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34(1989)L APLIKACE MATEMATIKY No. 4, 285—302 

FIRST KIND INTEGRAL EQUATIONS FOR THE NUMERICAL 
SOLUTION OF THE PLANE DIRICHLET PROBLEM*) 

S0REN CHRISTIANSEN 

(Received December 29, 1987) 

Summary. We present, in a uniform manner, several integral equations of the first kind for the 
solution of the two-dimensional interior Dirichlet boundary value problem. We apply a general 
numerical collocation method to the various equations, and thereby we compare the various 
integral equations, and recommend two of them. We give a survey of the various numerical 
methods, and present a simple method for the numerical solution of the recommended integral 
equations. 

Keywords: Integral equation of 1st kind, Dirichlet problem, collocation method. 

1. INTRODUCTION 

Boundary value problems, formulated in terms of partial differential equations 
and boundary conditions, can be solved using various methods: 

1) By means of finite difference methods or finite element methods the boundary 
value problem is replaced approximately by a system of linear algebraic equations, 
which is solved numerically. 

2) By means of certain analytical methods the boundary value problem is re
formulated, without any approximation, as integral equations, which are replaced 
approximately by a system of linear algebraic equations, which is solved numerically; 
see the survey papers [C14], [C16], and the references given therein. It is much more 
common to reformulate as integral equations of the second kind than in terms of 
first kind integral equations. This difference is without doubt due to the fact, that the 
analytical and numerical treatment of second kind equations is easier than that for 
the first kind equations. On the other hand, first kind equations can have some 
advantages in that their unknowns can be of particular interest, e.g. because of their 
physical significance, or because they are well suited as input to some further cal
culations. 

*) Partly based on material which were to be presented as an invited lecture at EQUADIFF 6, 
Brno, Czechoslovakia. 
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As a model for the boundary value problem we here exclusively consider a two-
dimensional interior Dirichlet problem for the Laplace's equation for a simply con
nected domain D with closed, simple and smooth Boundary curve FB, where the 
boundary value / is prescribed 

(1-la) A^(P)-=0, PeD, 

( M b ) * ( P ) = / ( P ) , PeTB. 

This system can be used for the solution of two-dimensional boundary value problems 
arising in various physical and technical applications, e.g., the classical conductor 
problem, conformal mappings, plane elasticity and viscous flow problems. 

As mentioned above (VI) is more often reformulated as an integral equation of 
the second kind [J l ; § 2.6] than as an equation of the first kind. However, we will 
here exclusively reformulate (VI) in terms of first kind equations. This is because 
they actually appear within applications (see, e.g., [H6; Part II] and several references 
mentioned in [CI] , [H5], [Ll]) , and also because the unknown of the equations 
have special significance when applied to the problems just menticcned (see, e.g., 
[H6;§2.2]). 

When we reformulate (1-1) as integral equations of the first kind it turns out that 
several equations can be obtained, and it is therefore of interest to choose among the 
various equations. We present (§ 2) the various first kind equations together with 
results concerning existence and uniqueness of the solution. We apply (§ 3) the same 
general numerical method to the various integral equations and obtain various 
systems of linear algebraic equations; by means of the condition number of the 
corresponding rectangular matrices we carry out a numerical comparison of the 
various integral equations, and recommend two of them. Finally we present (§4) 
a survey of known methods and a simple method which can be applied to solve the 
recommended integral equations. 

2. THE INTEGRAL EQUATIONS 

In principle two types of methods are available for derivation of the first kind 
integral equations for the problem (VI), viz. via single layer potentials, i.e., the 
indirect formulation, (§ 2.1) and via Green's third identity, i.e., the direct formula
tion, (§ 2.2). Besides the boundary curve FB it is convenient to introduce an auxiliary 
curve rA, which is placed outside FB, cf. (§ 2.V2) & (§ 2.2.2). 

2.1. Single layer potentials 

Solutions to Laplace's equation (V ia) are expressed as 

(2-1) iA(P) = a> - <f In |P - Q| Q(Q) dsQ , 
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where |P — Q\ is the distance between the two points P and Q, with Q placed on the 
source curve F5, along which an integration is carried out with respect to the arc 
length s. The function Q(Q) (source density) and the scalar co are at disposal; when 
they are determined, see below, a function \j) can be computed, and it may satisfy 
(i-i) . 

