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UNIFORMLY ENCLOSING DISCRETIZATION METHODS
AND GRID GENERATION FOR SEMILINEAR BOUNDARY
VALUE PROBLEMS WITH FIRST ORDER TERMS
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Summary. The paper deals with uniformly enclosing discretization methods of the first order
for semilinear boundary value problems. Some fundamental properties of this discretization
technique (the enclosing property, convergence, the inverse-monotonicity) are proved. A feedback
grid generation principle using information from the lower and upper solutions is presented.
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1. INTRODUCTION

For numerical solution of differential equations it is useful to generate upper and
lower bounds on the exact solution. In the present paper we consider the boundary
value problem

1) —u"(x) + b(x)u'(x) + g(x,u(x)) =0 in Q=(a,b),
u(a) =a, u(b)=4p.

In [2] and [3] we presented uniformly enclosing discretization methods of the first
order and of arbitrary orders for semilinear boundary value problems. While in [2]
the case b(x) = 0 was considered the more general approach in [3] allows to state
some results for the case b(x) % 0, too. Therefore, to describe some fundamental
properties of enclosing discretization methods of the first order for the boundary
value problem (1) it is necessary only to modify some proofs of [3]. We restrict
ourselves to first order methods because in the second part we want to explain a grid
generation process based on our enclosing discretization technique which is, unfor-
tunately, proved only for first order methods. In [4] we presented this feedback grid
generation method in the case b(x) = 0. Some iteration schemes for solving the
auxiliary problems generated by the monotone discretization technique were proposed
in [3], [5], therefore we renounce the discussion of this question.
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2. MONOTONE DISCRETIZATION TECHNIQUE

Let U be the Sobolev space Hy(Q), i.e. the space of functions possessing square
integrable generalized first order derivatives and vanishing at the endpoints. Further-
more, U* and ¢+, *) denote the dual space H™'(Q) and the dual pairing, respectively.
The norms in U and U* are denoted by ||| and ||« We denote by ||, and (-, *)
the norm and the scalar product in the space I*(Q), by |- |, the norm in the Sobolev
space H*(Q), by ||*||¢c the norm in the space C[a, b]. Let us assume that the data
of (1) fulfil
(b) beC'la,b], b(x)=0
and

() (i) g(x.5) = g(x,1) Vxel[a,b], s=t

(i) o(x.s) = g(x.0) = 1(r) (|x — | + |S — 1),
where I: R* — R* denotes some nondecreasing function. Let us define.

a(u,v) := (u',v') + (bu',v), (Lu,v) = a(u,v)
and

(Gu, vy :=(g(-,u),v) YoeU.

We start from the following formulation: Find u e H Y(Q) with u(a) = o, u(b) =
and
) Lu+ Gu=0.

The coerciveness of the bilinear form and the monotonicity of g guarantee that
a unique solution exists, moreover the smoothness property (g), (ii) of g ensures
that the solution even is a classical one. We need the following apriori estimate:

Lemma 1. The solution of (2) satisfies

(i) Jule < max (fo], [8]) + 1,
(ii) lu'llc < lea] + (4]b]lc + 2[b"[c (B = a)) ey + 2]g(+, v)]c
where
‘- (%l [lea] [blc + max (Ja(x, e, JaCx, BT
c, = b=
b—a

(7 denotes the coerciveness constant of a(*, +)).

Proof. Let p denote the affine function

p(x)za x+ﬁx
a

b—a
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Then u can be represented by u = p + w, where w € Ho(Q) satisfies the variational
equation

(w,0) + ((c; + w)b,v) + (9(-, p + w),v) =0 VoeU.

Using the monotonicity property of g and setting v = w we obtain
—a
(lezl | o + lla(-. p)o) -
Taking into account the embedding Ho(Q) Q C[a, b] and the identity ||p|c =

= max (|o|, |8]) we obtain the first estimate (i). The application of Green’s function
yields the identity

Wi(x) = (j (t — a) [(b() w'(5) + gl u(n)] e +

] =2

+ j (b = 1) [b(1) w(t) + g, u(t)] dt).

