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34(1989) APL IKACE M A T E M A T I K Y No . 5, 364—374 

ON MAXWELL EQUATIONS WITH THE PREISACH HYSTERESIS 
OPERATOR: THE ONE-DIMENSIONAL TIME-PERIODIC CASE 

PAVEL KREJCI 

(Received February 23, 1988) 

Summary. Energy functionals for the Preisach hysteresis operator are used for proving the 
existence of weak periodic solutions of the one-dimensional systems of Maxwell equations with 
hysteresis for not too large right-hand sides. The upper bound for the speed of propagation of 
waves is independent of the hysteresis operator. 

Keywords: Preisach hysteresis operator, Maxwell equations, periodic solutions. 

AMS Classification: 35L60, 35B10, 78A25. 

This research was motivated by VisinthVs paper [7], where the author investigated 
systematically the possibilities of introducing hysteresis operators into partial 
differential equations. His results include existence theorems for parabolic equations 
with the Preisach hysteresis operator in a very general setting. 

We try here to unify the approach of Preisach-Visintin with the Ishlinskii model 
of hysteresis ([2], [3], [4]). In particular, we extend the notion of hysteresis energy 
functionals to the Preisach operator and derive the energy inequalities. For this 
purpose w^ must reduce the class of Preisach operators (the measure in the half-
plane P generating the Preisach operator is assumed to be positive and absolutely 
continuous with a continuously differentiable density with respect to the Lebesgue 
measure). We preserve the notation from [3] — [6] in order to emphasize the cor
respondence between the two models for hysteresis. 

The energy estimates are used in the second part for proving the existence of 
periodic solutions to the one-dimensional Maxwell equations in a ferromagnetic 
material with hysteresis of Preisach type. Let us note that the wave-propagation 
speed does not exceed the velocity of light. This property confirms the hyperbolicity 
of the system. 

The local character of the existence theorem (the solutions are constructed only 
for small right-hand sides) is due to the fact that one of the energy inequalities is 
closely related to the convexity of hysteresis loops. The proof is based on the idea 
that the approximate solutions do not leave the region of convexity of the Preisach 
operator. 
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1. HYSTERESIS OPERATORS 

Let M: [0, T] -* Rj be a continuous function and let Q G R1, h > 0 be given. We 
introduce the relay operator zQth in the following way: for t e [0, T] set At = 
= {T e [0, t ] ; M(T) = D + /?} and t M = max Ar if At + 0. We put 

(1.1) z e » ( t ) = z e » ( 0 ) , if A, = 0 , 

(i.2) U " ) « = < + ! ' j[ MJ;^ = ^ + ; ' 
v ; ff,BV 7 v ' \ ~ 1 , if u(tM) = Q - h , 

(1.3) z e » ( 0 ) 
J(м(0) - D - h) , O ^ 0 , 
- J ( - м ( 0 ) + D - /V), O < 0 , 

where J(r) = 1 for r ^ 0, J(r) = — 1 for r < 0. In Visintin's terminology [7], [8] 

we have zQth(u)(t) = f(Q-htQ+h)(u, £) (t), where the initial condition £ corresponds 
to the "virginal state". 

Following Krasnoselskii and Pokrovskii [2] (cf. also [3], [4]) we define the 
operator /,,. Let u: [0, T] -> R1 be a continuous piecewise monotone function. 
We put 

o , if |M(O)| g h , 

(1.4) lh(u) (0) = (- M(0) - 1i , M(0) > h , 
M(0) + h , M(0) < - h , 

max { lh(u) (t0), M(t) - /?} , t e (t0, tx] , 

, v 1 ( \( \ — I if M is nondecreasing in [t0, t t ] 
(1.5) /„(») (/) = ^ m j n W M ) ( t o ) ) M ( t ) + ;?} ^ t £ ( t o ; t i ] 

if M is nonincreasing in [t0, tx] . 

We see that lh(u) is again a continuous piecewise monotone function. Moreover, 
for arbitrary continuous piecewise monotone functions M, V we have (cf. [2]) 

(1-6) Hu)(t)- lh(v)(t)\ S \\u-v\\t0ttl9 

where 

\\w\\la,b-] = max {|w(s)|, s e [a, b]} . 

The inequality (1.6) shows that /,, can be extended to a Lipschitz continuous operator 
in the space C([0, T]) of continuous functions with the norm || • | | [ 0 ,T]-

This operator can be materialised by a simple device. Let us consider a cylinder 
of length 2/z which is moved along its axis with help of a piston placed inside. If u(t) 
denotes the position of the piston at the instant t, then Jh(u) (t) corresponds to the 
position of the center of the cylinder at the same instant. 