2.1.1. Without auxiliary curve 

In (2-1) we put F5 : = FB and co : = 0 and require that \j/ satisfy the boundary 
condition (l-lb) when P -> FB. This leads to the integral equation [J l ; Eq. 4.3.1] 

(2-2) -& \n\P- Q\Q(Q)dsQ=f(P); P,QePB, 

with the unknown function Q(Q). For certain curves TB the solution Q(Q) does not 
exist, nor is it unique [J l ; § 4.3]. When in (2-1) we do not put co := 0, the equation 
(2-2) can be replaced by the following system (2-3) (cf. [H3], [S4]), in which we 
here have introduced the scalars W and K, because they are important for the 
numerical solution (§ 3), 

/* 
(2-3a) - () In |P - Q\ Q(Q) dsQ + K - = f(P) ; P, Q e TB , 

JT* K 

(2-3b) Wft> Q(Q) dsQ = Wa ; QeTB . 
JTB 

Here the unknown quantities are the function Q(Q) and the scalar co, while the known 
quantities are the function f(P) and the scalar a. When f and a are given then Q 
and co exist and are unique [H3; Th. 3]. When Q and co have been determined, they 
can be inserted in (2-1) and the solution to (1-1) can be computed. 

2.1.2. With auxiliary curve 

In (2-1) we put Fs := TA and co := 0 and require that i/t satisfy the boundary 
condition (l-lb) when P -* FB. This leads to the integral equation 

(2-4) - < £ l n | P - Q\Q(Q)dsQ=f(P); PeFB, Q e rA , 
JTi 

with the unknown function Q(Q). It can be inserted in (2-1) and a function \p can be 
computed. The solution Q(Q) may not exist [CIO; Appendix A.l, Method I] and for 
certain curves FA it is not unique [CIO; Appendix A.2, Method I ] . (Despite the defi-
ciences connected with (2-4) it has been used in a number of cases: [Bl ] , [ D l ] , 
[ M l ] , [M3]; see the references in [CIO; §3.1] for other problems than (l-l).) In 
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analogy with (2-2) & (2-3) the equation (2-4) can be replaced by the following 
system (2-5), in which we here have introduced the scalars W and K, because they 
are important for the numerical solution (§ 3), 

(2-5a) - ( f l n | P - Q\Q(Q)dsQ + K- = f ( P ) ; PeFB, QePA, 

(2-5b) Wc| Q(Q) dsQ = Wa ; Q e rA . 

Here the unknown quantities are Q(Q) and o. It may be questioned whether Q and co 
exist and are unique. If Q and co have been determined, they can be inserted in (2-1) 
and a function $ can be computed. 

2.2. Green's third identity 

When \j/ and d\l/jdnQ are both known on rB, where d\dnQ denotes differentiation 
in the direction of the inward normal to rB at the point Q, then Green's third identity 
[ J i ;§4 .4] 

I - A - l n | P ~ e | ^ ( e ) d s Q + c | In | P - Q\-^-ij,(Q)dsQ~ 
J r* cnQ J r B onQ 

(2-6a) = In ij/(P); P inside FB 

(2-6b) = 7i i^(P); P on FB 

(2-6c) = 0 i//(P) ; P outside rB , 

can be used primarily to compute t^(P) for P inside rB; for P on FB or P outside Fs 

the value of the integral in (2-6) is still known. In the present case only ij/ is known 
on rB, cf. ( l- lb), and d\j/jdnQ must be found before (2-6a) can provide the sought 
value of \j/ inside FB. 

2.2.1. Without auxiliary curve 

In (2-6) we insert the boundary condition (l-lb) and obtain from(2-6b),i.e. forP 
on rB, an integral equation [J1; Eq. 4.4.4] 

(2-7a) - (f In |P - e | Q(Q) dsQ = <TB {f} ; P,QETB, 
J TB 

where 

(2-7b) «TB{/} «. -nf(P) - i ±- In \P - Q\ f(Q) dsQ ; P, Q e T* , 

is an integral transformation off, where the curve on which P is placed is explicitly 
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indicated by the index B. The unknown of the integral equation is Q(Q). A solution 
exists because d\l/jdnQ is a possible solution. However, Q(Q) is not unique for all 
curves FB (see [C2], [C4], [J l ; § 4.5]), but the uniqueness is assured if Q(Q) further
more has to satisfy the following supplementary condition (2-7c) (see [C2; Eq. 7], 
[C4; Eq. 6.9], [J l ; §4.5]), in which we here have introduced the scalar W, because 
it is important for the numerical solution (§3), 

