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A REMARK ON A-REGULAR ORTHOMODULAR LATTICES 

VLADIMIR ROGALEWICZ 

(Received February 25, 1988) 

Summary. A finite orthomodular lattice in which every maximal Boolean subalgebra (block) 
has the same cardinality k is called A-regular, if each atom is a member of just A blocks. We 
estimate the minimal number of blocks of A-regular orthomodular lattices to be lower than or 
equal to A2 regardless of k. 
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INTRODUCTION 

The most powerful tool for constructions of finite orthomodular lattices (abbr. 
OMLs) are graphical methods — see [1, 2, 3, 5]. Utilization of these methods has 
brought forth also purely combinatorial problems. Significant classes are formed 
by OMLs in which every maximal Boolean subalgebra has the same cardinality. 
Following Kohler [4], we shall call such on OML A-regular provided every atom is 
a member of just X different blocks. It was proved in [4] that, for any cardinality 
of blocks and any natural number A, a A-regular OML always exists. The question 
of minimal cardinality of A-regular OMLs was also formulated there, and, using 
the technique of Greechie diagrams [2], the minimal number of blocks, n, of a A-
regular OML with k atoms in every block was estimated by 

n^ Xk^'V. 

In this paper we strengthen this estimate — we show that n f§ A2 for any k ^ 4. 

NOTIONS. RESULTS 

Let J be a family of Boolean algebras. We denote [0, a\B = {b e B | b ^ a] for 
Be ^ and a e B. The ra-cycle in J* is a sequence ((B0, b0), (B1? bx),..., (B„_ l5 b„_ x)) 
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of (not necessarily distinct) algebras Bt e 0& and (not necessarily distinct) elements 
bteBt n Bi+i, bt 4= 0, such that bt ^ b'i+l9 [0, bt\B. = [0, bj#. + 1 (indices mod n). 

Definition 1. J^ is pasted if for any A, B e &, A 4= B the following conditions hold: 
(i) A is nO/ contained in B, 

(ii) A n B is a subalgebra of A and of B on which the operations of A of B co
incide, 

(Hi) for each a e A n B, a $ {0, 1}, lhere exists a 4-cycle ((A, a), (C1? a'), (B, a), 
(C3, a')) (C1? C3 arbitrary). 

The system of all blocks of an OML is pasted [6]. Dichtl [ l ] derived conditions 
for a pasted family of Boolean algebras to form an OML. 

Theorem 2. Let 0$ be pasted. On L= \J B we define a partial ordering and an 

or tho complementation as follows: a —^ b (a = b') if there is B e {% such that a ^B b 
(a = brB). Then Lis an OML if and only if the following two conditions hold true: 
(i) for any 3-cycle ((Bh &*))?= 0 in & there is a member B e J* such that [0, bjg. cz 

c Bfor i = 0, 1, 2, 
(ii) fOr any 4-cycle ((Bb b;))f=0 *w ^ £here is a 4-cycle ((C0, a), (C l 5 a'). (C2, a), 

(C3, a')) in ^ such that b0, b2 g a ^ b[, b3. 

Proof. See [1,3 or 5]. 
Let <£{k) be the class of OMLs whose blocks (maximal Boolean algebras) are 

formed by the Boolean algebras 2k. 

Definition 3, Let a natural number X be given. We say that an OML Le ££{k) 

is X-regular if every atom a e L belongs to exactly X blocks. 

For any k ^ 3 and any X ^ 1 there exists a A-regular OML Le 3?{k) [4]. A natural 
question arises to optimize its cardinality. We denote by Nf} the minimal number 
of atoms of a A-regular OML Le <£{k) and by n(k) the minimal number of blocks 
of such an OML. It is obvious that XNf} = kn(k). Kohler [4] proved that 

n{k) ^ Xkk{X~X) 

for any k ^ 3 and any X ^ 1. We improve this result as follows. 

Proposition 4, Let X ^ 1 be given. Then n{k) S A2 fOr any k ^ 4. 

Proof. Let X ^ 1 and k ^ 4 be given. Let Bu B2, ..., Bx be copies of the Boolean 
algebra 2k. We denote the atoms of Bt by biu bi2, ..., bik and put x; = bn v bl2 

(and x't = b/3 v bi4 v ... v b/fc) for any i = 1, 2, ..., A. Let us unify all x/s i = 
= 1,2,... , A, and denote this element by x. Put J* = {[0, x\B. x [0, xf\Bj\ i = 
= 1,2, . . . ,A, j = 1,2, . . , ! } . Then ^ is pasted. Indeed, if C, D e ®, C 4= D, then 
C is not contained in D and C n D equals either {0, 1, x, x'} or {0, 1} u [0, x\c u 
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u [x', l ] c or {0, 1} u [0, x ' ] c u [x, l ] c . Hence C n D is a subalgebra of C and of I) 
and the operations of C and of D coincide on C n D. As for (iii) of Definition 1, 
denote [0, x]c x [0, x ' ]D = Al9 [0, x]^ x [0, x ' ] c = A2. Trivially, Al9 A2 e $, 
and if a e C n D9 then a e Ax n A2. If a = x then ((C, x), (A l5 x'), (D, x), (A2, x')) 
forms a 4-cycle. If a _ x, a <£ {0, x}, then [0, x ] c = [0, x]D and ((C, a), (Al9 a')9 