The following lemma establishes the relation between zQth and /,,. 

(1.7) Lemma. Let h > 0, u e C([0, T]), t G [0, T] be given. Then we have 
zQ,h(u) (0 = ~ 1 for Q > h(u) (t) and zQth(u) (t) = + 1 for Q < lh(u) (t). 
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We postpone the proof of (1.7) and we recall the particular character of the 
hysteresis memory. 

Let u e C([0, T]), t e [0, f] be given. Put t = max {T e [0, t]; \u(i)\ = | |u | | [ 0 , 0}. 
We denote t0 = t if u(t) = 0 and t1 = i if u(t) > 0. Further, we put 

(1.8) *2fc = max {T G [t2k-u t] I U(T) = min {U(<J); a e [t2fc_l5 t]}} , 

t2k+i = max {T e [t2fc51] ; u(x) = max {u(u)\ o e [t2k, t]}} , 

until tn = t. 
The sequence {tn} is either finite or infinite. In the latter case we have 

lim|u(tn + 1) - u(tn)\ = 0 . 
n-»oo 

The following lemma is proved in [3], [4]. 

(1.9) Lemma. Let u e C([0, T]), t e [0, T] be #/verc. Then we have lh(u)(t) = 
= max {0, u(i) — ft} / / t = t l5 /ft(u) (t) = min {0, u(Z) + h] if i = t0, and 

h(u) (t2k) = hi(u) (tik-i) ~ m a x {0, u(t2fc_i) - u(t2k) - 2h] , 

*/,(") (*2.<+i) = lh(u)(hk) + m a x {0, u(*2k+1) - u(r2k) - 2/i} , 

where {tn} is the sequence (1.8). 

This lemma shows that the hysteresis memory contains only the values of u at the 
points of the sequence (1.8). In particular, the hysteresis system "forgets" everything 
before t. 

Proof of (1.7), In the case ||u||[0,f] = h we have lh(u) (t) = 0 and the assertion 
follows immediately from ( l . l ) —(1.3). For ||u|[t0,f] > h we construct the sequence 
(1.8) and prove (1.7) by induction over k. Let for instance t = tx (the other case is 
analogous). Then lh(u)(t) = u(t) — h. For Q > u(t) — h we have O > 0 and O > 
> u(0) - h, hence zQth(u)(l) = - 1 by (1.2) or (1.1), (1.3). For Q < u(t) - h we 
distinguish two cases: if A-t 4= 0, then zQh(u)(i) = + 1 by (1.2), if A? = 0, then 
Q-h<Q + h< u(0) and we use (1.1), (1.3). Let us now assume that (1.7) is 
proved for t = l2fc (the argument is the same for t = t^^.^). If u(*2k + i) — u(t2k) = 

^ 2ft, then ln(u) (t) = lh(u) (t2k) and u(t) - h = lh(u) (t2k) = u(t) -f- h for te 
e [t2fc, * 2 f c + i ] , and (1.7) follows from (1.2). Let us assume u(t2k+1) — u(t2k) > 2h. 
Then we have lh(u) (t2k) = u(t2k) + ft, /A(u) (r2 k + 1) -= u(t2k+i) - ft. For O^ > 
> u(t2k + i) — ft or O < u(t2k) — ft the assertion is obvious. In the remaining case 
we have u(t2k) = O + ft = w(*2k+i), hence zQth(u) (t2k + l) = + 1 by (1.2). Lemma 
(1.7) is proved. 

(1.10) Definition. Let \i be a real function of two variables OeR1, ft = 0 such 

that 
(i) fi, dujdQ, d2ujdQ2 are continuous in Rl x [0, oo), 

366 



(ii) H(Q, h) = -fi(-Q, h) for every Q,heRx x [0, oo), 

(iii) (S/i/Se) («?, h) > 0 /Or every Q,heR{ x [0, 00). 

FOr u e C([0, T]) the value of the Preisach operator Z is defined by the formula 

1 CKCK du 
Z(u) (t) = lim - z6th(u) (t) -f (Q, h) dO dh . 

X - > Q o 2 J 0 J ~ K GO 

Remarks . 

