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constraints vary negligibly when the solutions change considerably. Yet it is actually 
a good situation because such changed solutions are almost as good as the original 
ones. 

The philosophy of our "tolerance approach" is to replace the exact solutions not 
by the e-ones (as has been often done already in the classical optimization theory), 
but by a collection of these e-solutions arising when e passes to zero from above. 
It will be shown that such approach has a compactifying character and enables us to 
treat problems posed "with tolerance" by applying standard methods using a certain 
"closure" of such problems, called compactification. The compactified problems 
are then treated as classical optimization problems without tolerance. Besides, the 
tolerance setting of optimization problems ensures apriori certain stability and ap
proximative properties without any data qualification hypothesis (like compactness, 
continuity, etc.), which cannot appear within the classical setting of the problems. 

Of course, our tolerance approach has limited applicability; e.g. if the cost function 
to be minimized were a potential of some equation, we would actually have to look 
for exact solutions ( = minimizers) because only such solutions can solve the original 
equation. Yet, our standpoint will be that the function to be minimized is a cost 
and then the s-solutions are almost as good as the exact ones (if the latter ones do 
exist at all). In the presence of constaints treated also "with tolerance" we shall see 
that they may be even better (i.e. they may achieve a strictly lower cost than the 
infimum of the problem in the classical setting without tolerance). 

As to the second aim, our tolerance approach can be readily applied to a study of 
minimizing sequences. In the classical optimization theory we define minimizers, 
and afterwards the set of all minimizers, to study stability behaviour of the mini
mizers. If one takes, instead of the minimizers, the minimizing sequences as a more 
advanced concept for solutions (see e.g. [3, 8, 13]), then one immediately realizes 
the lack of any notion analogous to the set of all minimizers, which is schematically 
shown by the following diagram: 

a minimizer e the set of all minimizers 

I I 
a minimizing sequence e ? ? ? 

Roughly speaking, this gap will be filled in by our definition of the minimizing 
filter (cf. Definition 1.1 together with Remark 1.3 below). 

As for the third aim, our definitions of the minimizing and feasible filters may be 
considered as a generalization of some (slightly modified) "principles of optimality" 
due to D. A. Molodcov [4, 5]. In particular, our modification of these optimality 
principles reduces considerably the "e — S gymnastics" and enables us to employ 
systematically the standard methods of general topology, which makes all con
siderations easier to understand (cf. [5]). On the other hand, the optimality principles 
and especially their stability from above (see Sec. 2 below) contain a bit more in
formation than our minimizing filters and a lower bound of a net of such filters. 
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Besides, the compactified problems corresponds to what is called relaxed problems 
in certain special cases (see e.g. J. Warga [13], cf. also Example 6.2 below). However, 
since the compactified problems will serve only as an auxiliary tool, we will not 
investigate them here in details (which makes the essential difference between this 
paper and the former author's works [9 — 11]). 

We will systematically use the proximity space theory which is a proper tool for 
our approach to optimization problems; cf. also [9—11]. As this theory is not usual 
in optimization, all notions needed will be defined here. Generally speaking, proximity 
structures enable us to define neighbourhoods of subsets, being thus "coarser" 
than uniformities and "finer" than topologies. The proximity theory originated in 
general topology by the works by V. A. Efremovich [2] and Yu. Smirnov [12] in 
early 1950's. For a survey of this theory we refer e.g. to [7] or [1]. 

Hereafter we use the prefix notation whenever the structures in question may not 
be clear, e.g. instead of saying that a mapping is continuous with respect to the 
topologies ZTx and ^~2 we say briefly that the mapping is ($~u ^"2)-continuous, etc. 

Let us briefly recall some definitions. A proximity 5 on X is a binary relation on 2X 

( = the power set of X) such that 

AtSA2 => AlSA2 , 

(A! u A2) SB => AXSB or A2SB , 

A! n A2 4= 0 => AXSA2 , 

Al5A2 => Ax 4= 0 and A2 =j= 0 , 

A1$A2=>3B\Al$B and (X\B)SA2, 

where 3 means the negation of S. If A1SA2 or A15A2, the sets Ax and A2 are said 
to be near to each other or far from each other, respectively. We will also use the dual 
relation to S9 denoted by > ; it means A± 5> A2 iff (X \ Ax) SA2. If At |> Al9 we say 
that A! is a <5-proximal neighbourhood of A2. Since the relation > has not got any 
standard name in general topology, we dare call it tolerance here. 

Every proximity S induces a topology, denoted by ZTd9 by declaring {x; {x} SA} 
to be the ^-c losure of A. A typical example of a proximity is the proximity 3d 

induced by a metric don X: Al5dA2 iff d(Au A2) = 0 where 3(Al9 A2) = inf d(Al9A2) 
is the distance between the sets Ax and A2 with the convention inf0 = -f oo. Then 
A P B means that there is an e-neighbourhood BE of B such that A ZD BE9 where 
Bc = {xe X; d({x}9 B) fg e}, e > 0. Another example of a proximity is the discrete 
proximity which makes near only sets with a nonempty intersection; the corre
sponding tolerance is then called discrete. 

Let us recall that si a 2X is a filter base on X iff si 4= 0, 0 $ si', and Al9 A2 e si => 
=> 3B e si: B a A, n A2. If, in addition, A ZD Be si •=> Ae si, then si is a filter 
on X. For example, the collection A^ = {B; B >̂ A} is a filter whenever A is non
empty. For every filter base si the collection {A; 3B e si: B a A} is a filter; we say 
that it is generated by si. For two filters sil9 si2 on X we say that six is finer than si2 
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(or stf2 is coarser than s/x) i f ^ D ^ . A collection {sfi}ieI of filters on X has an 
upper bound iff f]ieJ At 4= 0 for every finite subset J of I and At e ja/,.. Then the 
filter generated by the base {f).ej A.; J c I finite, At- e ssft} is called the upper bound 

Now we pose several "syntactic" rules by means of which we will write our opti
mization problems in the "tolerance" notation. 

Rules. 

i) The optimization problem will be the following formula: "Minimize f(x) on X 
with tolerance > subject to s4", where / i s a function X -^ R, K = K u { + 00, 
— 00}, >̂ is a tolerance on R, and s4 is a filter on X. 

ii) For C 4= 0, by saying "C with tolerance > " we will mean the filter C^. 

iii) For g: X -> Yand s4 a filter on Y, by saying "g(x) meets s4" we will mean the 
filter on X generated by the base g~1(sJ), i.e. the filter {A c X; IBestf: 
g~\B) a A) (if it is a filter at all). 

iv) The logical conjunction of statements representing filters on some set will mean 
the upper bound of the corresponding filters (if it is a filter). 

v) If P is the discrete tolerance, then instead of "with tolerance > " we will say 
"without tolerance". 

vi) "Minimize f(x) on X with tolerance ^>" will mean "Minimize f(x) on X with 
tolerance 5> subject to {X}". 

Now, we define notions analogous to the set of all feasible points, to the infimum 
and to the set of all minimizers in the classical optimization theory. 

Definition 1.1. Let (P) be an optimization problem according to Rule i), i.e. 
"Minimize/(x) on X with tolerance > subject to s/". Then we put 

&{P) = s4 , 

inf (P) = s u p ^ infx.^ f(x) , and 

Jt(P) = {A c X; 3Aesf, B > [ - 0 0 , inf (P)]: An/_1(B) cz A} , 

and call them the feasible filter, the infimum, and the minimizing filter of (P), 

respectively (provided fJi(P) is a filter at all). 

R e m a r k 1.1. Obviously, ?F(P) and inf (P) do not depend on the tolerance with 
which / is to be minimized. Since s4 is a filter and the mapping A H-> inf / (A ) is 
monotone, we may define alternatively inf (P) = hmAe^ infVGy4/(x). If >̂ is the 
tolerance on R such that the corresponding proximity induces the standard compact 
topology of Iv, then it is quite evident that inf (P) is the lowest value a for which sf 
and the filter generated b y / _ 1 ( [ — G O , a]^) have the upper bound (which is then 
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equal just to ,£(P)). On the other hand, Ji(P) may contain the empty set and thus 
need not be a filter on X if > would be, e.g., the discrete tolerance on R (i.e. if f(x) 
would have been minimized on X without tolerance). 

Example 1.1. Let us consider the problem in the classical notation: 

{minimize f(x) on X 
subject to x e A and 

g(x) eBnC . 

For simplicity suppose g(A) n B n C 4= 0. Exploiting Rules i) — v), we can para-
phraze this problem in terms of tolerance as follows (using also the discrete proximity, 
for example): 

minimize f(x) on X with tolerance > 0 

subject to x meets A with tolerance >̂ t and 
g(x) meets B with tolerance > 2 and 

C without tolerance, 

V example/ 

where ^>0, P l9 and |>2 are some tolerances on R, X, and Y, respectively, g: X -> Y, 
B, Cc=Y, AcX. By Definition 1.1, e.g. ^(-Pexamp,e) = {D c X; lA 1> l Ay 

B >2B: Ang-\Bn C) c D}. 

