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34(1989) APLIKACE MATEMATIKY No. 6, 429—438 

ON THE GENERALIZED RICCATI MATRIX 
DIFFERENTIAL EQUATION. 

EXACT, APPROXIMATE SOLUTIONS AND ERROR ESTIMATE 

LUCAS JODAR, E . NAVARRO 

(Received February 11, 1988) 

Summary. In this paper explicit expressions for solutions of Cauchy problems and two-point 
boundary value problems concerned with the generalized Riccati matrix differential equation 
are given. These explicit expressions are computable in terms of the data and solutions of certain 
algebraic Riccati equations related to the problem. The interplay between the algebraic and the 
differential problems is used in order to obtain approximate solutions of the differential problem 
in terms of those of the algebraic one. 

Keywords: Generalized Riccati matrix differential equation, Cauchy problem, two-point 
boundary value problem, algebraic Riccati equation. 

1. INTRODUCTION 

In recent papers [8], [9], Cauchy problems and boundary value problems con
cerned with the generalized matrix differential equation 

(1.1) áját X(t) = A + B X(t) - X(t) C - X(t) D X(t) 

are treated, but solutions are given in terms of the entries of the matrix function 

S(ř) = e x p ( p ^ í ) = (51.,(ř)), l š i, JÚ2 

without the explicit knowledge of the entries $ij(t) in terms of the data. The aim 
of this paper is to present an explicit expression for the solutions of the problems 

(1.2) áját X(t) = A + B X(t) - X(t) C - X(t) D X(t) ; X(0) = P0 

and 
(1.3) á/átX(t) = A + BX(t) - X(t) C - X(t) D X(t) ; 

E X(b) - X(0) F = G; 0 ^ t ^ b 

*) This paper has been partially supported by a grant from the Acción Integrada Hispano-
Francesano. 69/1 (1987). 
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where A, B, C, D, JE, F, G, P0 and X(t) are square matrices from Cnxn

9 and t lies 

on the real line. Solutions of problems (1.2) and (1.3) are given in terms of the data 

and solutions of generalized algebraic Riccati equations of the type 

(1.4) M + NX - KP - XgX - 0 . 

Different methods for solving algebraic equations of the type (1.4) may be found 

in the literature, for example in [1], [5], [7], [14], [15] and [16], 

The interplay between the solutions of the problems (1.2) and (1.3) and the 

solutions of algebraic equations of the type (1.4) may be used for obtaining approx

imate solutions of problems (1.2) and (1.3), and error estimates of them, in terms 

of approximate solutions and error estimates for solutions of the algebraic problem. 

So, any approximate method for solving equations of the type (1.4) provides a method 

for obtaining approximate solutions of problems (1.2) and (1.3), and depending 

on the problem we can choose the most convenient resolution method for the equation 

(1.4), so that the error of the approximate solution of problems (1.2) and (1.3) 

be as little as possible. 

Because of the interplay between the solutions of algebraic and differential pro

blems, this paper may be regarded as a continuation of [10], [11] and [12]. The 

paper is organized as follows. Section 2 deals with the explicit expression of the solu

tion of problem (1.2), as well as with finding approximate solutions and error esti

mates of them, in terms of the data and a solution of the algebraic equation 

(1.5) A + BX - XC - XDX = 0 . 

Also it is proved that this explicit expression of the solution of problem (1.2) is 

stable with respect to the Cauchy condition, and the variation of the solution with 

respect to the change of the Cauchy condition is presented. Section 3 deals with the 

explicit solution of the two-point boundary value problem (1.3). Sufficient conditions 

for its resolution and an explicit expression for solutions in terms of solutions of 

the equation (1.5) and a solution of a certain algebraic equation of the type (1.4) 

is given. Starting from approximate solutions of equation (1.5), approximate solu

tions of problem (1.3) are presented. Also, error estimates for the approximate 

solutions of problem (1.3) in terms of error estimates of the approximate solutions 

of problem (1.4) are given. 

In order to clarify the presentation we recall some concepts and results that will 
be used in next sections. If A is a matrix in Cnxn

9 we represent by ||A | | its operator 
norm, defined by 

И = sup 
\Ax U 

where || | | 2 denotes the usual euclidean norm in Cn. If A is an invertible matrix 
in Cnxn, and B is a matrix in Cnxn

 s u c h that flj? - A[| < (IJA""1!!)"1, then B is in
vertible and 
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(1.6) tB-'-A-^lA-IIIA-SllfS-IJ 
and for any pair of matrices C and D in Cnxn, one gets | | c D] <; [[C[j j[D[), see [4], 
and [6]. 