(2-7c) W& Q(Q) dsQ = 0; QeFB. 
JT* 

The possible solution dil/jdnQ also satisfies this condition. 
A term co, with co = 0, can be added to the left hand side of (2-7a) whereby we 

get the following system (2-8), in which we here have introduced the scalars Wand K, 
because they are important for the numerical solution (§ 3), 

t* 
(2-8a) - o ln\P-Q\Q(Q)dsa + K-= #•„{/}; P,QerB, 

J r B -**• 

/• 
(2-8b) WO Q(Q)dsQ = 0; QeFB, 

JT* 

which has a strong resemblance with (2-3). A solution, Q and co, exist, because Q(Q) = 
= dij/jdnQ and co = 0 are possible; this solution is unique. When Q has been deter
mined, it can be inserted in (2-6a) and the solution to ( l - l ) can be computed. 

2.2.2. With auxiliary curve 

In (2-6) we insert the boundary condition (1-lb) and obtain from (2-6c), i.e. for P 
outside rB, and P placed on FA, an integral equation, called Kupradze's Functional 
Equation, [ K l ] , [K2] and the references in [C5; Footnote 11], [C8], [CIO; § 3.2, 
II 1.1] (see the references in [CIO; § 3.2] for other problems than (1-1)) 

(2-9a) - ( C l n | P - Q\Q(Q)dsQ = <TA {f} ; P e TA , QeTB , 

where 

(2-9b) 9-A {f} = - | - / - In |P - Q| AG) dsQ ; P e FA , QeTB, 
JTB dnQ 

is an integral transformation off, where the curve on which P is placed is explicitly 
indicated by the index A. The unknown of the integral equation is Q(Q). A solution 
Q(Q) exists because d\l/jdnQ is a possible solution. However, Q(Q) is not unique for 
all curves YA, TB (see [C3], [C5]), but the uniqueness is assured if Q(Q) furthermore 
has to satisfy the following supplementary condition (2-9c) (see [C3; Eq. 4], [C5; 
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Eq. 4A0] and [K2; p. 746, Footnote]), in which we here have introduced the scalar W, 

because it is important for the numerical solution (§ 3), 

(2-9c) wi Q(Q)dsQ = 0; QeTB. 

The possible solution Q(Q) = dij/jdnQ also satisfies this condition (2-9c), which is 

identical with (2-7c), while (2-9a) is different from (2-7a). 

A term co can be added to the left hand side of (2-9a) whereby we get the following 

system (2-10), in which we here have introduced the scalars Wand K, because they 

are important for the numerical solution (§ 3), 

(2-10a) ~ (f• l n | P - Q\Q(Q)dsQ + K~ = ^A{f}; P e TA , QeTB, 
J LB K 

(2-10b) W& Q(Q)dsQ = 0; QeTB. 
г в 

This system has some resemblance with (2-8). A solution, Q and co, exist, because 

Q(Q) = dil/ldnQ and a) = 0 are possible; this solution is unique. When Q has been 

determined, it can be inserted in (2-6a) and the solution to (1-1) can be computed. 

3. NUMERICAL COMPARISON 

Of the various first kind equations presented (§ 2) we consider here the systems 

(2-3) (2-5) (2-7) (2-8) (2-9) and (2-10). Except for (2-5) they are known to have 

a unique solution. For the numerical solution of the systems we present (§3.1) 

a general method which in all cases leads to systems of linear algebraic equations 

having a rectangular (and sometimes a square) matrix of coefficients. Partly based 

on the 2-norm condition number derived from the singular values of the cor

responding matrix, suitable values for Wand K are determined (§ 3,2), and the various 

systems of integral equations are discussed (§ 3.3), leading to the conclusion that the 

systems (2-3) and (2-7) are preferable. For these two systems a simpler numerical 

method is presented (§ 4.2). 

3.L A general method 

It is common to all the above systems of equations that they contain products of 

the unknown function Q and the known functions In |P — Q\ or 1 integrated along 

a curve, the integration curve, here denoted F, with Q e F, and that the value of the 

integral is to be evaluated at points on a curve, the collocation curve, here denoted f, 

with P = Q e F. The curve t may coincide with F, or the curve t may be placed 

inside or outside F. The relation among the various curves are (with TA outside FB): 
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ß є Г 

§2.1.1.: r = rB, f = rB 

§2.1.2.: r = rA, t = rB 

§2.2.1.: r = rB, T = rB 

§2.2.2.: r = rB, t = rA. 