We will investigate the abstract optimization problem which would be written 
in the classical notation as follows: minimize f(x) on X subject to g(x) e C, where 
f:X-+R, g:X-^Yy C c Y. For problems of more complicated structure see 
Sec. 6. To distinguish proximities (or other structures) on different sets, we will 
employ a subscript (thus 3X, SY, etc. will mean some proximities on X or Y, respec
tively). As for the proximity <3#, in what follows we will confine ourselves to the case 
when 3R induces the standard compact topology of R (thus SR is determined uniquely), 
and the corresponding tolerance on R will be denoted by > without causing any 
discrepancy with the usual ordering of the extended real line; obviously, for a, b e R 
we have [— GO, a] > [ - c o , b] if and only if a > b or a = b = +oo. Furthermore, 
given some fixed proximity 3Y on Y, ^ will denote the corresponding tolerance, if it 
is not said otherwise. Using the just introduced tolerance notation, we will investigate 
the optimization problem 

, v Jminimizef(x) on X with tolerance > 
^ ' [subject to g(x) meets C with tolerance > . 

To satisfy Rule i), "g(x) meets C with tolerance" must be a filter on X. This is true 
if and only if 

(1.1) g(X) and C are O*r-near to each other, i.e. g(X) dYC . 

Obviously, (1.1) is weaker than the classical feasibility condition g(X) n C 4= 0. 
Being important for all the forthcoming results, (l . l) will be implicitly assumed in 
what follows. 
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Note that inf (P) depends on the proximity <5r in a monotone manner, namely the 
finer the proximity SY (i.e. the smaller with respect to the ordering of binary relations 
on 2Y by inclusion), the greater the infimum of (P). In particular, for the finest 
proximity on Y(i.c. for the discrete proximity) we obtain the greatest value for the 
infimum of (P), namely inf / (# - 1 (C ) ) , which is obviously the infimum of the problem 
treated in the classical sense, that means without tolerance. Let us remark that, for 
a genera] tolerance ^>, the non-negative quantity inf/(a_ 1(C)) — inf(P) is just 
what is called a duality gap in the classical optimization theory (of course, when the 
perturbations by means of which a dual problem is constructed are taken in accord 
with our tolerance), cf. [10; Sec. 6.2]. Note that if inf (P) * inff(g~l(C)) and C 
is ^y-closed, then M(P) is necessarily a free filter on X, which means OA^JOP) 4 = 0. 
Under some qualification hypotheses about the data / , g, C, and dY, we can even 
ensure that the gap inff(g~l(C)) — inf (P) is zero. Suppose that there exists a proxim
ity dx on X such that 

(1.2) A13xA2=>f(A,)SKf(A2), and 

(1.3) VB > g~l(C) 3C > C: g~\C) cz B , 

where the first tolerance > corresponds to 5X while the second to dY. By definition, 
(1.2) means t h a t / is (Sx, O^)-proximally continuous. In particular, (1.3) is fulfilled 
if g'1 is a singlevalued (SY, O*x)-proximally continuous mapping. If the proximities 
Sx, SY and SK are induced by some metrics dx, dY, and dK, respectively, then (1.2) 
means recisely t h a t / is uniformly continuous in the usLial sense and (1.3) is guaranteed 
when the (possibly multivalued) mapping g"1 is uniformly Hausdorff continuous; 
it means Ve > 0 3rj > 0 Vy1? y2 e Y: dY(y1, y2) rg n => g~1(yl) c {xe X; clx({x}, 
gHyi)) — e}- Also, (1.3) is valid when Sx induces a compact topology on X, g is 
continuous and C is closed. 

Realize that, for given d a t a / g, C, SY, (1.2) requires Sx to be fine enough, while 
(1.3) requires 5X to be sufficiently coarse, hence (1.2) together with (1.3) represent 
actually a qualification hypothesis about the data. It is clear that such 8X does exist 
only when SY is fine enough (particularly, it always exists if SY is discrete). 

Proposition 1.1. Let g~x(C) =}= 0 and let there exist a proximity Sx satisfying 
(1.2) and (1.3). Then inf (P) = inf^g'^C)). 

Proof. It suffices to show that inf(P) ^ inff(g~l(C)). We may suppose that 
inf/(O_ 1(C))> — oo, because the converse case is trivial. First, we treat the case 
inf/(O_1(C)) 4= -foo. We will show that Ve > 0 3C£ > C: inf/(^_ 1(C£)) ^ 
^ inf / (^ - 1 (C ) ) — s. As g_1(C) is nonempty, by (1.2) we can choose B£ > g~l(C) 
such that inf/(B£) ^ inf /(^_ 1(C)) - e, and afterwards by (1.3) we can take C£ >̂ C 
such that g-\Ce) cz B£. We get inf (P) ^ inff(g-{(Cs)) ^ inff(g'l(C)) - e. 

In case inf/(^_ 1(C)) = + o o w e can show in the same way that Ve > 0 3C£ > C: 
inf/fa-^C,)) £ 1/e. D 
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If (1.2) and (1.3) cannot be satisfied by any 3X, a non-zero gap can actually appear. 
It happens typically when X and Y are infinite-dimensional Banach spaces, / is 
uniformly continuous with respect to the norm of X, SY is induced by the norm of Y, 
and g is a compact operator. Then the problem with tolerance may offer "better" 
solutions (i.e. at lower cost) than that without tolerance. The same situation occurs 
in the relaxed-control theory [13] where g is typically governed by a differential 
equation and the relaxed controls may achieve lower cost than the ordinary ones. 

Let us illustrate Definition 1.1 for (P) by the case when 5Y is induced by a metric dY. 
Then the feasible filter J^(P) has a base 

{{xeX; dY({g(x)},C)^s}; e > 0} 

and, if inf(P) =j= — oo, the minimizing filter M{P) has a base 

{{xeX; f(x) ^ inf(P) + e, clY({g(x)}, C) £ e}; e > 0} . 

In particular, both #"(P) and Ji(P) have countable bases. Besides, they may be 
considered as generalizations (after slight modifications) of some principles of 
optimality in the sense of D. A. Molodcov [4, 5]. Let us confine ourselves to the 
more illustrative case of M(P). In the case Y = Rn, C = (R+)n, R+ -= [0, +oo[, 
g = (gu ...,gn), and SY the Euclidean proximity on Rn, Molodcov [4] introduced 
the principle of optimality which can be rewritten in our notation (with a discrete 
proximity on X) as follows: 

Min (e0,eu ...,en, a1? ..., ocn) = 

= {xeX; f(x) ^ i(al9 ...,a„) + e0, gx(x) + ex ^ 0, ..., gn(x) + 

+ Bn £ 0} , 

where t(a1? ..., a.,) = inf {f(x); glvx) + ai = 0, ..., gn(x) + a.. = 0}. It is easy to 
see that t(al9 ..., a„) converges from below to inf (P) if all a,- \ 0. Clearly, for et > 0 
the sets of the form Min (e0, el9 ..., en, ...) with t(ax, ..., an) replaced by inf (P) 
generate just the minimizing filter Jt(P). Such an approach to optimization problems, 
admitting 'Vtolerance" both in the cost function and the constraints, is undoubtedly 
very realistic from the viewpoint of applications in technical practice. 

To justify our definition even more, we will show a connection with the standard 
notion of minimizing or feasible sequences. For a sequence s = {s,.}..eN, where 
sn e X and N is the set of natural numbers, we define the so-called sequential filter 
^(s) as a filter on X generated by the base {{sn e l ; n ^ m); m eN}. 

Ddidiion 1.2. A sequence s — {s/;}„e/v is called feasible or minimizing for (P) if 
the corresponding sequential filter Sf(s) is finer than the feasible or the minimizing 

filter, respectively. 

If SY is induced by a metric dy, a sequence 5 is feasible if and only if 
limn^ooa

1
Y({g(sn)},C) = 0. 
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Proposition 1.2. For any sequence s = {$n}neN the following statements are equi
valent to each other. 