(D, a), (A2, a')) is a 4-cycle. The same result can be obtained if x _ a. If a _ x' or 
x' _ a9 then, analogously, there is a 4-cycle ((C, a'), (Ai9 a), (D, a'), (A2, a)). 
We have proved that ^ is pasted. 

Let us now put L = (J B. We use Theorem 2 to prove that Lis an OML. As for 
Bem 

(i), observe that if ((Al9 at)9 (A2, a2), (A3, a3)) is a 3-cycle in £%, then al9 a2, a3eC 
for some C e [Al9 A2, A3] — otherwise there would be a block [0, x]Bk x [0, x]Bl or 
[0, x']#7< x [0, x']Bl in ^ (for some k, l e {1, 2, ..., /L}). To prove (ii), suppose that 
( (A j , at), (A2, a2)9 (A3, a3), (A4, a4)) is a 4-cycle in $. Suppose first that A1 4= A2 4= 
* A3 * A4 4= „ ! . Then Ax = [0, x ] ^ x [0, x']Al9 A2 = [0, x]Al x [0, x ']^3 , A3 = 
— [0, x]^3 x [0, x'] /}3, A4 = [0, x]^3 x [0, x']Al (if necessary, the role of A2 and 
A4 is interchanged). Now ax e Ax n A2 implies that ai _ x or a1 = x' v ct for 
some c1 _ x. Similarly, a2 _ x' or a2 = x v c2, c2 _ x', a3 _ x or a3 = x' v c3, 
c3 _ x, and a4 _ x' or a4 = x v c4, c4 _ x'. If a1? a3 _ x _ a'2, a49 then ((.ALl5 x), 
(A2, x'), (A3, x), (A4, x')) is the desired 4-cycle. If at ^ x then at = x' v c l5 cx _ x. 
Since ax _ a2, we have a2 _ x A C\ which is possible only if a2 = x. Therefore 
ct = 0, ax = x' and a2 = x. Moreover, a3 _ a2 = x' and a4 _ ai = x. Hence 
al9 a3 _ x' _ a2, a4. The 4-cycle is constructed similarly as above. The same 
result can be obtained also if a2 $ x', if a3 ^ x or if a4 ^ x'. Finally, we shall 
analyze the case A1 = A2 (due to the symmetry, it solves also the other cases with 
an equality). Now al9 al9 a4 e Av Therefore a2, a4 _ a2 v a4 _ a\9 a3 and there 
is a 4-cycle in J*, namely ((Al9 (a2 v a4)')9 (Al9 a2 v a4)9 (Al9 (a2 v a4)')9 (Al9 a2 v 
v a4)). 

Since each block of the logic L = (J B can be identified with some B, fief, the 
Be^f 

logic Lhas X2 blocks (see eg. [3], Lemma 14, p. 51). It is easily seen that each atom 
from L belongs to exactly X blocks. The proof is complete. 
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Souhrn 

POZNÁMKA O A-REGULÁRNÍCH ORTOMODULÁRNÍCH SVAZECH 

VLADIMÍR ROGALEWICZ 

Konečný ortomodulární svaz, v němž každá maximální Booleova podalgebra (blok) má 
stejnou kardinalitu k, se nazývá 2-regulární, jestliže každý atom leží právě v 1 blocích. Dokážeme, 
že nejmenší počet bloků 2-reguíárního ortomodulárního svazu je menší nebo roven )} bez 
ohledu na k. 

Резюме 

ЗАМЕЧАНИЕ О Я-РЕГУЛЯРНЫХ ОРТОМОДУЛЯРНЫХ РЕШЕТКАХ 

V^А^Iм^к. КООАЕЕ\УГС2 

Конечная ортомодулярная решетка, в которой каждая максимальная булевская подалгебра 
(блок) имеет одинаковую кардинальность &, называется Я-регулярной, если каждый атом лежит 
точно в Я блоках. В статье доказано, что наименьшее число блоков Я-регулярной ортомо-
дулярной решетки меньше или равно Я2 независимо от к. 

Ашког'з аййгези: УШшгг Ко§а1етсг, С8с, \]$Ха\ рго пудгосгу паники С8АУ, РоаЪаЬзка 13, 
166 12Ргапа6. 
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