The integral with the factor In \P — Q\ becomes 

(3-1) V(Q)= - ( In \Q-Q\Q(Q)6sQ , 

with source density Q(Q). The value of Q is sought at the collocation points Q : = Qu 

Qi, •••> QN, with Qiet; i = 1,2, ...,N. The curve F is divided into N small sec
tions F;; j = 1,2, ...,N, by the interval points Q 1 / 2 , Q 3 / 2 , . . . , 2N-1/2 on F; i.e., 
Fy = 2 j - i/26j+1/2- Within each section Fj a nodal point Q} is chosen. The section F,-
is approximated by the union of two straight lines Qj-niQj a n d 2j6j+i/2> which 
is denoted by F,- and has the length hj. We assume the unknown to be a constant, 
denoted by 0 ; , along F,-. We are therefore led to integrate the kernel - I n \Qt - g | ; 
Qte t with respect to the arc length s along F7-, with Q e Fj. In general this integral 
cannot be worked out in closed form. Therefore the integration is performed with Q 
along Fj in order to get an approximation 

0-2) •v-.-k.ia.-ai*.. {|':?]{;:;±;:;«}-
This integral can be expressed in closed form by means of the lengths involved 
[C17; Appendix B (with corrections)]. The elements {A,:j} are combined to form 
the matrix A. The element AtJ. computed from (3-2) may be expressed as Afj- = hfiij, 
with afj. = — \n\Qi - Q{p\\ Qi £ F, 5y° e Fj, where Q{p is a point whose position 
depends in general onO; . However, the value of atj is not computed using Q(j\ but 
simply as 

(3-3) I y = A ^ , . ) - 1 , 

where AfJ. is determined from (3-2). 
The integrals in (2-2) (2-3a) (2-4) (2-5a) (2-7a) (2-8a) (2-9a) and (2-10a) are ap

proximated by the sums 

(3-4a) £Xyfi,, 
7 = 1 

and similarly the integrals in (2-3b) (2-5b) (2-7c) (2-8b) (2-9c) and (2-10b) are ap
proximated by the sum 

(3-4b) ihjQj. 
J = I 

Hereby it is possible to replace the various integral equations by systems of linear 
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algebraic equations with a square or rectangular matrix B and with suitable 
unknowns: 

Equations (2-2) and (2-4): 

Matrix 

(3-5a) B : = A , 

unknowns {Qj}N. 

Equations (2-7) and (2-9): 

Matrix 

(3-5b) B: 
WЋЛ ... Wћ* 

unknowns {Qj}N. 

Equations (2-3) (2-5) (2-8) and (2-10): 

Matrix 

(3-5c) B 

K 
A 

K 

Wh1...WйІV 0 

unknowns {Qj}N and a>JK. 
However, it is advantageous to introduce new unknowns 

Q*:=QJHJ (3-6) 

whereby the matrix a, cf, (3-3), is introduced instead of A. This replacement cor
responds to a column-scaling1) of the first N columns of the matrices B in (3-5). 
Compared with A the matrix a is less non-symmetric because it does not contain the 
factors {hj}. 

Hereby it is again possible to replace the various integral equations by systems, 
of linear algebraic equations with a square or rectangular matrix B and with suitable 
unknowns: 

Equations (2-2) and (2-4): 

Matrix 

(3-7a) 

unknowns {Q*}N. 

Б : = a, 

J) Dr. Per Christian Hansen and Professor Dr. Hans Bruun Nielsen, Institute for Numerical 
Analysis, The Technical University of Denmark, are thanked for helpful discussions. 
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Equations (2-7) and (2-9): 

Matrix 

(3-7b) Б: = 
a 

(3-7b) Б: = 
W... W 

unknowns {ß*}?. 

Equations (2-3) (2-5) (2-8) and (2-10): 
Matrix 

(3-7c) Б: = 
a 

к 

к 
W...W 0 

unknowns {-2*}* and coJK. 

The computation of the right hand side of the equations (2-7a) (2-8a) (2-9a) and 

(2-10a) is not discussed here; for (2-9a) and (2-10a), see [C5], [C7], [C8]. 