(a) s is a minimizing sequence for (P), 

(b) s is feasible and lim s u p ^ ^ f ^ ) ^ inf (P), 

(c) s is feasible and Y\mn_yo0 f(sn) = inf (P)-

If, in addition, the filter C^ has a countable base, then they are also equivalent 
to the statements 

(d) s is feasible and lim supn^00f(sn) S Hm snpn^O0f(sn) for every feasible 

sequence s = {sn}neN, 

(e) s is feasible and limn^O0f(sn) __ lim inf„.+ ODf(s.,) fOr every feasible sequence 
S = { 5 « / J . G N -

Proof. By the definition, (a) is equivalent to: VO > inf(P) VC > C 3m e N 
Vn __ m: f(sn) __ a and g(sn)eC, which is nothing else than (b). Suppose that 
a = l iminf^oo f^) < inf(P). Then, for every a > a and C ^> C, there would 
exists sn e levflfn g~x(€), in particular the level set l ev a fng _ 1 (C ) would be 
nonempty, hence s u p ^ c ^xeg~Hc)f(x) = a < m*' (P)> which contradicts Defi
nition 1.1. Therefore, (b) => (c). The converse implication is trivial. By the same 
argument we obtain that lim s u p ^ ^ ^ s , . ) < inf(P) and lim i n f . . ^ f ^ ) < inf(P) 
is not possible provided s is feasible, thus (c) implies (d) and (e). Moreover, if {Cn}neN 

is the countable base of the filter C>, we can take s„ e levinf(P) + 1/nfn g~x(Cn), 
which gives a feasible sequence {s„}neN with limn_>o0f(s) = inf (P). Then obviously 
(d) => (b) and (e) ^> (c). Q 

R e m a r k 1.2. The statements (d) or (e) are sometimes used for the definition of 
minimizing sequences; we refer e.g. to J. Warga [13; III.2] who used (e) or E. Polak 
and Y. Y. Wardi [8] who used (d) for some special problems. However, somewhat 
different terms are usually used (asymptotically or eventually feasible sequences 
and asymptotically minimizing sequences or minimizing approximate solutions, 
etc.). We also refer to E. G. Golshtein [3] who required, in addition, that the feasible 
sequences mapped by f have a limit in R (and then called them generalized plans). 
For the minimizing sequences this additional requirement is fulfilled automatically, 
however; see (c). Of course, these standard notions will coincide with that of ours 
only if the tolerance > is taken appropriately (namely if > is induced by the metric dY 

used for the definition of these stadard notions). 

R e m a r k 1.3. It can be easily demonstrated that, if the filter C> has got a countable 
base, then the feasible (or minimizing) filter of (P) is equal just to the intersection 
of the sequential filters of all feasible (or minimizing) sequences for (P).Thus, in 
this countable case, we have an alternative definition of JF(P) and Ji(P), and this 
paper can be regarded as a study of the collections of all feasible or minimizing 
sequences. 
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R e m a r k 1.4. If the filter C^ has no countable base, inf(P) need not be attained 
by any feasible sequence: Take a proximity space (Y, SY) and its subset C such that 
(Y\ C) dYC and the intersection of an arbitrary countable family of OVproximal 
neighbourhoods of C is again a OVproximal neighbourhood of C (such situation 
does exist). Then take X = Y, g the identity on X, f(x) = 0 for x $ C and f(x) = 1 
for xe C. Since C >̂ C is not true, inf (P) = 0. On the other hand, if a sequence 
{sn}neN *s feasible, sn must belong to C for all sufficiently large n, hence limn^00f(sn) = 
= 1. Thus we have got an example of a problem that does not possess any mini
mizing sequence. 

2. LIMES INFERIOR OF A NET OF FILTERS 

In the classical optimization theory the solutions (minimizers) are understood as 
points of X. Therefore, to treat stability or approximation of the set of minimizers, 
a concept of convergence of subsets of X is needed, which is usually introduced by 
means of some topology. In our tolerance approach we have defined the minimizing 
filter instead of the set of minimizers, thus we need a concept of convergence of filters 
on X. It should be emphasized that no topology on X will be employed. 

Again we start with a motivation. Consider a filter stf on X having a countable 
base {Ak}keN and a sequence {sd1} ieN of filters on X such that each si1 has a countable 
base {Al}keN. If s4 and si'1 are interpreted as some principles of optimality in the 
sense of [4, 5], then "stability from above" by Molodcov [4; Def. 2] can be written 
in our notation as: Vk e N 3ik e N 3nk e N Vi ^ ik: A„k <=. Ak. It is evident that such 
definition requires the indices of different bases to be comparable with each other. 
If we do not suppose it, that means every base has indices of its own, we come to the 
following condition: 

Vk G N 3/fc e J V V U h 3wi G N: Ani c Ak . 

Furthermore, if we replace N by a directed index set (I, ^ ) and avoid the assumption 
concerning the countable bases, we obtain the following simple condition: 

(2.1) VA e s4 3iA eI Vi = iA: A e s4l. 

Definition 2.1. A filter si on X is said to be a lower bound for a net {sil}ie[ of 
filters on X if (2.1) is fulfilled. 

This definition has a simple interpretation: Let si and si' be filters corresponding 
to an original and an approximate (or perturbed) problems, respectively, and let 
A e stf represent the set of approximate solutions (with a certain accuracy) of the 
original problem. If si is a lower bound of the net {s/l}ieI, then the elements of A 
can be obtained by solving approximately the i-th problem with i e I sufficiently large 
and also with accuracy sufficiently large (depending on i). Of course, in such a way 
we can obtain only some elements of A, but it is the usual situation even in the clas-
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sical optimization: numerical methods yield only some minimizers, not the whole 
set of them. However, such particular answer is entirely satisfactory for most 
optimization problems in technical practice. 

It should be also recalled that the ordering of filters on subsets of X by inclusion 
has an opposite character to the ordering of subsets of X by inclusion (e.g. AL c A2 

iff s/L o s/2 where s4\ = (A e 2X; A => -4/}), thus the lower bound in Definition 
2A corresponds freely to an upper bound in the classical concept of optimization 
theory (cf. also Lemma 5.1 below). 

It is evident that if stf is a lower bound for a net of filters, then every filter coarser 
than stf is a lower bound, too. It encourages us to look for lower bounds that are as 
fine as possible. It is interesting that, for any net of filters, there exists the finest 
lower bound: 

Proposition 2.1. Let {s4l}iei be a net of filters on X. Then there is exactly one 
filter stf0 on X such that: 

i) s/0 is a lower bound for {stfl}ieI, 
ii) if s/ is another lower bound for {s/l}ieI, then s4 c srf0. 

Proof. It is evident that there can exist at most one filter s4'0 satisfying i) and ii), 
hence it suffices to construct some si'0 that will satisfy i) and ii). 

We will show that the set of all lower bounds for the net {s4l}iei, let us denote it 
by 2, has got an upper bound, that means for every neN and every choice Ak e 
eJ£ke 2 with k = 1, ..., n, the intersection AL n A2 n ... n An is nonempty. As 
S£k e 2, by (2.1) there is iAk e I such that Ak e s4l for all i ^ iAk. As (I, g;) is a directed 
set, there exists j ^ iAk such that j ^ iAk for all k = 1, .... n. Then all Ak belong 
to the filter s/J and therefore their intersection cannot be empty, since otherwise stfj 

would not be a filter. 
Take for stf0 the upper bound of 2. As s4 c s#0 for every stf e 2, ii) is immediately 

satisfied. It remains to show that stf0 e 2. By the definition of srf0, for every A e s/0 

there is n e N and Ake £?ke 2, k = 1, ..., n, such that AL n ... n An c A. Taking j 
as above we get Ak e s4l for all i ^ j and k = 1,. . . , tz, and thus also A e s4[ because sd'1 

are filters onX. This shows, in view of (2.1), that stf0 is a lower bound for {stf'l}ieI. D 

Definition 2.2. The finest lower bound for a net {stfl}ieI, i.e. the filter s$0 from 
Proposition 2.1, will be denoted by Lim inff6/ srf1. 

Corollary 2.1. A filter stf is a lower bound for a net {s/l}iei if and only if s4 c 
c Lim inffe/ $£\ 

Proposition 2.2. Let {s4l}iel be a net of filters on X, let s4 be its lower bound 
such that V/ e I 3j ^ /: srfj c s4'. Then s4 = Lim inffei s4l. 

Proof. In view of Corollary 2.1 we are to prove that stf is finer than any lower 
bound stf' for {s^l}ieI. By (2.1), for any A e srf' there is i el such that A e s4J for 

108 



every j *_ i. Then A e s/ because of the assumption s/J a s/ for somej = i. As this 
holds for every A e s/\ we have proved stf' c s$. D 

Definitions V2 and V3 and Remark VI encourage us to study how the fact 
stf c Lim infIGf stf1 is reflected by the sequences whose sequential filters are finer 
than s# or s4\ 

Proposition 2.3. Let {stfn}neN be a sequence of filters on X, let s4 c Lim inf,,^ s4n 

be a filter on X with a countable base, and let sn = {sm}meN be sequences on X such 
that y(sn) =3 s$n for all neN (recall that £f(sn) is the corresponding sequential 
filter). Then there is a function ft: N -> N such that Sf(s) =) s& for every sequence 
s = {smn}neN with mn = fi(n). 

Proof. Let {At}ieN be a countable base of srf. We may suppose A1 = X and 
Ai 3 Ai+l for all ieN. By (2.1), V i e N 3/ fGNVn = /,-: A.fe-s/\ We may suppose 
lj = 1 and 11 < li+1 for all ieN. Then, for every neN, there exists exactly one 
j(n)eN such that lj{n) ^ n < ljin) + 1. Obviously, the function ri t->j(tx) is non-
decreasing and limn_>m j(n) = +oo. Put Bn = Aj(n). The collection {Bn}„eN is again 
a base of s4 with Bn => B,J+1 and, in addition, Bn e s4n for all n e N. Since Sf(sn) => 
=3 s4n, there is \i(n) such that sn

neBn whenever m ^ fi(n). Choosing mn ^ ju(n), 
we get 5Wn e Bn, hence also sWn e Bm whenever /i _• m. Since {Bm}meN is a base of stf, 
we can see that £?(s) z> **/ for s = {sm}weN with m„ ;> /L(n). • 

3. STABILITY OF THE INFIMUM AND THE MINIMIZING FILTER 

The notions from Definition 1.1 can be reasonable only if they are stable, i.e. 
if they vary only a little when the data on which they depend vary also little. We 
will show in this section that the tolerance approach apriori ensures certain stability 
whenever the perturbations of the data are "compatible" with the tolerance employed. 
Let us suppose that (I, ^ ) is a directed index set and, for i e I, we are given mappings 
fl:X -» R, gl:X -> Y, and subsets Cl of Y The proximity SY and thus also the 
tolerance >̂ does not depend on i. Then we consider the following perturbed 
optimization problem: 

, .. [minimize fl(x) on X with tolerance > 
^ ^ [subject to g'(x) meets Cl with tolerance > . 