Integration by parts eliminating w’(f) immediately leads to the second assertion of
Lemma 1.

Now, let a grid Z[a, b] = {x;|i = 0,..., N} be given on the interval [a, b], i.e.
a=Xy<Xy<..<Xy_;<Xy=Db.
We denote the corresponding step sizes and subintervals by
hii=x; — x;-y, Q;:= (xi—hxi) >
respectively. The mesh width of the grid Z is characterized by
h = h(Z):= max h;.

1<isN

We define two special bounding operators G;, Gi: U — U* corresponding to G by
(3) _ Gy v(x) = max g(é, u(&) for xeQ,

Zelxi-1,x:]

G; v(x) = min q(g, u(é) for xeQ;, i=11)N.
E

Xi-1s
These operators have the following basic properties:
(Gy) Gyv = Gv = Gyv forall veU,
(G;) v,we U with v < w implies
Giv < Giw ae. in Q, Giv<Giw ae. in Q.
The approximate problems corresponding to (2) are: Find u;, u? € U such that

4) () Luj + Gyu, =0
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and

(4) (i) Lu; + Gjup = 0.

These discrete problems seem to look rather unusual. However, (4) is equivalent to
%) (i) —up(x) + b(x) uy(x) = —Gyu,) for xeQ; (i =1(1)N)

and

(5) (i)  u,eC'la,b].

Thus, taking into account that G,,(u,,) is constant on Q; we can note a finite-di-
mensional analogue for (4). To do this we define continuous trial functions ¢(x)
and Y (x) by

(6) (i) —oix) + b(x) pi(x) =0 for xeQ; (i =1(1)N),

odx;) = 3¢ (j = O(1)N)
and

(6) (ii)‘ —Yi(x) + b(x) Yi(x) = &,; for xeQ; (j=1(1)N),
Y(x) =0 (i=0(1)N).
If we choose the representation
N N

) u,(x) =.Zowi P{x) +‘;zi Wi(x)
the problem (4) (i) is equivalent to
® z; + max (& uy(¢) =0 (i =101)N),

gelxi-1,xi] )

uy € C*[a, b] (or uy'(x; + 0) = up'(x; — 0), i = 1(1)N — 1).
It is also possible to use C'-trial functions from the beginning.
Lemma 2. Let there exist solutions uy, u, of (4). Then the solution u of the initial
_ problem (2) is enclosed by

furthermore, the error estimate

) u = e < “’—”Y)— G — a(-> u)]a

is valid.

Proof. We restrict our consideration to the subsolution uj,. The definitions of the
continuous and the discrete problem lead to

a(up, v) + (g(+, uy), v) < a(uy, v) + (Gyuy, v) = 0 = a(u, v) + (g(-, u), v)

for all veHé(Q) (v 2 0). Thus the inverse-monotonicity of our original problem
results in u; < u.
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To show (9) we start from
a(u — uy, v) = (Gyuy, — Gy, v) + (G — g(+,u),v) forall veHy(Q).
Choosing v = u — u, we have v = 0 and the property (G,) implies

Yu — u? £ (G — g(-,u), u — uy).

Thus, (9) immediately follows.
The property (g) (ii) enables us to estimate the right hand side of (9) in a simple
way:

(10) 16w = g(-sw)llo = (b = @) I(lufc) (1 + [wlc) b

Combining (9) and (10) we obtain the final error estimate. To prove that a solution
of the discrete problem exists is more difficult. Using the theory of pseudomonotone
operators and an auxiliary variational inequality, respectively, we proved in [3]
and [5] that there exists a number h, > 0 such that the discrete problem (4) for all
h € (0, ho] admits a solution u;, with |u|c < ¢ if |u]c < e

Theorem 1. Let h < hy. Then the solution of the original problem (2) is enclosed by

1 2.
u, Su = uy;

furthermore, the error estimate
(11) o wfe = ch
is valid.
It is possible to estimate the constant C in (11) by combining (9), (10) and the
bounds from Lemma 1. Later it will be essential for us to know that

(12) C~(b—ay(Jule) (1 + [ulc)-

Remark. In [3] we proved
lu = uylc £ C*h'’?
under the assumption

lg(x, ) = g(x, )] < 1(r) (Ix = y|' + |s = 1))

without using the property (G,). To obtain first order convergence it was necessary
to introduce some additional assumptions about the partial derivatives of g. Taking
into account the property (G,) we can weaken the conditions on g to (g), (ii).