(1.11) Correctness. The definition is meaningful, since by (1.7), (1.9) and (1.10) (ii) 
we have 

Z(u)(t) = ftn(lh(u)(t),h)dh9 

where fi(lh(u)(t), h) = 0 for h = ||w||[o,tj-

(1A2) Ishlinskii operator. For i~i(Q,h) = Q((P~1)" (h), where 9 is a given twice 
continuously differentiable concave function, cp(0) = 0, + 00 > <p'(0 + ) > 0, we 
derive from (1.11) and from (2.16) of [3] that ((p'(0 + ))~i I + Z = F"1, where I 
is the identity operator in C([0, T]) and F is the Ishlinskii operator generated by cp. 

From (1.11) we obtain further properties of the operator Z. 

(1.13) Lemma, (i) There exists a positive increasing continuous function \j/ such 
that for u, v e C([0, T]) we have 

\Z(u)(t) - Z(v)(t)\ ^ «V(ma-{||«!t0,.j, H| [ 0 j ( ]}) \\u - » | t 0 f „ . 

In particular, Z is a locally Lipschitz continuous operator in C([0, T]). 

(ii) The operator Z is odd. 

Proof. Putting \jj(V) = \V
Q max {(Oju/SO) (O, h), \Q\ = V] dh and V = 

= max {||w||ro,.-p INI [ 0,0} w e orjtain (1.13) (i) immediately from (1.11) and (1.6). 
The operators lh are odd and JJL is odd with respect to Q, hence Z is odd and Lemma 
(IT3) is proved. 

(1.14) Lemma. Let u e C([0, T]) be absolutely continuous. Then Z(u) is also 
absolutely continuous and the inequality 

0^(Z(u))'(t)u'(t)^^(\\u\\l0^(u'(t))2 

holds almost everywhere. 

Proof. Let us choose t2 > tx = 0 and put v(t) = u(t) for t e [0, t x ] , v(t) = u(t^ 
for te(tu t2\ Lemma (1.13) (i) yields \Z(u)(t2) - Z(u)(t,)\ = <KNkT ] ) | I I ( - ) -
— w(*i)l|[*i,f2]'

 n e n c e Z(w) ^s absolutely continuous. 
Further, let t e (0, T) be arbitrarily chosen. If u'(t) = 0, then (Z(u))' (t) = 0 and 

(1.14) holds. Since the operator Z is odd, the cases u'(t) > 0 and u'(t) < 0 are sym-
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metric. Let us suppose for instance u'(t) > 0. Then the sequence (1,8) l S u m t e ' 
t = hk+i f ° r some k — 0. There are two possibilities: 

a) t -*= tx = I Then we have lh(u)(t) = u(t)- h, (/^(w))'.(t) - w'(t) for /z < " (0 

and lh(u) (t) = (lh(u)y (t) = 0 for h > u(t). 

Therefore, 

(1.15) (Z(")) ' (0 = u ' ( 0 — (и(0- h,h)dh 
ÔQ 

b)t>t. Then we have by (1.9) lh(u)(t) = u(t) - h, (lk(u))' (t) = «'(0 f o r 

h< i(u(t) - u(t2k)) and l„(u)(t)=lh(u)(tu), (lh(u))' (t) = 0 for h > i(«(0 " 

~~ W(^2jc)). vVe obtain 
pi/2(«(0-«(r2k)) <-, 

(1.16) (Z(u))'(t)= uXt)fMt)-h,h)dh 
Jo $Q 

and (1.14) follows from (1.15), (1A 6). • 
We now express the energies of a system with hysteresis. Put fi^(h) = lim P\Q, h). 

Q-+ + CC 

Let r(v, h) for — fi^(h) < v < /-^(/i) and ft g 0 be the partial inverse of &•> i e -
n(r(v, ft), h) — v, r(u(^, ft), ft) = D. Let us denote 

R(c,/z) = f o K v ^ ) d v for 1*1 <Mh)« 

We define the potential energies associated to the Preisach operator Z as 

(1.17) Px(u) (t) = f? K(/<//f(u) (0, A), ft) dft for M e C([0, T]) , 

(1.18) P2(u) (t) = i(Z(u)y (t) u'(t) for ueWx '\09 T), 

where W,c'p(0, T) denotes the usual Sobolev space. 
We have the following energy inequalities. 

(1.19) Lemma. Let u e C([0, T]) be absolutely continuous. Then the inequality 

(p1(«))'(0-(z(u))'(o«(t)^o 

holds almost everywhere. 