Of course, we define $F(Pl), inf (Pl) and Ji(Pl) again by means of Definition VI, 
supposing the generalized feasibility condition (VI) to be valid also for (P1), i.e. 
gl(X) 5YCl. As we will need a uniform convergence off'' and g\ we need some uni
form structures on R and Y, respectively. Recall that a filter % on Z x Z with the 
properties V l f e f : A cz Wand 3Vetf/: VoVc Wis called a semiuniformity on Z; 
see [6]. If, in addition, W~x e% whenever We6}/, °H is called a uniformity on Z. 
Here A = {(z, z); zeZ} denotes the diagonal of Z x Z, W_1{(z,, z2); z2Wzt} is 
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the inverse relation to the binary relation W, and VoV = {(zuz2); 3z3: ztVz3, 
z3Vz2} is the composite relation (as Vis a binary relation, we use the infix notation, 
i.e. zxVz2 means (zx, z2)e V). For a (semi)uniformity on Z and mappings <p, (p{: 
X -> Z, we say that <pl converge ^-(semi)uniformly to <p iff VVe °U 3i0 e I Vi ^ i0 

VxeX: (p^x) Vcp(x). Any uniformity °U induces a proximity, denoted by S<%, by 
declaring AS^B iff (A x B) n V =1= 0 for every Ve ^ . Of course, the topology ^\# 
induced by % is defined as the topology induced by the proximity bm. 

We say that C is a <5r-upper bound for a net {Cl}ieI iff VC >̂ C 3 i e I Vj ^ i: 
C c= C. Note that, if 3Y is induced by a metric, this fact is nothing else than the 
upper Hausdorff semicontinuity of the set-valued mapping i h-> Cl. 

The collections °UR and °UR of all (3TR x ^^-neighbourhoods of the sets A + = 
= {(a, b) e R x R; a ^ b} and A = {(a, b) e R x R; a = b} form a semi-uni
formity on R and the standard uniformity on R, respectively (3TK is the standard 
compact topology on R). Let us suppose that we have got a uniformity $/Y on Y 
inducing the given proximity <5y. In applications, when (Y, dY) is a metric space and 
SY = 3dy, it is natural to take the uniformity °UY = {Ve 2YxY; 3e > 0: dY(yu yi) S 
:g e => j ! V v 2 } . Now we can impose assumptions on the perturbed data: 

(3A) f* converge °UR -semiuniformly tof, 

(3.2) a' converge ^-uniformly to g, 

(3.3) C is a <5y-upper bound for the net {Cl}ieI. 

Theorem 3.1. If (3.2) and (3.3) are valid, then 

(3.4) J^(P) c Lim inf &(Pl) . 
iel 

If, in addition, (3.1) is valid, then 

(3.5) inf (P) ^ lim inf inf (Pl). 
ie I 

The proof of this theorem as well as of the following ones is postponed to Sec. 5 
where it will be performed by a suitable compactification. To obtain an estimate 
also for the minimizing filter, we must strengthen the assumptions: 

(3.6) fl converge ^-uniformly to f. 

Theorem 3.2. If (3.3), (3.6) are valid, Cl z> C, and gl = g, then 

(3.7) y(P) = Lim inf &(P'1) , 
iel 

(3.8) inf (P) = lim inf (Pl) , and 
iel 

(3.9) M(P) c Lim inf M(Pl). 
iel 
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It should be emphasized that the above stability results hold for arbitrary data 
(without any continuity requirement for / or g, etc.), which is caused by admitting 
tolerance in the definition of the problem. This feature has no analogy in the 
classical optimization theory. On the other hand, to ensure stability with respect 
to another perturbation of the data (e.g. stability of inf (P) and Jt(P) when Cl 

converge to C regarding the Hausdorff uniformity of WY) w e would have to impose 
some qualification hypothesis on the data. 

Theorems 3.1 and 3.2 together with Proposition 2.3 can be used for minimizing 
or feasible sequences. Roughly speaking, taking minimizing or feasible sequences 
for the perturbed problems, we get a minimizing or feasible sequence for the original 
problem by means of the diagonalization procedure whenever the members of the 
sequences in question are chosen large enough: 

Corrolary 3.1. Let I = N, (3.4) or (3.9) be fulfilled, let the filter C> have a count-
able base and, for all neN, let sn = {sm}meN be a feasible or minimizing sequence 
for (Pn). Then there is JLL: N -> N such that every sequence s = {smn}reN with mn ^ 
^ fi(n) is feasible or minimizing for (P), respectively. 

4. NUMERICAL APPROXIMATION OF THE MINIMIZING FILTER 

The tolerance approach to optimization problems, being realistic from the technical 
standpoint and stable as shown in § 3, is moreover closely related with the usual 
numerical methods. It may offer better understanding how these methods actually 
work in the general case when the traditional conditions are not fulfilled. 

We will confine ourselves to an exterior penalty function method, which is the 
simplest method how to treat the constraint g(x) e C, though most of the results 
stated below are preserved also for more advanced methods like the augmented 
Lagrangean ones. As usual in the penalty technique, we approximate (P) by a family 
of unconstrained problems (Pr) (again considered here with tolerance) with the cost 
function augmented by a penalty term multiplied by a parameter r e R+ = [0, + oo[: 

(Pr) minimize f.(x) = f(x) + r h(g(x)) on X with tolerance > , 

where h: y-> R is a penalty function compatible with C and with the proximity 5Y 

in the following manner: 

(4.1) ft(C) = 0 , 

(4.2) h is (<5r, <5#)-proximally continuous , 

(4.3) VC > C 3s > 0: h(Y\ C) ^ s . 

As R is compact, (4.2) is equivalent to the ( ^ r , ^ ( -uniform continuity of h provided 
%Y induces SY. Note that if a function with the properties (4.1)-(4.3) does exist, 
the level sets lev£ h _ h~1([- oo, s]) with s > 0 form a base of the filter C>9 hence 
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we must confine ourselves to the case when this filter has a countable base. Never
theless it does not represent any restriction for most problems arising in technical 
applications. In a typical case when 3Y is induced by a metric dY, we can obtain 
a function h satisfying (4.1) — (4.3) if we put h(y) = q(aV({y|, C))> where q: R -> R 
is an arbitrary continuous, increasing function with q(0) = 0. 

Furthermore, we as sume/ to be bounded from below, i.e. 

(4.4) 3M > - c o Vx 6X: f(x) ^ M . 

Of course, we define inf (Pr) and J/(Pr) again by means of Definition 1.1. As (Pr) 
is unconstrained (i.e. J^(Pr) = {X}) we now have simply inf (Pr) = inff(X) and 
J4(Pr) = {AczX;3s> 0: levinf(Pr) + £f c= A}. 

Theorem 4.1. Let (4.1) —(4.4) be valid and inf(P) 4= +oo. Then the function 
r \~>inf(Pr) is nondecreasing, and 

(4.5) inf(P) = l iminf(P r) , 
I—>00 

(4.6) M(P) c Lim inf Ji(Pr) . 
r-»oo 

For the proof see again § 5. 
There are simple examples showing that generally J((P) #= Liminf,..,^ J({Pr). 

However, the penalty-function approximation of the tolerance constrained opti
mization problem is so natural that, when used carefully, this method can even 
yield precisely the minimizing filter. Put t£r a = {A e 2X; levaf c A}. Clearly, 
J5?ra is a filter on X if a > inf(Pr) (particularly if a > inf(P)), and J/(Pr) = 
= '\J{Xrttt;a>inf(Pr)}. 

Theorem 4.2. Let (4.1)-(4.4) be valid, inf (P) + +oo, and let a: R -> R be an 
arbitrary decreasing function such that lim a(r) = inf(P). Then 

(4.7) Ji(P) = Liminfif r,a(r) ' 

It should be pointed out that the penalized problem (Pr) can be handled by digital 
computers only when X is a subset of a finite-dimensional linear space. If it is not, 
we must perform further approximation: instead of X, which is infinite-dimensional, 
we take some (finite-dimensional) subsets Xk of X, k e N, such that 

(4.8) Xkl a Xkl c X whenever ki ^ k2 . 