3.2. Determination of W and K 

The purpose now is to choose among the various systems of integral equations 
presented above (§ 2), and this is done by carrying out a comparison of the various 
systems of linear algebraic equations having the matrices (3-5) or (3-7). Before that can 
be done suitable values of W and K have to be determined. The determination of W 
and K, and the choice among the various matrices, is performed by applying the 
concept condition number, /c, of a matrix, which is defined in terms of the singular 
values {(Ti} of the matrix, as [Yl; p. 766 & p . 811] 

(3-8) к = max {cгj/min {Ö } 

The determination of suitable values of W for (3-5b) and of W and K for (3-5c) 
is lengthy (in particular for (3-5c)). The results obtained can be found in the following 
references: 

Matrix (3-5b), Equation (2-7) 

Matrix (3-5b), Equation (2-9) 

Matrix (3-5c), Equation (2-3) 

Matrix (3-5c), Equation (2-5) 

[ C И ] 

[C8] 

[CIЗ] [C15] [W2] 

[C12] 

The analysis for the matrices (3-5b & c) is here carried over to the matrices (3-7b & c) 

with some modifications and the results obtained are presented below. It is here 

necessary to apply the concept of the external conformal radius of a curve C, 
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which we denote ECR{C}, [L2; p. 172], We introduce 

(3-9a, b) d = ECR{F) , 3 = ECR{f} 

(3-10a, b) R = MAX(d, S), r = MIN(d, 3) 

(3-11) y = JR/r ^ 1 , 

and we find: 

Matrix (3-7a): K = oo for JR « 1, indicating that the corresponding systems of 
linear algebraic equations do not have a unique solution, because the corresponding 
integral equations do not have a unique solution. 

Matrix (3-7b): For both curves F and t a geometrical scaling is performed by 

multiplying all length by the same positive factor, in order to obtain that R « 1. 
Suitable values for W are 

N1/2 1 N 

(3-12) ^ = V - ^ ; X = V = f 
2 vyv 2 

leading to a minimal value of K, which can be approximated (cf. [C15; Appendix A]) 

by the function 

(3-13a) K = - 7 ^ 2 ) - 1 . F ( K , y ) 

where 

(3-13b) 1 = F(R, y) = V(l + (2y In K)2) 

for R « 1. 

Matrix (3-7c): As above, a geometrical scaling is performed, so that R « 1. 

Suitable values for W and K are 

N1/2 

(3-14a, b) JҒ = ÍC , W = 
2 ľ 

leading to a minimal value of ?c, which can be approximated (cf. [C15; Appendix A]) 
by the function 

(3-15) K^^yW*)-!.^ + ? | R - 1|) 

for R « 1. 
Some of the above results, which are stated here for general curves F and t, are 

obtained by generalizing results derived for two concentric circles C and C, with 
radii c and c, respectively, in which case d = c and Z, = c. In particular we have 
used the fact the integral operator leading to the matrix A has eigenvalues which 
contain a factor c (cf. [C12; Eq. 3-5]), while the column-scaled matrix a can be con
sidered as being derived from an integral operator with eigenvalues 

(3-16a) A0 = - N l n K , 
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(3-16b) lffl = ~ - - m ; m = l , 2 , . . . , 
2m ym 

where JR and y are defined in (3-10), (3-11). 

3.3. Discussion of the various equations 

We are now able to choose among the various integral equations, which is done 
by choosing among the various systems of linear algebraic equations having the 
matrices (3-5) and (3-7): 

1) The matrices (3-5) may be more non-symmetric than (3-7), because they contain 
the factors {hj} and the systems of linear algebraic equations corresponding to (3-7) 
can probably be solved more accurately than the systems of linear algebraic 
equations corresponding to (3-5). Therefore (3-5) are left out of consideration. 

2) The matrices (3-5a) and (3-7a) have K = co,for a certain geometry characterized 
by MAX(d,3) * 1 (cf. (3-16a) and (3-10a); [CIO; §7]), indicating that the cor
responding systems of linear algebraic equations do not have a unique solution. 
Therefore (3-5a) and (3-7a) are left out of consideration. 

3) The matrices (3-5b) and (3-7b) are not square indicating that the corresponding 
systems of linear algebraic equations are not so simple to solve as if the matrix of 
the systems were square. Therefore (3-5b) and (3-7b) are left out of consideration. 

4) We are now left with the matrix (3-7c), which is derived from integral equations 
with a term o. They are now to be discussed. 