Finally, iff is a differentiable matrix function acting on Cnxn
9 and A, B are matrices 

in Cnxn
9 then the mean value theorem, [3], p. 158, implies that 

(1-7) If (A + B) - f(A)\\ = J[B[[ sup \\f«\A + tB)[[ 

2. CAUCHY PROBLEMS: EXPLICIT, APPROXIMATE SOLUTIONS 
AND ERROR ESTIMATE 

We begin this section with the Cauchy problem (1.2) under the existence hypo
thesis of a solution X of the algebraic equation (1.5). 

Lemma 1. Let us suppose X is a solution of equation (1.5), let U0, B0 and C0 be 
defined by 

(2.1) ,U0= P0-X; B0 = B - XD; C0 = C + DX . 

Let J be a neighborhood of t = 0 on the positive real line such that 

(2.2) fOr all t e J , the matrix I + J0 exp ( —vC0) D exp (vB0) dvU0 

is invertible . 

Then the only solution of the problem (1.2) on J is given by the expression 

(2.3) 

X(t) = X + exp (tB0) U0(I + J0 exp ( -vC 0 ) I) exp (vB0) dv U0)
_1 exp (-tC0) . 

Proof. Let us consider the change of variable 

(2.4) U(t) - X(t) - X . 

Then the problem (1.2) is equivalent to 

(2.5) d/dt U(t) = B0 U(t) - U(t) C0 - U(t) D U(t) ; U(0) - U0 

whete B0, C0 and U0 are given by (2.1). Now, let us consider the extended linear 
system 

Solving (2.6) we obtain that 

(2.7) Z(r) = exp (tB0) U0 , 

V(t) = exp (lC0) (I + J0 exp ( -vC 0 ) D exp (^B0) dv U0), 

see [2], chap. 1 for details. 
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Note that as V(0) = I, there exists a neighborhood J of t = 0 such that V(t) is 
invertible in J, [6]. Thus, if we define the matrix function U(t) = Z(t) (V(t) (V (0) _ 1 

for t e J, an easy computation yields (2.5), see [9], p. 18, for details. By [13], there 
exists only one solution, and by virtue of (2.4), (2.7), it is given by (2.3). 

For the sake of clarity of the proof of the following result we introduce an easy 
algebraic relationship satisfied by any matrices Ln, Sn, Tn, L, S and Tin Cmxm. Note that 

(2.8) LnSnTn - LST = Ln(Sn - S) Tn + LnS(Tn - T) + (L„ -L)ST. 

Lemma 1 provides an explicit expression of the solution of problem (1.2) when 
there exists a solution of the algebraic equation (1.5). The next result shows that 
a good approximation of the solution X of equation (1.5) provides a good approxi
mation of the solution of problem (1.2), and also an estimate of the approximation 
error of the solution of (1.2) in terms of the data and the approximation error of the 
solution of (1.5) is given. 

Let us suppose that {Zn\n>l is a sequence of matrices norm-convergent to a solu
tion X of equation (1.5). Then it is clear from Lemma 1 that for each real number 
t G J such that hypothesis (2.2) is satisfied, the sequence of matrix functions Xn(t) 
defined by 

(2.9) 

Xn(t) = Zn + exp (tBn) Un(l + j 0 exp (-vCn) D exp (vBn) dv U,,)"1 exp (-tCn) 

where 

Bn = B - ZnD; Cn = C + DZn ; Un = P0 - Zn, 

is pointwise convergent to the only solution X(t) of (1.2), given by (2.3). Let us also 
suppose that the matrix function W(t) defined by 

(2A0) W(t) = j 0 exp ( - vC0) D exp (vB0) dv U0 

satisfies 

(2.11) \\W(t)\\ = d(t) < 1 , for all t e J . 

Now, considering the matrices 

(2.12) 

L„ = exp (tB„) U„ ; Sn = (I + j 0 exp (-vCn) D exp (vBn) dv V.)'1 I 

T„ = exp(-i*C„) 

L = exp (tB0) U0 ; S = (I + )'0 exp ( -vC 0 ) D exp (vB0) dv U0)~
x ; 

T= exp( - fCo) 

we obtain that from (2.3), (2-8), (2-9) and (2.12), that 

(2.13) \\X„(t)- X(t)\\ ^ \\Ln\ \\Sn - S\\ \TM\ + «L„fl \S\ [|T, - T\ + 

+ 1L„ - Ll ||S| 1T1 . 