Besides, to ensure convergence we must suppose some data qualification, namely: 
there exists a topology &x on X such that 

(4-9) Pikes Xk is ^ - d e n s e in X, and 

(4.10) / and g are (?TX, ^R)- and (3TX> ^^-continuous, respectively, 

112 



where 3~K is the standard compact topology on R and 3~Y *s t n e topology induced 
by 5j. It is clear that (4.9) requires ^Tx to be coarse enough, while (4.10) conversely 
requires :Tx to be fine enough, therefore existence of a suitable topology 2TX may 
be understood actually as a certain data qualification. 

Usually we have to approximate also the cost function f and the mapping g, 
say by methods like numerical quadrature, finite-difference or finite-element methods, 
e tc Thus we get some mappings fk:Xk -> R and gk:Xk -> Y For simplicity, we 
suppose that the penalty function h is simple enough to be evaluated exactly, which is 
a frequent case indeed. We will assume the following approximative property 
($/K and %Y are the uniformities already used in (3.2) and (3.6)): 

(4.11) VVG *UK 3k0 e N Vk = k0 Vx e Xk: fk(x) Vf(x), 

(4.12) VVG WY 3k0 G N Vk = k0 Vx G X': #*(x) V#(x) . 

Now we can approximate the penalized problem (Pr) by the problem: 

(Pk) minimize fk(x) = fk(x) + r h(gk(x)) on Xk with tolerance > . 

We could also define this problem as: "Minimize fk
r(x) on X with tolerance > subject 

to x meets Xk without tolerance", which would require formally to define fk and gk 

on the whole space X, however. Thus we have preferably defined (P^c) as done above, 
which causes, on the other hand, that J/(Pr) is a filter not on X (if X #= Xk) but 
on Xk, and thus we are forced to modify it by introducing J/x(P

k) as the filter on X 
generated by the base J/(Pk). 

Theorem 4.3. Let (4A)-(4.4), (4.8)-(4.12) be fulfilled and inf(P) 4= +oo. 
Then there exists a function x: R+ -> N such that 

(4.13) i n f ( P ) = lim inf(Pr*), and 
fe-*oo,r~> oo ,k^.x(r) 

(AAA) Jt(P) cz Lim inf J/x(Pr). 
k~* CO ,r -> 00 ,fc=2 X(r) 

We observe that the convergence is ensured only under a "stability condition" 
k ^ x(r). In other words, k must approach infinity sufficiently quickly in comparison 
with r. We can easily construct examples where the convergence is violated when 
only k -> oo and r -> oo. However, in concrete problems the choice of the function x 
may require fine knowledge of the properties of the data (cf. Example 4.1 below), 
and therefore it is surely useful to state an additional data qualification that guarantees 
the unconditional convergence: Let us suppose that there exist a proximity Sx on X 
(then 3TX in (4.9) and (4.10) is induced by Sx), a set C0 c Y, and a point x0 eX 
such that: 

/ S( f'fk anc* ^' ®k a r e ^Xi ^ ~ anc* (^X9 ^Y)"P r o x i m a^y continuous, 

^ respectively, 

(4.16) Co is ^y-open and g(x0) e C0 cz C a c\YC0 , 

(4.17) VB > g~\C0) 3C > C0: g~\C) cz B , 
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where clrC0 means the /^"y-closure of C0 in Y Let us remark that (4A6) is ensured 
if Yis a linear topological space, C is a convex set with a nonempty interior intyC 
and g(x0) e int rC for some x0 e X (then (4.16) is satisfied with C0 = intyC). Such 
condition appears very often in classical optimization theory where it is called the 
Slater constraint qualification. Similarly as (1.3), the condition (4.17) is guaranteed 
if g~x is a singlevalued (5Y, OV)-proximally continuous mapping, or, in the case 
that 3X and SY are induced by some metrics, if the (multivalued) mapping g~x is 
uniformly Hausdorff continuous. 

Theorem 4.4. Let (4.1)-(4.4), (4.8)-(4.12), (4.15)-(4.17) be fulfilled, and let 
inf(P) =1= +oo. Then 

(4.18) inf(P) = lim inf(Pr*), and 
k -> GO , r —> oc 

(4.19) Jf(P) c Lim inf J/x(P
k). 

k -> oo , r - * oc 

Note that (4.15) —(4.17) imply (1.2) and (1.3), hence Theorem 4.4 cannot be used 
in case inf (P) < \nff(g-\C)). 

Example 4.1. From the proof of Theorem 4.3 in § 5 it is evident that, if one 
knows an estimate of the discretization error: 

|inf (Pk) - inf (Pr)\ S s(r, k0) for all k ^ k0 , 

then for x from Theorem 4.3 one can take arbitrary x: N —> N such that 
lim..^^ e(r, x(r)) = 0. This error estimate can be typically obtained as follows: 
let X and Y be normed linear spaces, let ||* \x and \'\Y be their respective norms, 
and let f, g, and h be Holder continuous, i.e. for every xl9 x2 e X, yu y2 e Y 

| / ( x , ) - j ( x 2 ) | ^ L\\xx - x2\\y , 

\g(Xl) - g(x2)\\r ^ Ljx. - x2\\% , 

\h(yi) - h(y2)\ ^ L\\yt - y2 Y 9 

hold for some positive constants Land a's. Moreover, let the following rate-of-error 
estimates be known: 

\f(x) - fk(x)\ S L. k~*>, \\g(x) - gk(x)\\Y ^ L. k~»* 

for every x e Xk and some positive fi's, and finally let 

(4.20) sup inf \\x - x\\x g L. k~y, y > 0 . 
XEX xeXk 

The following situation can serve as an example for (4.20) (the notation is standard): 
Let Q be a polygonal domain in IT, X a bounded subset of the Sobolev space 
WU2(Q), but let X be endowed by the norm \*\x of the space L2(Q). Let Xk c X 
be spaces of the finite-element type, constructed, say, by means of linear triangular 
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elements (1/k is the mesh parametr). Then (4.20) with y = 1 follows by the well-known 
inequality inf ||x — x\\x ^ (1/k) ||x||^i>2(fi). 

xeXk 

Now the following estimate can be easily verified: 

inf (Pr) - L0(k~ljf + r . k~"hfi°) = inf (/>*) = 

S inf (Pr) + L0{k~yaf + k"Pf + r . (k~yaha* + k~a^)) 

with some L0 > 0, and we can obviously put x(r) = rv with v > max { l / (ya^ ) , 
\j(ahpg)}. Note that neither o^ nor /^ occur in this estimate of v. 

5. COMPACTIFICATIONS OF THE PROBLEM (P) 

The above introduced features suggest that the optimization problems resulting 
from admitting tolerance behave like classical problems without tolerance but on 
a compact space X. In this section we explain this fact by constructing a "closure" 
of the problem (P), which yields, in addition, simple and elegant proofs of the above 
stated assertions. It may also help to obtain further results for problems posed with 
tolerance because behaviour of the compactified problems introduced below gives 
a good hint for behaviour of the original problem with tolerance. 

Let (X, 3TX) bd a topological space, (Y, °U^) a uniform space, C c Y, / : X -> R, 
and g:X -> Y We consider the constrained minimization problem in the classical 
sense, i.e. without tolerance: 

, , J minimize f(x) on X 
^ [subject to g(x) e C . 

We will use the following assumptions: 

(5.1) 3~x is compact and X is ^ j -dense m x, 

(5.2) Y cz Y and the trace on Y of %Y is a uniformity %Y inducing the given 
proximity SY, 

(53) C is the closure of C in (Y, %Y), 

(5.4) / is l.s.c. (lower semicontinuous), f(x) = f(x) for all xeX, and f(x) = 

^ liming->x,xexf(x) f ° r every xeX (of course, x -> x stands for the 
convergence in the topology ^ j ) , 

(5.5) g is continuous and g(x) = g(x) for all x eX, 

(5.6) / i s continuous. 

Clearly, if f(x) = f(x) for x e X, then (5.6) implies (5.4). 
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Definition 5.1. The problem (P) is said to be a compactification of the problem 
(P) if (5.1) —(5.5) are valid. If also (5.6) is valid, the compactification is called 
regular. 

The minimum of any compactification (P) is obviously attained, and we may 
define min (P) = min/(~~1(C))and Argmin (P) = {xeX;f(x) = min (P),g(x) e C}. 
First we show that, as for the ability to study the problem (P), all (regular) compac-
tifications (P) are equivalent to one another. 

Proposition 5.1. Let (P) be a compactification of (P). Then min (P) = inf (P). 

Proof. Denote by °UX the unique uniformity on X inducing the compact topology 
$~x, and by (Jttx and 3~x the trace on X of °UX and 3~x, respectively. Then / : X -> R 
is (?TX9 «^"/j)-l.s.c. and g is (fUX9 ^/f)-uniformly continuous. Then we may use the 
arguments of the proof of Theorem 2 in [10] to show that the collection 
{ l e v a + f / n g _ 1 ( F ( c ) ) ' £ > °> V~ ^//} is a filter base on X if and only if a = min (P), 
where V(C) = {x e X; 3x0 e C: xVx0} with Ve °llY is a <?/y-uniform neighbourhood 
of C. Since (JUY induces SY, the ^/y-uniform neighbourhoods of C coincide with the 
OVproximal ones. In view of Definition 1.1 we get min (P) = inf(P). D 

Let us denote by Jr(S) the collection of all ^"^-neighbourhoods of a set S a X 
(the dependence on ?TX will not be explicitly indicated). If S is nonempty, then A'"(S) 
is a filter on X, and, since X is ^ j -dense in X, the trace on X of JV(S), i.e. the 
collection JV(S)\X = {AnX;Ae JV(S)}9 is a filter on X. 