When the curves F and f coincide then — In j(5 — Q\ -> oo when Q -> Q. This 
unbounded kernel may make it tempting to use non-coinciding curves so that 
— In \Q — Q\ is bounded, so that standard routines/-methods for handling bounded 
integrands could be invoked. However, if F and f are close to each other, but not 
coinciding, the function — lnj Q — Q\ is "peaked" making it difficult to apply a general 
purpose integration routine. Therefore it could apparently seem better to have the 
curves F and F well separated. But this separation leads to other difficulties, which 
arise from the fact that the condition number of the matrices (3-7b) and (3-7c) 
increases drastically when the two curves are moved away from each other, as can 
be seen from (3-13) and (3-15), where y > 1 indicates separated curves. 

When the condition number of a matrix is increased the error of the computed 
solution of the corresponding system of linear algebraic equations may be increased. 
When the distance between the two curves is increased it is possible that the error 
of other parts of the computation will decrease. It is therefore not impossible that an 
optimal accuracy is obtained for a certain small distance between the curves. However, 
here we chose to strive at the smallest possible condition number. 

Using the criterion that a small condition number is preferable, we can conclude 
that it is best to use y — 1, i.e., to use the equations where F and f coincide, i.e., to 
use the equations where an auxiliary curve TA, outside FB, is not used. This means, 
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e.g., that Kupradzes Functional Equations (§2.2.2) are not to be recommended. 
Nor are to be recommended the equations based on single layer potentials (§2.1.2); 
this also because uniqueness and existence of the solution may be questioned. 

The conclusion of the above reasoning is that we only consider the systems withou t 
an auxiliary curve rA and with an extra scalar unknown OJ; i.e., only the systems 
(2-3) and (2-8). The numerical effort needed for solving the two systems is nearly 
the same. Therefore the choice between the two systems is primarily based upon 
which unknown quantities are best suited for the subsequent computation, or which 
unknown quantities have the right physical significance, cf. § 1. 

4. NUMERICAL METHODS 

In § 3.3 it is recommended to use such integral equations where the auxiliary 
curve rA is not used, i.e., F = t . The method of § 3.1 for constructing the matrix a 
is applicable both when F 4= F and when F = F. Below we mention some methods 
for solving the equations with matrices (2-3) and (2-8) in the case when F -= t: 
a survey of some of the methods (§ 4.1) and, as an example, a very simple method 
(§4-2). 

4.1. Survey of some known methods 

The methods can be divided into (1) collocation methods, (2) Galerkin methods, 
and (3) other methods. However, within the framework of pseudo-differential 
operators the variational formulation provides a unifying analysis of Galerkin — 
and collocation methods. A detailed analysis which pertains to the first kind integral 
equations in question (and to other equations) is carried out in [A6], [A7], [S i ] , 
while [W2] gives a very detailed and thorough survey of boundary integral equations 
on smooth closed surfaces or curves with numerous references. Methods for solving 
the various integral equations of potential theory are available: A collection is 
deposited at VINITI, 1985 [M4]; several are mentioned in [M5], and some of them 
may apply to the first kind equations considered here. 

1) Collocation methods are convenient to use, because of their simplicity (the 
method of § 3.1 is of this type). They have been used in many cases, and some of the 
first applications are referred to in [ A l ] , [C l ] . A variant of the method, which is 
very easy to use, has been proposed in [Cl ] and compared with a popular variant, 
and found to be the best of the two methods. With some modifications the easy 
method is used in § 4.2. No genuine analysis of error or convergence was performed 
in [ C l ] . Formulas similar to the easy ones in [C l ] have been derived in [ A l ] , [A2] 
where also an analysis of error and convergence is carried out. A collocation method 
with interpolation is presented and analyzed in [VI] , [V2]. 
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2) Galerkin methods can give accurate results at the expence of higher computa
tional cost. They have been used in a number of cases and some of the first applica
tions are referred to in [H4]. The method has been analyzed with respect to error 
and convergence [H4], stability and optimal choice of the mesh size [H2]. Galerkin 
methods can be formulated as a Galerkin-Bubnow method (with equal test and trial 
spaces) [M2], and as a Galerkin-Petrov method (with different test and trial spaces) 
[A5], [R2]. They can also be formulated without appeal to coercivity leading to 
a method which can be used to handle corners, cusps, or open arcs [S2], [S3]. 
Galerkin methods produce systems of linear algebraic equations, which can be ana
lyzed by singular value decomposition, whereby the integral equations can be 
analyzed [Hi]. 