432 



Let e be a positive number. Then from the norm convergence of Zn to X it is clear 
that Bn, Cn and Un, defined by (2.9), are norm-convergent to B0, C0 and U0, respect
ively. Let t be a fixed real number satisfying (2.11). Then there exists a positive integer 
n0 (depending on t and s) such that for n > n0 the following conditions are satisfied 

(2.14) ||Jo exp (-vC„) D exp (vB„) dv U„|| < (1 + d(t))J2 , 

BB.II < ||B0|| + e ; [|C.|| < ||C0|| + s ; ||U„|| < [|U0|| + e ; n > n0 . 

Considering (2A2), (2.11) and taking norms for n > n0 we obtain that 

(2.15) ||L„[| < (flU0fl + e) exp (t(p0\\ + e)) ; ||T„|| < exp (/(|C0|| + a)) 

||Tfl<exp(iC0||); IJSfl < (1 - Sit))'1 . 

By application of the mean value theorem to the expressions 

Ln-~ L= exp (tBn) Un - exp (tB0) U0 ; Tn - T = exp ( - tC„) - exp ( - tC0) 

it follows that 

(2-16) 

||T„ - T|| < t2 exp^HCol + s)) ||C„ - C0fl < t2JD\\ ||Z„ - X\\ exp«||C0) + e)), 

|L„ - L\\ < {(UUofl + e) r2||Z)|| exp(X||B0|| + e) + exp(j||B0||} ||Z„ - Jfl . 

From (1.6) and (2.12), (2.14) for n > n0 one gets 

(2-17) IS, - S\\ S 

= IIs! \Sn\\ II Jo ((exp (~vCn) D exp (vBn) U„ - exp (vC0) D exp (t)B0) U0) dv\\ < 

< |S„|| HSII J0 ||exp(-yC„) D(expK,) - exp (vB0)) U„\\ dv + 

+ Jo exp (-vC„) D exp (vB0) (U„ - U0)|| dv + 

+ |S„|| USD Jo ||exp (-yC„) - exp (-t>C0)) D exp (rB0) U0|| dv . 

From (1.7) and (2.17), (2.14) one gets 

(2-18) ||S„ - Sfl < 

< 2\\D\\ (1 - d(t))-2 (J0 exp (,(|lC0fl + ||B0|| + 2s) v2 dv) ||D|| (||U0|| + e) . 

. ||Z„ - X + 2\\D\\ \\Z„ - X\\ (1 - <5(0)"2 (Jo (exp (.(flC0| + ||B0fl + e). 

\\D\\ dv + 2\D\\2 (1 - §(t)Y2 HUol (Jo o2 exp (,(||C0fl + flB0|| + a)). 

.dv)\\Z„-X\\. 

Let us denote by y and Q the positive constants defined by 

(2.19) y = flColl + |B0 | | + 2e ; e = |C0fl + ||B0|| + a . 

From (2.17)-(2.19) it follows that 

(2.20) [|S„ - S|| < 

< 2(1 - S(t))-2 ||Bfl ||Z„ - X\\ (\\D\\ (flUofl + a) J0 ,
2 exp (yv) dv + 

+ Jo exp (ev) dv) + 2(1 - 5(i)Y2 \D\\2 \U0\\ \\Z„ - X\\ J0 v
2 exp (VQ) dv . 
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From (2.13), (2.15), (2.16) and (2.20), it follows that 

(2.21) \\xn(t) - x(t)\\ <; 

^ {2(flU0fl + 8) flDfl (1 - .5(f))-2 exp (t8) [flDfl (|U0 | | + s) ft v2 exp (yv) dv + 

+ ft exp (QV) dv + flDfl ||Uo|| ft v2 exp (yv) dv)] + exp (tQ) t2 flDfl (1 - 5(f))-1 + 

+ (1 - ^(f))-1 exp(f||C0 | |)((||U0fl + 8) t2\D\\ exp(f( | |* 0 | | + e)) + exp(f ||B0fl)} . 

. ||Z„ - XI rg {2 exp (ty) (l - ^(f))" 1 flDfl (flU0fl + a) [ft exp (e) dv + 

+ e || D [I ft t>2 exp (17) dt> + | |D| | ||U0|| ft y2(exp (17) + exp (VQ)) dv] + 

+ t2\\D\\ (IIUofl + a) (exp (to) + exp(fy)) + exp(f(| |B0 | | + 

+ | | C 0 | | ) } ( l - 5 ( f ) ) - 1 | | Z n - J f l . 

Thus, under the notation of Lemma 1, the following result is proved. 