All results remain true if b(x) is a piecewise constant function with b(x) = b,
on Q; and b; = b;, ;. In this case the trial functions are

(exp (b;x) — exp (bix;—1)) (exp (bix;) — exp (bixi-i))™* for xe[x;-q, %]
@{(x) = {(exp (bix) — exp (b;x;4,)) (exp (bix;) — exp (bix;41))"' for xe[x;,xi44]
0 otherwise
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and
B SXP (bix;—1) — exp (bix)
A = i
Yilx) = texp (bix;) — exp (bixi—y)
0 otherwise

+x — x;-y for xe[x;_y, %]

The nonlinear system (8) reads

z; + max (& uy(€) =0 (i =1(1)N),
Zelxi—1,xi]

Wi = Wiy Wiy —

€; fi

(i=11)N—=1), wo=wy=0

L (hiei -1z + (hi+1fi - 1) Zigy =0

with
b, exp (bix;) _ b, exp (b;x;)
exp (bixi) — €Xp (bixi—l)’ l €Xp (bixi+l) — €Xp (bixi).

Numerical experiments confirm the estimate (11). For the model problem

—u" + u' + u® — sin® (nx) — n? sin (nx) — 7 cos (nx) = 0,
u(0) = u(1) =0

with the exact solution u(x) = sin (mx) we present the maximal difference of the
upper and lower solutions at the gridpoints:

N=5 N =10 N =20 N =50 N =100

0373962  0-179 253 0-083 035 0035272 0-017 422

Closing this chapter we remark that u, converges to u’, too.

Lemma 3. The following estimate holds:

“u' - u,’,“c < Ch.
Proof. We start from

(12) a(u — u, v) = (Gyuy, — Gyu,v) + (Gu — g(+, u),v).

Because the “right hand side” Gyu, — g(-, u) belongs to the space (<) there exists
a constant k such that

lu = i, < |Gy — g(-, )]0 <
(|Gt — Gl + G = (. w)llo) =

k(lu — willc + |G — (-, u)]o) -

Thus the embedding H2 C'[a, b] and (10), (11) yield the assertion.

A IIA - IIA
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3. THE FEEDBACK GRID GENERATION

In this section we propose a grid generation principle using information from
the lower and upper solutions. The basic idea is to subdivide those intervals where
the difference between the upper and lower solutions is relatively large.

First we need some information about the behaviour of our upper and lower
solutions if the grid becomes finer. This property is based on some kind of inverse-
monotonicity of our discrete problems.

Lemma 4. Let us assume
(13) (i) —u"(x) + b(x) u'(x) + Gpu(x) £ —v"(x) + b(x) v'(x) + Gy vo(x)
for xeQ, (i = I(1)N),
(i) wu,veC'[a,b],
(iil)  u(a) £ v(a), u(b) < v(b).
Then u(x) < v(x) for sufficiently small h.

Proof. We set w(x) = v(x) — u(x) and w(x*) = min w(x). In the case x* € {a, b},
w(x) = 0 follows immediately. Otherwise we havexe{ﬂ’b]
w(x*) =0, w'(x*)=0 for x*eD,,
w(x*) =0, w(x*+0)=20. w(x*-0)=20 for x=x;.
Taking into account (13), (i) we obtain
‘ 0 = w/(x*) £ [G,] (+*) — [Gu] (x*) -
Thuﬁ there e)'(ists ¢ e Q; with
0 < [Gv] (&) — [Gu] ().

Taking into account the monotonicity of g we obtain

() = o(8) —u(¢) 2 0.