Proposition 5.2. Let (P) be a compactification of (P). Then ^V(g~i(C))\x is the 
feasible filter J~(P). If the compactification (P) is regular, then ^V(Arg min (P))|x 

is the minimizing filter J{(P). 

Proof. First we prove that ~ - 1 (C) is nonempty. Suppose the contrary, i.e. 
g(X) n C = 0. Since g is continuous and X compact, g(X) is compact, too. Since C 
is closed, g(X) and C are t>F-far from each other (see [1; (5.3.24)]), where SY is the 
proximity on Yinduced by °?/Y. Since the trace on Yof SY is just SY, g(X) and C are 
(5r-far from each other, which contradicts (1.1). 

As the assertion concerning the feasible filter can be obtained from the assertion 
concerning the minimizing filter if/ == -foo, we will prove only the latter one. It is 
now evident that, in view of (1.1), (5.1) —(5.5), Arg min (P) is nonempty. Taking 
again JUX as the trace on X of the only uniformity on X inducing the compact topology 
.Tx, we may use the arguments of the proof of Theorem 3 in [10] together with the 
fact that °UY induces SY to show that .yV(Arg min (P))|Y coincides with the filter 
st = {V(A); VE <%X, A e Jt(P)}. By definition, sJ is coarser than Jt(P). Exploiting 
the regularity of the compactification used, hence the (fUx, ^ ) -uniform continuity 
off, we will show that si is finer than M(P). Let Ae Jt(P)9 i.e. A •=> f~j([- oo, a]) n 
n g~A(C) for some C > C and [~oo, a] > [— oo, inf (P)]. Thanks to the properties 
of the tolerances > and > , we can take B = f~ 1 ( [— GO, b~\) n g~*(C) with some b 
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and C such that C >̂ C >̂ C and [ - c o , a] > [ - 0 0 , b] > [ - 0 0 , inf(P)]. Obviously 
Be J4{P). Because of the (°l/x, <WR)~ and (°l/x, ?/r)-uniform continuity o f / and g, 
respectively, there exists Ve °UX such that V(B) c A, thus Aes/. • 

Of course, if we desire to use the compactifications for proofs it is necessary to 
guarantee the existence of at least one compactification. For this reason we must 
recall what the Smirnov compactification of a proximity space (Z, 3) is; see [12] 
or also e.g. [1, 7]. It is quite evident that the filter base on Z x Z 

n n 

{ U At x Ar, Ai c Z, neN, Vi ^ n 3B,: A; >̂ Bt- and (J Bt- = Z} 
1 = 1 i = i 

(with > related to (5) generates a uniformity on Z, let us denote it by °Ub, which 
is precompact (i.e. VVe ul/d 3a finite set A cz Z: V(A) = Z) and induces the prox
imity 3. Moreover, it is the only precompact uniformity on X inducing 3, which 
justifies the notation °Ub. As °lib is precompact, the completion of the uniform space 
(Z, °l/8) is compact and it is called the Smirnov compactification of the proximity 
space (Z, 3), or briefly ^-compactification of Z. 

Proposition 5.3. Every problem (P) admits at least one regular compactifica
tion (P). 

Proof. Let 3X be the discrete proximity on X, i.e. A3XB only if A n B 4= 0. 
As 3X is the finest proximity on X, f and g are (3X, 3R)- and (3X, OV)-proximally 
continuous, respectively. Therefore there exist (even unique) continuous extensions 
/ : X -> R and g: X -> Y of f and g, respectively, where X and Yare the 3X- and 3Y-
compactifications of X and Y, respectively; note that / and g are also (ffl3x, ^ K ) " 
and (°l/3x, ^y)-uniformly continuous, respectively, and / and g are nothing else 
than their continuous extensions to the corresponding completions, (cf. [1; (6.2.H)]). 
Of course, R, being compact in its standard proximity 3R, coincides with its Smirnov 
compactification, which is important to preserve the standard ordering of R. Finally, 
take the closure of C in Y for C. One of the regular compactifications of (P) has 

Nbeen just constructed. • 

Remark 5.1. The compactification (P) used for the above proof is the "largest" 
one in the sense that it uses the finest compactification X of X (X can be identified 
there with the set of all ultrafilters on X). This compactification does not require 
any continuity properties o f / a n d g. If / and g do satisfy some continuity require
ments., "smaller" compactifications can be admitted. For instance, if / and g are 
continuous with respect to some completely regular topology on X, then there is 
a regular compactification (P) for which X is the well-known Stone-tech compactifica
tion of the completely regular topological space X. It is even the "smallest" regular 
compactification, in general. I f / and g are uniformly continuous with respect to 
some uniformity on X, then there is even a smaller compactification (P). It uses 
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for X the Smirnov compactification of X regarding the proximity induced by the 
uniformity considered, and it is again generally the smallest possible regular com
pactification under these uniform continuity requirements. Such compactification 
has been used in [10]. Of course, if/ and g are continuous with respect to a compact 
topology on X, then (P) admits the absolutely smallest compactification, usingX = X.. 

Although for some purposes a particular choice of a compactification of (P) is not 
important (and thus we can use universally the largest compactification from the 
proof of Proposition 5.3), sometimes we need smaller compactification because some 
properties of the data cannot be transferred to compactifications which are too 
large; cf. the proof of Theorem 4.4 below. Small compactifications are also advan
tageous to study neccesary and sufficient conditions of optimality; for the un
constrained case we refer to [9] where the Smirnov compactification of a normed 
linear space together with the Ekeland e-variational principle has been used. 

Now we go on to the proofs of the results stated in §§ 3, 4 by exploiting the com
pactification. The idea is very simple: first transfer the properties of the data from the 
orignal problem to its compactification, then exploit good behaviour of the com
pact ified problem by standard techniques (only we must realize that the extended 
spaces need not satisfy the first countability axiom), and afterwards return to the 
original problem. As for the infimum, the return to the original problem is straight
forward thanks to Proposition 5.1, while for the minimizing or the feasible filter 
we need the following assertion: 

Lemma 5.1. Let (X,^~x) be a compact space, X a $ x-dense subset of X, let 

of X. Then 
A cz X be ZT x-closed and nonempty, and let {Al}iel be a net of nonempty subsets 

A 3 Lim sup A1 => JV(A)\X C Lim inf (,yV(Al)|x) . 
is I iel 

If, in addition, AJ ZD Lim sup A1 for all j el, then 
iel 

yV(Lim sup A% = Lim inf(Jr(A%), 
iel iel 

where Lim sup ie] A
1 has the usual meaning, i.e. it consists of all ^ x-cluster points 

of all nets {xl}iel with x! e A1. 

Proof . Take SeJf(A)\x, hence S = SnX for some S e Jr(A). Since A is 
compact, the set X \ S and A are disconnected, and thus there is B e Ar(A) such that 
5 e JV(B); in other words, S 5> B >̂ A with > related with the only proximity 
inducing the compact topology ZTx. In addition, we may and will suppose B to be 
open, hence X \ B compact. We show that A1 cz B for sufficiently large i e I. Suppose 
the contrary. Then for every ieI there would exist j(i) = i and xj(i) e Aj{i) \ B. 
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Thanks to the compactness, the net {xm}ieI would have a cluster point x00 eX\B; 
therefore x00 $ A, but simultaneously x00 e Lim sup /e/ A1 c A, which is a con
tradiction. Thus A'1 a B for iel large enough, hence S e Jr(Al)\x. Since 5 has 
been taken arbitrarily, we have proved that ^V(A)jY is a lower bound of the net 
{jV(Al)\x}iel due to Definition 2.1. If A = Lim sup ie/ A1' cz Aj, then J'\A)\X ZD 
=5 Jr(Aj)\x, and the second assertion to be proved follows immediately from 
Proposition 2.2. • 

Now we will prove the assertions from §§3,4. To transfer the properties (3A), 
(3.2), and (3.6) to the extended functions, we need still the following lemma: 

Lemma 5.2. Let (X, £/~x) be a topological space, (Y, ^/F) be a (semi)uniform 
space, X a 3~x-dense subset of X, g,gl:X -> Y continuous mappings, iel, and 
let gl\x converge ^y-(Semi)unifOrm/y to g\x, where gl\x and g\x are the restrictions 
to X of cji and g, respectively. Then gl converge tf/Y-(semi)uniformly to g. 