Theorem 1. Let us consider problem (1.2), let W(t) be defined by (2A0), let us 
suppose that (2.11) is satisfied in a neighborhood J = [0, r] Of t = 0, lets be 
a positive number, let y, O be defined by (2A9), and let n0 be such that (2.14) is 
satisfied for n > n0. Then the error of the approximation Xn(t) defined by (2.9) 
is given by (2.21). 

3. BOUNDARY VALUE PROBLEMS: EXACT, APPROXIMATE SOLUTIONS 
AND ERROR ESTIMATE 

The next results concern the resolution problem (1.3), under the existence hypo
thesis of a solution X of equation (1.5). This problem (L3) has been studied in [8], 
for the time varying finite-dimensional case, and in [9], for the time invariant infinite 
dimensional case, but in both papers, the solution of the problem is given in terms 
of the entries S^t) of the matrix function S(t) defined as 

S(t) = exp | Ш 
In this section, a computable expression for solutions of problem (1.3), in terms 

of the data and solutions of algebraic Riccati equations of the type (1.4) is given. 

Theorem 3. Let X be a solution of equation (1.5), and let us consider the matrices 
B0, C0 and U0 defined by (2.1). Let us consider the matrices M, N, P and Q defined 
by the expressions 

(3.1) l% K = G - EX + XF ; M = - K exp (bC0) ; 

Q = F fo exp ((b - v) Co) D exp (vB0) dv 

N = E exp (bB0) - K Jo exp ((b - v) C0) D exp (vB0) dv; P = F exp (bC0) 
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and let us suppose that there exists a solution Yof equation (1.4), where the coeffi
cients are given by (3A), such that 

(32) For all t e [0, b] , 

the matrix I + f0 exp ( —vC0) D exp (vB0) dvY, is invertible 

Then a solution of problem (1.3) is given by 

(33) X(t) - X + exp (tB0) Y(I + f0 exp (~vC0) D exp (vB0) dv Y)"1 exp (-*C0) 

Proof. Let us consider the Cauchy problem (1.2) for any matrix P0 in Cnxn, and 
let us consider the change of variable (2.4). Taking into account Lemma 1, it follows 
that the matrix function X(t) given by (2.3) is the solution of problem (1.2) with 
X(0) — P0. Now we are interested in finding the value of P0 so that X(i) given 
by (2.3) be a solution of (1.3). 

Note that the boundary value condition appearing in (1.3), for the variable X(i), 
is equivalent to the boundary value condition 

(3.4) E U(b) - [7(0) F - G - EX + XF 

where U(t) - Z(t) (V(t))~\ and Z(t) and V(t) are defined by (2.7) for all te [0, b], 
and U0 = Po — X. By imposing that U(t) satisfies the boundary condition (3.4), it 
follows that U0 must verify the condition 

(3.5) E(exp (bB0) U0(I + J? e xP (-vC0) D exp (vB0) dvUo)"1 exp ( -bC 0 ) ) -

where K is given by (3A). By postmultiplying (3.5) by the matrix 

exp (bC0) (I + fo e xP (-vC0) D exp (vB0) dv U0), 

it follows that U0 must verify the equation 

(E exp (bB0) + K exp (bC0) J0 exp (vC0) D exp (vB0) dv) U0 -

- U0F exp (bC0) - U0(F exp (bC0) f0 exp (~vC0) D exp (vB0) dv - K exp (bC0). 

Hence, and from (3.1), it follows that U0 must satisfy the equation (1.4), where 
M, N, P and Q are given by (3A). Conversely, if Yis a solution of (1.4) —(3.1) and 
we consider the problem (1.2) with X(0) = X + Y, placing Yas U(0), the solution 
of this Cauchy problem, given by Lemma 1, satisfies the boundary condition (3.4). 
Note that by the invertibility of V(t), the condition that 1/(0) is a solution of (1.4) to 
(3A) is necessary and sufficient for U(t) to be a solution of (2.5), (3.4), or equivalently, 
for X(t) to be a solution of (1.3). 

Corollary 1. Let {Zn}n^ { be a sequence of approximations that converges to a solu
tion Yof equation (1.4) with coefficients given by (3.1), X being a solution of equa
tion (1.5) and let U0, B0, C0 be defined by (2.1). Let W(t) be defined by (2.10), and 
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let us suppose that for all t e [0, h\, the condition a(t) = ||Y|J ||JV(0|| < h < 1 

is satisfied. Then the sequence of matrix functions defined by 

(3.6) ' 

X„(t) = X + exp (tB0) (Z„ + J 0 exp (~vC0) D exp (vB0) dvZ,,)'1 exp (-tC0) 

is pointwise convergent to the solution X(t) of problem (1.3), defined by (3.3). 