Now we choose

w(x™) 1=x5[§i1iif<,mw(x) 20.
Then 2

where w”(17) = 0. Now we estimate w"(r). From (13), (i) we obtain

Gl = [ble Wl + Iwle-

Further,

’ 2 hi ”
UW “C[xi—x,xi] = ; “wuc[x:-x,xa] + —2— “W nC[xz-x.x:] .
i
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Assuming h||b||cre,_,.xq < + We conclude

(15) B L -
There are two possibilities:
(a) w"(n)
or

(o W) S w(x").
In the case (a) the identity (14) implies

w(x¥) (1 ~5 ("J'—;"‘fy) > w(x*) .

This inequality cannot hold for sufficiently small [x* — x*| because w(x*) < 0 and
w(x*) = 0. In the case (b) we have

w(x¥) = (1 — (" “2"*>2) w(x*).

Thus, w(x*) 2 0 for sufficiently small [x* — x*|.
It is obvious that our bounding operator has the following property:

5”w“C[x.--..x,-] with 6 =2 + _4_ .

i

IIA

IIA

= w(x*) if w(x*) <O,

(Gs) For any finer grid Z,, i.e. when Z < Z, the estimates G;v 2 Gzv a.e. in Q,
G £ Gélv a.e. in Q hold for all v e C[a, b].

Henceforth we change the notation a little (G, := G;) in order to characterize the
dependence on the actual grid.

Lemma 5. Given a grid Z, finer than Z, then the related solutions u}, and u%,
improve the two-sided inclusion uy < u < u}, that is,

uy(x) £ uz(x) £ u(x) £ uj(x) < uj(x) forall xela,b].

The proof follows immediately from Lemma 4 if we write our discrete problems
in the form (5) and take into account the property (Gs) of our bounding operators.

Now we proceed to describing the grid generation principle in detail. Let an initial
grid Z' = {xj| i = 0,...,N,} be given. We denote the related subintervales by

Q} = (xi_y,x}) (i=101)N,).

We assume h(Z‘) to be small enough so that each of the discrete problems possesses
a solution and the inverse-isotonicity of the discrete problems holds. The algorithm
under consideration generates a sequence (Z*) of grids

Q= (x_1, x5 (i=1(1)Ny).

We denote the bounding operators on the grids by G'* and G**.
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Algorithm

Step 1: Let an initial grid Z' be given. Choose ¢ € (0, 1)and set k = 1.
Step 2: Determine u'*, u*>* € H'(Q) with
u'*(a) = u**a) = a, u'*(b) =u*Xb)=p
such that
a(u'*, v) + (G**ut*, v) = a(u®*,v) + (G**u?*,v) = 0 forall ve H)Q).
Step 3: Introducing the notation

df := max (u**(x) — u'*(x)) (i = (1) N,), D*:= max d¥,
xeQk

15i< N,
Ik:= {iE{l,...,Nk}:d’;gQDk}’
Bim Mo 4 ¥ (el
define a new grid Z**1! by
Zk+1 _ Zku{y’;; ielk} .

k+1
i

Set Ny,y = N, + card I, and denote the grid points contained in Z**! by x
(i=0,1,...,Ncsy). Reset k¥ := k™ 4+ 1 and go to Step 2.

Theorem 2. The functions u®*, u*>* generated by the above algorithm satisfy

ut¥(x) £ w1 (x) £ u(x) < wP*(x) < u?Hx) for xe[a,b],
and
lim u* — y'*|. = 0.

Proof. Due to the properties of the algorithm the grids are successively refined.
Thus Lemma 5 immediately yields the monotone behaviour of the sequences {u""},
2,0
{u?*}.
The sequence (D") satisfies 0 < D**! < D*, Thus this sequence is convergent.
Let us assume that lim [[u>* — u"*| . 4+ 0. We select sequences (a,) and (b,) with
k= )

a, < by possessing the following properties:

(16) [a b] = U [¥-0, 5], a beed U ¥y, x1],

iely iely

"u2,k - ul,k“C[ﬂk.bk] = D .