Proof. A straightforward computation yields 

(Pl(u)y (t) - (z(«))' (r) «(o = f? (/„(«))' (0 (/*(«) (0 - «(0) • 

. ^ (l„(u) (0, «) dft , and (/„(«))' (0 (/„(«) (0 - «(0) < 0 
OQ 

almost everywhere, thus (1.19) follows easily. • 
The hypotheses (i)-(iii) of (1.10) imply that there exist y > 0 and U > 0 such 

that 
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(1.20) i^(j\^!
+^0(c._-*,*>d*i27 

for |O| ^ U, 0 :g c; g U. This enables us to prove 

(1.21) Lemma. Let u e W2'1^, T) be given such that ||u||[0,T] = ^- Then for arbi
trary t\ s, 0 ̂  s < t ̂  Twe have 

£ (Z(tt))' (<r) «"(«-) d<r 2g P2(») (f) - P2(u) (s) - y J.: |M '(a)|3 d<r . 

Proof. Repeating the proof of of (1.17) of [4] we see from (1.8), (1.9) that it 
suffices to assume that u is increasing and that there is at most one change of memory 
level in [s, t ] , i.e. four cases are possible: 

(a) lh(u) (o) = lh(u) (t2k) + max {0, u(o) - u(t2k) - 2ft} , oe[s,t], 

(b) lh(u) (o) = max {0, u(o) - h) , o e[s,t\ , 

' h(u) (tik+i) + m a x {0, u(o) - u(*2fc+.2) - 2/i} , o e [s, T] , 

hi(u) (hk) + m a x {0, u(O) — u(t2k) — 2h} , <r G (T, t] , 

w(̂ 2/c) < u(t2k + 2) , 

/vn / ̂  ro-( - / / / j(w) ^2 f c) + max {°> W W " * ^ 2 * ) ~ 2/7^' a e t5> T l ' 
W h W [ ) ~ \ max (0, u(O) - ft) , C T G ( U ] , k = 0 or 1 . 

Let us prove the lemma in the case (c) (the others are analogous). By (1.16) we have 

(c) lh(u)(a) 

(Z(u)y(a)u"(a)da = -2(u'(г)f 
l/2(u(т)-и(ř2fc + 2)) 

— (w(т)- ft,ft)dft -
<9O 

- ->-(«) (-) - £ jVto l 3 • [ ™ (5 ("W + «('»«)) , 2 M*) - «('»«))) + 

pl/2(«(ff)-в((2к + 2 ) ) 32 -I 

+ --i? (н(tr) - h, h) àh da 
Jo <V J 

and similarly for JJ . Since we have 

-2(»Ь)У 
l/2(и(т)-и(ř 2fc + 2)) Л/, 

f (и(т) - ft, ft) dft 
ÖQ 

l/2(и(т)-м(ř 2 к )) л 

^ ( u ( т ) - ft,ft)dft 
0 <fø 

á 0 , 

we use (1.20) and Lemma is proved. • 
Let us pass to periodic functions. We denote by Cco the space of continuous 

co-periodic functions with the norm ||u|| = max {|w(f)|, t e R1}. 
Lemma (1.9) implies that lh(u) is co-periodic for t ̂  co if u e Cco. Therefore, Z can 

be considered as a continuous operator in Cw. 
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In the sequel, we deal with functions u(x, t), x e [0, ft/2], t e R1, such that 
u(x, t + co) — u(x, t). For the corresponding Lp-spaces, 1 ^ p < oo, we use an 
obvious notation L^(0, izj2), with the norm 

i«iP = as/Moi«(x,t)i"d.dx)1/''. 
The space of continuous co-periodic functions is denoted by Cw([0, ft/2]), with 
the norm {{u^ = max {|u(x, t)\, x e [0, ft/2], £ e K1}. 

For u G CJ^O, ft/2]) we can define the value of the Preisach operator 

(1.22) Z(u) (x, t) = Z(u(x, •)) (t) , xe [0, ft/2] , t ^ 0 . 

Lemma (1.13) (i) shows that Z is again a locally Lipschitz continuous operator 
in Cj[0, ft/2]). 

2. MAXWELL EQUATIONS 

The one-dimensional Maxwell equations in a ferromagnetic material can be 
written in the form ([1]) 

(2.1) e0eEt + Hx + c/(E) = g 

li0(H + J)t + Ex = 0 , 

where E, H are the intensities of the electric and magnetic field, respectively, J is the 
magnetization, a is a given function representing the conductivity, e0 > 0, pi0 > 0, 
e > 1 are given constants, £0/i0 = c~2, c is the velocity of light and g is the given 
density of the imposed electric current. The Preisach model for the ferromagnetism 
consists in putting 

(2.2) J = Z(H) , 

where Z is the operator (1.10), (1.22). 

