) = Ji P(s) exp (JJ Q(u) d«) ds 

is a solution of (3.45), (3.46) since 

(3.48) \P(s) exp ( j : S(«) du)| g \P(s)\ e <?([a, b]). 

The uniqueness follows from the relation (d/dt) (£2 - Ci)2 = 2Q(Ci — Ci)2
? which 

holds a.e. on [a, b] for any two solutions of (3.45) as can immediately be seen. 
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Remark 3.2. If Q e 5£(\a, b]), then the assertion of Lemma 3.8 is obviously true 
even without the assumption Q :g 0. 

P r o o f of T h e o r e m 3.1. Existence and uniqueness of functions 1] and ( follow 
immediately from Lemmas 3.7 and 3.8 or Remark 3.2, respectively. To prove (3.10) 
put 

(3.49) cp(t) = y(t) + n(t) p(t) y'(t) - £(*) . 

It is clear that the function cp is absolutely continuous and by direct computation 
we obtain 

3.50) <p'(t) = q(t) ^(t) cp(t) a.e. on [a, b] . 

Since any (absolutely continuous) solution of (2.1) with q <£ «£?([#, b]) satisfies 
y(a) = 0 according to Lemma 3.1 we have (p(a) = 0. But from this and from Lemma 
3.8 or Remark 3.2 we obtain that (p = 0 on [a, b\. Thus, (3.10) is proved and Theorem 
3.1 holds. 

Proof of Theorem 3.2 is completely analogous to that of Theorem 3.1 and is 
omitted. 

On the basis of Theorems 3.1 and 3.2 we can develop algorithms completely 
similar to that mentioned in Section 2. One must only carefully choose the numerical 
method for solving equations (3.5) or (3.11) to obtain really the nonpositive solutions. 
Also, studying in more detail the properties of functions i] and C realizing the transfer 
of boundary conditions one could obtain existence and uniqueness theorems for 
singular boundary value problems 2 and 3. Both these topics will be dealt with in 
further papers. 
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S o u h r n 

METODA PŘESUNU PODMÍNEK PRO S1NGULÁRNÍ OKRAJOVÉ ÚLOHY 

PETR PŘIКRYL, JIŘÍ TAUFER, EMIL VITÁSEК 

Metoda přesunu podmínek převádí řešení lineárních okrajových úloh pro obyčejné diferen-
ciální rovnice na řešení jistých počátečních úloh a řešení soustav lineárních algebraických rovnic 
Pro soustavy rovnic prvního řádu s lebesgueovsky integrovatelnými koeficienty popsal metodu 
jeden z autorû již dríve. Cílem predkládaného čìánku je úprava metody pro rešení okrajových 
úloh pro lineární diferenciální rovnici druhého rádu se singularitami v koeficientech. 

P e з ю м e 

METOД ПEPEHOCA УCЛOBИЙ ДЛЯ CИHГУЛЯPHЫX KPAEBЫX ЗAДAЧ 

PETR PŘIКRYL, JIŘÍ TAUFER, EMIL VITÁSEК 

Чиcлeннoe peшeниe линeйныx кpaeвыx зaдaч для oбыкнoвeнныx диффepeшдиaльныx 
ypaвнeний мeтoдoм пepeнoca ycлoвий COCTOИT в пpивeдeнии paccмaтpивaeмoй кpaeвoй зaдaчи 
к пocлeдoвaтeльнocти зaдaч Koши. Пpимeнeниe этoгo мeтoдa к peшeнию кpaeвыx зaдaч для 
cиcтeм ypaвнeний пepвoгo пopядкa c cyммиpyeмыми кoэффициeнтaми былo paccмoтpeнo 
oдним из aвтopoв yжe paньшe. Цeль нacтoящeй cтaтьи — oбoбщить идeю пepeнoca ycлoвий 
нa cлyчaй қpaeвыx зaдaч для линeйнoгo ypaвнeния втopoгo пopяд a c нecyммиpyeмыми oco-
бeннocтями в кoэффициeнгax. 

Лuthors4 address: RNDr. Petr Přikryl, CSc, RNDr. Jiri Taufer, CSc, RNDr. Emil Vitásek, 
CSc, Mаtетаtický ústаv ČSAV, Žitná 25, 115 67 Prаhа 1. 
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