The error X„(t) — X(t) is norm-bounded by 

(3.7) 2expO(| |B0[j + | |C 0 | | )) (1 - h)"1 ||Z„ - Y|| for n > n0 

where n0 is chosen such that \\Zn — Y|| < (1 — h) ( 2 h ) _ 1 | |Y | | if Y =j= 0 and n > nQy 

and if Y = 0, then we take n0 such that for n > n0 the condition \\ W(t)\\ \\Zn\\ < 1 

is satisfied. 

Proof. The result is an easy consequence of theorems 1 and 3. 

Now we are going to consider a class of examples for solving the problem (1.3) 

by application of Th. 3, and a particular way for the resolution of the generalized 

Riccati equation (1.4) with coefficients given by (3.1). 

E x a m p l e 1. Let P, Q, M and N be the coefficient matrices defined by (3.1), and 

let R and H be defined by the expressions 

such that HR = RJH, 

Чч] 
where JH is the Jordan canonical form of H. If X is a solution of (1.5), B0, C0 and U0 

are defined by (2.1) abd 

(3.8) for all t e [0, b] , 

the matrix Kj + j " 0 exp ( —vC0) D exp (vB0) dvK3 is invertible , 

then a solution of problem (1.3) is given by 

X(t) = X + exp (tB0) R3(RX + J 0 exp (-vC 0 ) D exp (vB0) d v R 3 ) _ 1 exp (-tC0) . 

In fact, from the hypothesis (3.8), taking t = 0, it follows that Rt is invertible. 

From [14], Y = K3Pi"1 *s a solution of (1.4), its coefficients being given by (3.1). 

Now the result is a consequence of Th. 3. 

CONCLUSIONS 

This paper presents a method for computing explicit solutions of Cauchy problems 

and two-point boundary value problems concerned with the generalized Riccati 
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matrix differential equation ( l . l ) . The method is based on the existence of solutions 
of algebraic Riccati type matrix equations related to the problem, and the expression 
for the solution of the differential problems is expressed in terms of the solutions 
of the corresponding algebraic problems. 

The interplay between the solution of the algebraic and the differential problem 
allows us to obtain approximate solutions of problems (1.2) and (1.3), and an error 
estimate of them, in terms of approximate solutions of equations of the type (1.4) 
and their corresponding error estimates. Also, it is proved that the expression for 
the solution of the Cauchy problem (1.2) is stable with regard to a small change 
of the Cauchy condition. 
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Souhrn 

O ZOBECN NÉ RICCATЮVĚ MATICOVÉ DIFERENCIÁLNÍ ROVNICI. 
EXAKTNÍ A PŘIBLIŽNÁ ŘEŠENÍ, ODHAD CHYBY 

LUCAS JÓDAR, E, NAVARRO 

V práci jsou uvedeny explicitní formule pro řešení Cauchyovy úlohy a dvoubodové okrajové 
úlohy pro zobecněnou Riccatiovu maticovou diferenciální rovnici. Tyto výrazy lze vypočítat 
pomocí dat a řešení jistých algebraických Riccatiových rovnic souvisejících s danou úlohou. 
Vzájemné vztahy mezi algebraickou a diferenciální rovnicí jsou užity k nalezení přibližného 
řešení diferenciálního problému pomocí řešení problému algebraického. 

Р е з ю м е 

ОБ ОБОБЩЕННОМ МАТРИЧНОМ ДИФФЕРЕНЦИАЛЬНОМ УРАВНЕНИИ 
РИККАТИ. 

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ РЕШЕНИЯ, ОЦЕНКА ПОГРЕШНОСТИ 

ЬаСА8 1б0АК, Е. NАVАККО 

В работе приведены явные формулы для решения задачи Коши и двуточечной краевой 
задачи для обобщенного матричного дифференциального уравнения Риккати. Эти выражения 
могут быть вычислены при помощи данных и решений некоторых алгебраических уравнений 
Риккати, связанных с данной задачей. Взаимные связи между алгебраическим и дифферен
циальным уравнениями использованы для определения приближенного решения дифферен
циальной задачи при помощи алгебраической задачи. 

Ашкогз' аМге$з: РгоГ. Ьисаз 1дс1аг, РгоГ. Е. Иауагго, ОераПашепЮ ае Ма1ета1лса АрПсаёа 
Шгуег51а'аа' РоШёсшса ее Уа1епс1а, АраЧ). 22.012, Уа1епаа 46071, 8рат. 
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