(2.3) Proposition. Let us suppose o(E). E ^ 0 for every E e R1. Then the speed 
of propagation of electromagnetic waves governed by (2.1), (2.2) does not exceed 
cjy/e. 

Proof. The argument is the same as in [6]. We assume that E, H are solutions 
of (2.1), (2.2) with g = 0 such that E(x, 0) = H(x, 0) = 0 for x e [a, b]. We integrate 
the function 

L0(±H2 + Pl(H)) + e^E2~\ +(EH). 

over a trapezoidal domain bounded by the straight lines t = 0, t = t, x = a + Xt, 
x = b — At, where A = cj^Je, 0 < t < (b — a)J2. Lemma (1.19) and the Green 
theorem yield H(x, t) = E(x, t) = 0 for x e (a + Xt, b — Xt), i.e. A is an upper 
bound for the wave-propagation speed. • 
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The values of the constants in (2.1) are irrelevant for the existence theorem. For 
this reason we now consider the system in the form 

(2.4) Et + Hx + a(E) = g 

H, + (Z(H))t + Ex = 0 . 

(2.5) Theorem. Let a be a continuously differentiate function, o' _ 0, cr(0) = 0, 
and let Z be the Preisach operator (1.10), (1.22). Then there exists 3 > 0 such 
that every g e L2j0, TC/2), gt e I?j0, TC/2), ||g||2 + lg,||2 < $ there exist E, H e 
e Cj[0,TT/2]), Et, Hx e L2J0, TC/2), EX, Ht e L3J0, TC/2), E(0, t) = H(nj2, t) = 0, such 

that the system (2.4) is satisfied almost everywhere in (0, TC/2) X (OJ, + OO). 

Remarks 

(2.6) Uniqueness. If the operator Z is not of the form (1.12), where it is possible 
to use the monotonicity of the Ishlinskii operator (cf. [5]), the answer is not known. 

(2.7) Boundary conditions. The situation is more complicated here than in the 
"Ishlinskii" case. For instance, with the boundary conditions E(0, t) = E(nj2, t) = 0, 
even the problem of existence of solutions seems to be open. 

P roof of (2.5). The idea of the proof is the same as in [3]. We apply the Galerkin 
method. Let us denote Wj(t) = sin (2Kjt\a>) for j > 0, Wj(t) = cos (2Tc/t/a>) for j _ 0. 
For a fixed integer n > 0 we look for functions 

_<»>(*, 0 = Z Z EJk w / 0 sin (2fc + 1) x , 
j=-nk=0 

H<">(x, 0 = t I HJk Wj(t) cos (2k +l)x, 
j = - n k = 0 

where Ejk, Hjk are real numbers satisfying the system 

(2.8) I1" JS/2 (Ein) + H(n) + (r(E(n)) - g) Wj(t) sin (2k + 1) x dx dt = 0 , 

11° \o2 [Wn) + 4"}) w /0 . - Z (^ ( n ) ) « 0 ] c o s (2fc + 1) x dx dt = 0 , 

j = —n, ..., n , fc = 0, ..., n . 

We see immediately that every solution of (2.8) fulfils 

\ r £ " (z(H<"')( Hi? - T'(£(n)) (E(,n)Y + gtE?y) dx dt = 0 . 

Let us suppose 

(2-9) \\H"U<U, \\g\\2 + \\g,\\2 < 5 . 

By Lemma (V21) we obtain 
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Moreover, (2.8) implies 

N i l = H2 r W 2 + Z(i*<»>Xtf<"> + <?£<">) dtdx. 
Hence (1.14) yields 

IEH; ^ [(i + W ) W 3 II-3T-'3 + ^ H l * • 
In particular we have 

(2.10) HHHI3 + IJE^U 2^ const. <32. 

Let cp e L2
o(0, TI/2) be an arbitrary function and let us denote by cpn the projection 

of cp onto the subspace generated by {wj(t) cos (2k - j - 1) x, j = — n, . . . , n, k = 
- 0, . . . , n } . 

Using (2.8), (2.10), (1.14) we obtain 

I \ r j 2 - £?v ^ dx| = \\r or (W + z(Hn) <?* & *x\ s 
<: const. 82,3\\<pn\\3/2 . 