Proof. The assertion follows from the facts that the closed elements V from 
°7/Y form a base of tf/f, and, if g'(x) Vg(x) for all xeX and Vis 3TX x ^"j-closed, 
then gl(x) Vg(x) for all x e X because the mapping x i—> (g'(x), g(x)) from X to 
Y x Y is continuous. • 

P roof of Theo rem 3.1. We take such compactincations (P) and (Pl) of (P) 
and (Pf), respectively, that use the common spaces (X,£/~x) and (Y, ^?/F), and, 
moreover, the trace on Y of the uniformity °ttY is coarser than the uniformity a7/Y 

from (3.2). For simplicity we may suppose them to be regular. Such compactincations 
do exist, cf. the construction via the discrete proximity on X used in the proof of 
Proposition 5.3 (note that the uniformity °U8Y, being the coarsest uniformity inducing 
5Y, is surely coarser than (Jl/Y. Then (3.2) implies the ^/y-uniform convergence of 
gx\x to g\x, and by Lemma 5.2 we can see that 

(5.7) gl converge ^-uniformly to g . 

From (3A) we get again by Lemma 5.2 that 

(5.8) / ' converge %J-semiimiformly to / . 

Now we will prove that 

(5.9) VVe qiY 3*o e I Vi ^ i0: Cl c V(C). 

Take some We°i/Y
 s u c n that Wo W cz V, and put D = W(C) n Y Since the trace 

on Yof °l/Y induces SY we have D > C, and then Cl a D for all i el large enough 
because of (3.3). Then Cl c c ] F D c V(C). 

Now we will prove that g~1(C) => Lim sup l6/ (g1)"1 (Cl). Take x l e ( ^ ' ) _ 1 (Cl) 
and a ^ - c l u s t e r point x00 of the net {x'} / e / . In view of (5.7) and the continuity of g 
we can see that g(x°°) is a ^"F-cluster point of {g(x')}/e/, and by (5.9) we have g(x°°)e C, 
from which (3.4) follows by Lemma 5.1 and by Proposition 5.2. 
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As (3.5) is trivial if min (P) = — oo, we suppose min (P) > — oo. First we treat 
the case min (P) + + oo. Suppose, for a moment, that lim infie/ min (Pl) < min (P). 
Then there are e > 0 and a cofinal subset J of 1 such that min (Pl) <£ min (P) — s 
for all i e J. Take xl e Arg min (P1*), and a cluster point x00 of the net {x l} i e / . We 
have clearly fl(xl) :g min (P) — s, and by (5.8) and the continuity off, also f(xQO) :g 
g min (P) — e. On the other hand, we have already shown that ^(x00) e C. Therefore 

/(x0 0) ^ min (P), a contradiction. Thus lim inf/e/ min (Pl) ^ min (P), from which 
(3.5) follows by Proposition 5.1. In the case min (P) = + oo we obtain a contra
diction analogously, supposing min (P') 5̂  1/e for some a > 0 and all i e J. Q 

Proof of T h e o r e m 3.2. Take the regular compactifications (P) and (Pf) as in 
the previous proof. As C' D C and gl = g, we have (gl)~x (Cl) _ g~x(C), which 
implies (3.7) again by Lemma 5.1 and Proposition 5.2. By (3.6) and Lemma 4.2 
we get that 

(5.10) J1 converge ^-uniformly tof. 

Take some x e Arg min (P). Then g(x) e Cl for all i e I, and for every s > 0 we have 
P(x) g J(x) + s provided i is sufficiently large and min (Pl) + — oo. Therefore 
min (Pl) 5̂  min (P) + s, which shows that lim sup/G/ min (Pf) <i min (P). Since 
lim inffe/ min (Pl) ^ min (P), which has been already proved above, we obtain 
(3.8) again by Proposition 5.1. In case min (F) = - c o we get from (5.10) that 
min(P l) 51 — 1/fi, and (3.8) follows analogously. 

We will show that 

(5.11) Arg min (P) _• Lim sup Arg min (P1). 
iel 

Take xi e Arg min (P1) and a ^j-cluster point x00 of the net {xl}ie[. Since gl(xl) = 
= g(xv) e C\ due to (5.9) and the continuity of g we again obtain g(x"°) e C. Since 

f'(xJ) = min (P1), by (5.10) and the continuity of f we can see that f(xCX)) is a cluster 
point of {f''(x')}iEl. Therefore f(xrjo) = min (P) because lim f6/min (Pf) = min(P). 
In other words, x'0 e Arg min (P), and (5.11) has been proved. Then (3.9) follows 
from (5.11) again by Lemma 5.1 and Proposition 5.2. • 

P roof of T h e o r e m 4.1. Let us take a regular compactification (P) of (P) and 
denote by Sx the trace on X of the (unique) proximity on X inducing the compact 
topology :Tj. Then f and g are (Sx, SR)- and (Sx, O*r)-proximally continuous, respec
tively. Thus fr = f + r . h o g is (Sx, O^-proximally continuous because of (4.2) and 
the proximal continuity of the binary operation "extended addition" + : [M, +co] x 
x [0, + oo] -> R: cf. (4.4) and observe that h ^ 0 as a consequence of (4.1) —(4.3). 

Therefore we can extend fr to f: X ~> R by continuity, obtaining the problem: 

(Pr) minimize fr(x) on X, 

which is a regular compactification of (Pr) in the sense of Definition 5.1. Thanks to 
(4.2), h: Y-> R is (J//Y, ?/^)-uniformly continuous (note that %R is the coarsest 
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uniformity on R inducing 5R), and we can extend h to h: F~» R by continuity. As 
a consequence of (41)-(4.3) we have h(C) = 0 and / i (F \ C) > 0. Since the function 
/ + r . h o g: X -» R is continuous and coincides with fr on the /^Vdense subset X, 
we can see that fr = / + r . h 0 g. 

Since S ^ 0, the function r i-> min (Pr) is nondecreasing, and therefore the limit 
L = l im, .^ min (Pr) does exist. Obviously, fr(x) = min (P) for every x e Arg min (P) 
(which is nonempty), thus min (Pr) g min (P) and L ^ min (P). We take xr e 
e Arg min (Pr) and a ^ - c l u s t e r point x^ of the net {xr}reR + . By the assumptions 
inf(P) 4= +oo and M > — oo (see (4.4)) we can estimate: h(g(xr)) ^ (L— M)\r g 
S (inf(P) - M)\r --= 0(1 jr) for r -> +oo. Thus S ^ x J = 0, and therefore 
^(x^) 6 C a n d f ^ ) ^ min (P). Moreover, J(x00) is a ^ - c l u s t e r point of {J(xr)}reR + 

and /(x r) <; Jr(xr) = min (Pr) ^ L ^ min (P), which gives L = min (P). By Propo
sition 5.1 we get (4.5). It is also clear that x^ e Arg min (P), hence we have de
monstrated that Arg min (P) => Lim supr_>o0 Arg min (Pr), from which (4.6) follows 
immediately by Lemma 5.1 and Proposition 5.2. • 

P roof of T h e o r e m 4.2. Take again a regular compactification (P) of (P). As 
levfl(r)/r n X = leva(r)fr, the filter J^r>o(r) is just the trace on X of the filter {A e 2X; 
A :=> leva(r) fr}. We show that Arg min (P) =3 Lim sup,,.^ leva(r) fr. Take xr G leva(r) fr 

and a ^ - c l u s t e r point x^ of the net {x r} r eR+ . By (4.4) and the assumption inf (P) + 
4= +oo we obtain the estimate h(g(xr)) g (a(r) — M)jr = (9(\\r) for r -» +oo, 
hence h(g(x^)) = 0 and thus g(xrx) e C. Moreover, / (x r) ^ fr(xr) ^ a(r), which 
implies J(x^) ^ min (P) because a(r) \ min (P) and / is continuous. Thus x^ e 
G Arg min (P). By Lemma 5.1 we obtain M(P) c= Lim inf,.^^ i^r ja(r). 

On the other hand, for a > min (P) we have levafr e yV(Arg min (P)) because 
levafr e yV(levmin(F)fr), which is a consequence of the continuity of / r , and 
Arg min (P) c levmin(F) fr. It implies j£fr a(r) a M(P), and, by Proposition 2.2, also 
(4,7). • 

Proof of Theo rem 4.3. Take a regular compactification (P) of (P) such thatfk 

and gk are proximally continuous with respect to the trace on Xk of the proximity 
of the compact space (X, <Tx)l such (P) does exist, the compactification used in the 
proof of Proposition 5.3 can serve as an example for it. Furthermore, take the closure 
of Xk in X for Xk. We can extend fk and gk continuously to Xk, denoting the extensions 
respectively by Jk: Xk -> R and gk: Xk -» F, and consider the problem 

(Pk) minimize /fc(x) = Jk(x) + r . h(gk(x)) on Xk . 