Let us denote
(17) appi=utMa), Biai=ulM(b), oy i=udMa), Buui=u?iby).
We define w'*, w** by the boundary conditions (17) and the variational equations
Lw'* + Gw'* =0,
Lw** + Gw?* = 0.
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By virtue of the inverse-monotonicity of our original problem our definitions result in

wiH(x) £ u(x) £ w*H(x) forall xe[a,, b]
and

(18) [w?* = w'*| crapa < @D* .
On the other hand, our discretization principle implies
ul (x) £ wH(x), wHx) S u?X(x) forall xelab].
Theorem 1 yields the estimates
[w'* = u ¥ oy pug < Cw"*) B(ZF) ,
W = 42 cray by S Clw**) W(ZF) .
Using the estimate (12) for C, and the a-priori estimates for w'*, w?* due to Lemma 1

it is not difficult to see that there exists a constant C independent of w!*, w?* and
by — a, such that

(19) W = ' o < CH(ZE), [w?* — ul | < CH(Z").
Combining (18), (19) we obtain via the triangle inequality
(20) “uZ,k - ul'kllc[“k.bk] = QDk + Ch(Zk) .

For sufficiently farge k, (20) contradicts one of the conditions (16) defining the
sequences (ay), (b;). Thus we have proved lim D* = 0 which is equivalent to the
second assertion of Theorem 2. koo

It is essential to note that we do not need any assumption on the mesh width.

In [3] we developed uniformly enclosing discretization methods of arbitrary
orders. When we combined these methods and the proposed grid generation
algorithm, numerical experiments resulted in improved error bounds in comparison
to an equidistributed grid of the same cardinality, especially for problems with
boundary layers. However, the theoretical foundation of the feedback grid generation
cannot be carried out similarly to the first-order technique, because the first step
of the convergence proof of Theorem 2 consists in the conclusion

0 é Dk+1 é Dk
based on Lemma 5, and it is not clear whether or not Lemma 5 holds for higher
order methods. Namely, the corresponding bounding operators, in general, do not

satisfy (G;) and therefore the investigation of the statement of Lemma 5 leads to
significant difficulties.
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" Souhrn

DISKRETIZACNI METODY VYPOCTU
STEJNOMERNYCH OBOUSTRANNYCH APROXIMACI
A ADAPTIVNI VYTVARENI{ SiTi PRO SEMILINEARNI

OKRAJOVE ULOHY S CLENY PRVNfHO RADU

HANs-GORG Roos

Clanek se zabyva metodami diskretizace prvniho ¥adu pro semilinearni okrajové Gilohy, které
ddv aji stejnom&rné oboustranné aproximace presného feSeni. Jsou dokazany nékteré zakladni
vlastnosti této diskretizani techniky (vlastnosti dolnich a hornich aproximaci, konvergence,
inverzni monotonie). Je popsan princip adaptivniho vytvareni sit&, ktery pouZiva informace
ziskané z dolnich a hornich aproximaci.

Pesome

METO/[bI JUCKPETU3ALIMM BLIUMCJIEHU PABHOMEPHBIX
JIBYCTOPOHHUX AITTIPOKCUMALIUN I AATITUBHOE ®OPMIPOBAHME
CETEM IJIS ITOJIVJIMHEMHOMN KPAEBOW 3ATAYU
C YIEHAMU ITEPBOI'O TTOPSIKA

HANs-GOrRG Roos

B craThe HM3y4aroTCs METOABl AMCKPETM3alMM NMEPBOrO NOpsnxa Uit NOJyJTWHEHHON kpaeBoi
3a7a4d, KOTOpbie JAIOT PaBHOMEDPHbIE IBYCTOPOHHHME ANMPOKCHMMALIMM TOYHOro peiueHus. [oxa-
3aHBI HEKOTOPBLIC OCHOBHBLIC CBOMCTBA 3TOMl TEXHUKH JAUCKPETU3ALIMHA (cnoﬁcma HUXHHUX U BEPHHMX
aAMNpOKCHMALM, CXOAMMOCTb, 0OpaTHas MOHOTOHHOCTB) M OIMCAaH NMPHHUMII aJanTuBHOrO Gop-
MHPOBaHHA CETH, HCHOJIBBy}OlIICﬁ HHd)OpMaLmlO H3BJICYCHHYIO M3 HHMXXKHHUX H BEPXHHX anImpoOKCH-
MaLluif.
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