Since |<B — cpn\\2 -» 0 as n -> oo, we have also ||<p — <pn||3/2 -» 0 as n•->. oo, 
hence the inequality 

IIS'2 J^£?Vd .- '_(dx|g const <52/3|Mj3/2 

holds for every cp e L2
W(0, TI/2), and consequently for every cp e L3^2^, TU/2). In other 

words, we have 

(2.11) IF^II3 g const. £2 , |F (n ) | |3 S const. O"2 . 

The space {u e L^O, TT/2); ut e L^O, TT/2), UX e L3
OT(0, TC/2)} is (compactly) embedded 

into Cw([0, TI/2]). More precisely, we have \u(x, t) — u(y, s)\ ^ const. (|x — y|1/5 + 
+ \t - s\in) for x, y e [0, TI/2], t9 seR1. 

This gives 

(2.12) | |£(n ) |U -g const. S213 , ||O(F(n))|U ^ ^ ( c o n s t - ^2 /3) > 

and from (2.8), (2.10), (2.12) we get 

(2.13) | |Hf | |2<;a(<5), 

where a is a continuous function, a(0) = 0. An analogous embedding as above 
yields 

(2.14) \\H{n)|| m S const. <x(<$). 

The system (2.8) is a (nonlinear) vector equation of the form 

(2.15) <f>(V) = G, 

where V= {&jk9Hjk9 j — — n, . . . ,n , k = 0, . . . ,n} and G is the right-hand side 
vector. We equip the space R2("+1)(2n + 1) of vectors Vwith the norm 

|V| = ||£<")|U + | / iw |U 
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and denote by B(-,n) the ball {Ve R20»+->W»+->; | j/ | ^ U}. L et us consider the system 

(2.16) <Pe(V) = eG, ee [0,1] 

analogous to (2.8), where o-(L(n)), # are replaced by e <x(L(,°), eg, respectively. Indeed, 
the estimates (2.10)-(1.14) remain valid for the solutions of (216) independently 
of s, provided that (2.9) holds. Consequently, for 3 > 0 sufficiently small the system 
(2A6) has no solution on the boundary of B(J° for e e [0, 1] and the topological 
degree d(#e(-) - sG, B$\ 0) is independent of s. The mapping <P0 is odd, hence 
d(&(-)-- G9B%\0) = d($0,B%\0)* 0. Thus we have proved that for every 
n ^ 1 the system (2.8) has at least one solution in the interior of JB(

U
1) such that 

(2.10) —(2.14) hold. Notice that 3 may be chosen indepedently of n. 
Using once more the embedding theorems quoted above we conclude that there 

exists a subsequence {E(w),H(w)} of {E(n), H(ri)} and functions E, H e CJJO, TI/2]), 
Eř, Hx e L]o(0, TI/2), Ex, Ht e 1^(0, jc/2) such that L ( m ) -> L„ H(m) -> Hx in L2

fI)(0, TC/2) 
weak, L^m) -> Lx, H(w) -> Hř in L^O, TC/2) weak, L("} -> L, H(n) -> H uniformly. 
A standard limit procedure in (2.8) completes the proof. 
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S o u h r n 

O MAXWELLOVÝCH ROVNICÍCH 
S PREISACHOVÝM H Y S T E R E Z N Í M OPERÁTOREM: 
J E D N O R O Z M Ě R N Ý ČASOVĚ P E R I O D I C K Ý P Ř Í P A D 

PAVEL KREJČÍ 

Pomocí funkcionálů energie pro Preisachův hysterezní operátor je dokázána existence slabých 
periodických řešení jednorozměrné soustavy Maxwellových rovnic s hysterezí pro nepříliš velké 
pravé strany. Horní odhad pro rychlost šíření vln nezávisí na hysterezním operátoru. 
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Р е з ю м е 

ОБ УРАВНЕНИЯХ МАКСВЕЛЛА С ГИСТЕРЕЗИСНЫМ ОПЕРАТОРОМ 
ПРЕЙСАХА: ОДНОМЕРНЫЙ ПЕРИОДИЧЕСКИЙ ПО ВРЕМЕНИ СЛУЧАЙ 

РАVЕ^ К к Е г а 

С помощью функционалов энергии для гистерезисного оператора Прейсаха доказывается 
существование слабых периодических решений одномерной системы уравнений Максвелла 
с гистерезисом для не слишком больших правых частей. Оценка сверху для скорости распро
странения волн не зависит от гистерезисного оператора. 

АшНог'з аЛйгезз: 1ШОг. Рауе1 Кге]М, С8с , Ма1ета1юку й$1ау С8АУ, Й1па 25, 115 67 
РгаЬа 1. 
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