3) The convenience of the collocation method and the accuracy of the Galerkin 
method are combined in the Galerkin-collocation method, derived in [H5] and used 
in several cases in [H6]. The matrix hereby obtained [H6; Appendix] has also the 
form (3-7c), and the system can be solved by using Gaussian elimination (after the 
modifications of [C15] have been performed), but the system can also be solved 
by using iterative techniques after a suitable preconditioning [Rl]. Comparison 
between the collocation method and the Galerkin-collocation method has been 
carried out [A3], [A4], [H5; p. 126]. Because the integral equations are defined 
on a closed curve it is possible to derive an accurate and fast numerical scheme using 
Fourier series [Li]. 

4.2. A simple collocation method 

For the construction of the matrix a a simple method can be derived, cf. [CI], 
[C15; Eq. 2-7]: 

The arc length s in the integrals is replaced by a regular 1-periodic parametric 
representation, with a parameter f, where r* and t correspond to P and Q, respectively. 
The distance Q is introduced, and it is defined by g(t*91) := \P — Q\. New unknown 
functions are introduced, cf. (3-6), 

(4-la,b) £!(.):= fi(Q)£, £f*(.) : = A S(» . 

dt N 

Using equally spaced collocation- and integration points, 

(4-2a) **: i * : - (i - 1)/N ; i = 1,2,..., N , 

(4-2b) t: tj:~(j-l)lN; J = 1,2,...,N, 
we can replace the left hand side of (2-3) and (2-8) by a system of linear algebraic 
equations having a matrix of the same form as (3-7c). The elements of a are computed 
as follows, provided N is even, 
(4-3a) ay = -In Q(thtj); i * I 
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(4-Зb) - „ = - ЫQІ ÙІ + ф(ti) 
2nN 

where 

(4.30) m-*[*»(®$D ""V1

 + ±-N. 
ЗN 

Following [C15] the geometry of the boundary curve FB is scaled so that d = 

= ECR{FB} is near one. The values of Wand K to be used are, cf. (3-14), 

(4-4a,b) W=K = i-N1 / 2 

giving the condition number K, which can be approximated (cf. [CI5; Appendix A]) 

by the function 

(4-5) K = ^ ( l + | c i - l | ) . 

5. CONCLUSION 

We have investigated several integral equations of the first kind for the solution 

of the two-dimensional Dirichlet boundary value problem, and we recommend 

the equations (2-3) and (2-8). For the numerical solution we propose a simple col

location method (§ 4.2). 
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S o u h r n 

INTEGRÁLNÍ ROVNICE PRVNÍHO DRUHU PRO NUMERICKÉ ŘEŠENÍ 
ROVINNÉHO DIRICHLETOVА PROBLÉMU 

SøREN CHRISTIАNSEN 

Аutor uvádí v jеdnotné formě n kolik intеgrálních rovnic prvního druhu pro řеšеní dvou-
rozm rné vnitřní Dirichlеtovy okrajové úlohy. Obеcná numеrická kolokační mеtoda jе apliko-
vána na různé rovnicе, při čеmž jsou porovnávány různé intеgrální rovnicе a dv z nich jsou 
doporucеny. Је podán přеhlеd různých numеrických mеtod a uvеdеna jеdnoduchá mеtoda nu-
mеrického řеšеní doporučеných intеgrálních rovnic. 

Pезюме 

ИHTEFPАЛЬHЫE УPАBHEHИЯ ПEPBOГO POДА ДЛЯ ЧИCЛEHHOГO 
PEШEHИЯ ЗАДАЧИ ДИPИXЛE B ПЛOCКOCTИ 

SØREN CHRISTIАNSEN 

Автop пpивoдит в единoй фopме неcкoлькo интеrpaльныx ypaвненгй ncpEOio poдa для 
pешения двyмеpнoй внyтpенней кpaевoй зaдaчи Диpиxле. Oбщий чиcленвь й меюд кoллoкaции 
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пpимeняeтcя к paзличным ypaвнeниям, пpичем cpaвниваютcя pазличные интегpaльныe 
ypавнeния и два из ниx peкoмeндyютcя. Пpивoдитcя oбзop pазличныx чиcлeнныx мeтoдoв 
и пpeдлагаeтcя пpocтoй мeтoд чиcлeннoгo peшeния peкoмeндoванныx интeгpальныx ypaв-
нeний. 
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