By the way, (Pr) is a regular compactification of (Pr) according to Definition 5.1. 
Now we will show (4.13). Suppose, for a moment, that r is fixed. Take some 

xr G Arg min (Fr) and a cluster point xr°° of the net {xr}^eAr. Thanks to (4.10) and (4.2), 
lev in f (P) + £fr is a ^ - o p e n nonempty subset ofX for every s > 0. By (4.9)with(4.8), 
Xk n levinf(Pr) + £fr is nonempty provided k is large enough. In other words, there 
is xEeXk (for k large enough) such that fr(x£) <; inf(Pr) + s. The condition (4.12) 
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remains valid if %Y is replaced by the (unique) precompact uniformity °U% inducing SY 

because °UY c= (JUY. Due to (4.2), h is (<%*, ^ - u n i f o r m l y continuous, and by (4.11) 
and (4A2) we can see that fk converge for k -> oo to fr ^-uniformly on every Xk 

(recall that r is fixed). In particular, fk(x) — fr(x) converge for k -> oo to zero 
^-uniformly on {x; \fr(x)\ g L or Vk: \fk(x)\ g L} where L + +oo (the bound L 
had to be introduced due to the fact that, thanks to the points — oo and +oo, <%R 

restricted to R is strictly coarser than the standard additive uniformity %R on K). 
We obviously have the following apriori estimates: M g / r(x£) ^ min (P) + £ 
(for M see (4.4)) and M - 1 ^ fk(xk

r) ^ fr(xe) ^ min (F) + e + 1 (we have used 
also (4.H), (4.12) and min (Fr) g min (F)) provided k is large enough. Take L = 
= max(|M|, |min (F) + e|) + 1. Then from these estimates we obtain respectively 

fk(x?) - Mxe) ~* 0 and fk(xk) - fr(xr) ~> 0 for k -> oo. Taking into account also 
the estimates fr(xe) ^ inf(Pr) + s and fr(xr) S fk(xe) stated above and the con
tinuity off, we get eventually/(x^) ^ min (Fr) + s. As e > 0 is arbitrary, /(x^) = 
= min (Fr). As this holds for every cluster point xr°° of {xk

r}keN, there exists the limit 
l i m ^ ^ min (Fr) and equals min (Fr). In particular, Vr 3x(r) Vk = %(r): 
min(F r) - 1/r <£ min (F r) ^ min (Fr) + 1/r. By Theorem 4 1 and Proposition 5.1 
we then obtain (4.13). 

Now we want to prove (4.14). First we prove 

(5.12) Arg min (F) =D Lim sup Arg min (Fr) . 
/<-»ao,r-»co ,k^x(r) 

Take xk e Arg min (Fk) and a ^^-cluster point x^ of the net {xk}keN^reR +>k^x(r). We 
know an apriori estimate: M - 1 g fk(xk) ^ min (F) + 1 for k and r large enough, 
hence (4.11) implies similarly as above that f*(xr) - f(xr) -> 0 for k -> oo. Since 
/*(xj) ^ min (F r) -> minJF), we get lim s u p ^ ^ ^ ^ x * ) ^ min (F), and 
therefore f(x^) S m i n (P) thanks to the continuity off Similarly, from the apriori 
estimate 0 ^ h(gk(xk

r)) g (min (P) - M + l)/r we obtain h(g(x^)) = 0. Therefore 
we get x^ E Arg min (F), hence (5.12) is proved. By compactness, for any /^Y-neigh-
bourhood A of Arg min (Fr) there is a > min (Fr) such that A =3 lo\af

k, hence 
also A n K =3 levflfr, which shows that the trace on X of the filter yV(Arg min (Fr)) 
is coarser than ^#x(Pr). Then (4.14) follows from (5.12) by Proposition 5.2 and 
Lemma 5.1. • 

P r o o f o f T h e o r e m 4.4. Thanks to (4.15) there exists the regular compactification 
(P) of (P) such that X is the O*x-compactification of X (3X is the proximity used in 
(4.15) and (4.17)). Moreover, we can define (Pk) as in the proof of Theorem 4.3. 

Put C0 = intF C, where intF denotes the interior in the topology induced by °1/Y-
From (4.16) and the fact that °ttY induces on Ythe topology ^TY

 w e c a n easily show 
that C c clF C0. As g is continuous, the set A0 = g-1(Co) *s open in X. Besides, 
we will show that A0 c= g~1(C) c clj A0. The first inclusion is evident. To verify 
the second one, suppose that there is x e g~1(C)\dx A0. Then there are A1 >̂ A0 

and A2 > {x} with Ax n A2 = 0, where > is related with the unique proximity of 
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the compact space X (which is just the prolongation of 5X). As g(x) e C and g is 
continuous, A2 n g~*(C) is nonempty for every C > C. On the other hand, we 
can put B = Ax n X into (4.17), thus obtaining C > C such that g_1(C) cz B cz Al5 

which contradicts At n A2 = 0, however. Therefore we have proved # - 1 ( C ) c 
c c l x A 0 . 

In the proof of Theorem 4.3 we have shown in particular that lim infk _..-<, min (P*) = 

^ min (Pr), and it is quite clear that it holds uniformly with respect to r e R+. In 
view of (4.5) we then obtain lira inf,^^ ^ ^ min (Pk) ^ min (P). Thus we have to 
show that min (P) ^ lim s u p ^ ^ ^ ^ ^ min (Pk). Take e > 0 and put A£ = {xeX; 
f(x) < min (P) + e}. We will prove that g~1(C)n Ae =f= 0 for some ^y-open C 
such that C0 > C. As C0 is open, the union of all open C with C0 > C is just C0, 
and therefore the union of g~[(C) is just A0. Due to (4A6), A0 is nonempty because 
x0e A0. Also A0 n A£ is nonempty because any x e Arg min (P) belongs simulta
neously to the interior of A£ and to the closure of A0 (since we have already proved 
0 _ 1 (C) c clj A0). Therefore there is an open C = CE such that C0 j> Ce and 
^ _ 1 (^ £ ) n A£ = Ae is nonempty. The set A£ is open due to the continuity off and g. 
As the trace on X of &"% is just the topology ?TX used in (4.9), the union \)k^n Xk 

is ^"Vdense in X. By (4.8) there is k£ e N such that Xk intersects Ae whenever k ^ k£. 
In other words, for k ^ k£ there exists xeXk such that f(x) ^ inf(P) + e and 
g(x) e f i £ > C. Moreover, due to (4.12), we have gk(x) e C provided k£ is chosen 
sufficiently large, because the proximities induced on Y by %Y

 a ° d %y a r e i n e s a m e> 
namely 3Y. Taking ke large enough, by (4A1) we obtain fk(x) ti inf(P) + 2e. Thus 
fr(x) = fk(x) S inf (P) + 2e, and we can see that inf (P*) g inf (P) + 2e. As e > 0 
is arbitrary, we have proved limsi\pk^o0r^o0mm(Pk) ?g min(P r). Hence (4.18) is 
proved. 

The assertion (4.19) can be proved analogously as (4.14), but using (5.12) without 
the stability condition k ^ x(r). • 

6. MISCELLANEOUS REMARKS AND EXAMPLES 

R e m a r k 6.1. Although the general structure of (P) may cover all constrained 
optimization problems, it is worth noticing how the tolerance approach can be 
applied to problems with a more concrete structure because some specific phenomena 
can appear there. Let us consider a minimization problem with a collection of func
tional constraints: 

fn\ j m m i m i Z Q f(x) whh tolerance > 
' [subject to gfx) meets Ct with tolerance !>h iel, 

where f: X -> R, #,-: X -» Yh C{ cz Y., I is an index set and > t are the tolerances 
corresponding respectively to some given proximities SY. on Yt. In view of Definition 
1.1, this problem is equivalent to the problem (P) in the sense _F(P) = 3?(P)9 
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inf (P) = inf (P), Jt(P) = M(P) provided one takes the data for (P) as follows: 
y = Hid Yi> c = Ylier Ci9 g = (gi)ier, and SY = Y\ieI SYi (by the standard definition 
of the product of proximities, SY is the coarsest proximity on Y that makes all 
canonical projections Y-> Yt proximally continuous). If I is not countable we can 
get an example for SY non-metrizable (except trivial cases such that Yt are singletons 
etc.). 

Suppose SY. are induced by some metrics dY. and I is countable, say I = N. It is 
then natural to endow also Y by some metric, e.g. by dY = ]T.eA. 2~idYJ(l + dYi). 
Yet, it is known (see [1; (7.3.39)]) that, even if I were finite, dY would not induce 
the proximity SY defined above provided at least two of the metric spaces (Yh dYi), 
i e I, are not precompact. Nevertheless, we can use the proximity induced by dY, 
although in general it is strictly finer than SY, with the same effect as SY because both 
the proximities generate the same proximal neighbourhoods of the set C, which is 
caused by the fact that C is not a general subset of Y but has got the special form of 
the product J"]te/ Cr 

R e m a r k 6.2. Let us mention the situation that occurs in optimal control problems. 
Let K, Y, Z be the sets of controls, observations and states, respectively, letf0: X x 
x Z -> R be a cost function, A: X -> Z a state operator, and g0: X x Z -> Y an 
observation mapping. Furthermore, the observation space Yis endowed by a proxim
ity dY ( > will again denote the corresponding tolerance on Y). We will write briefly 
"z = A(x)" instead of "(x, z) meets the graph of A without tolerance", and consider 
the following optimal control problem with tolerance: 

f minimize f0(x, z) on X x Z with tolerance > . 
subject to z = A(x) and 

g0(x, z) meets C with tolerance > . 

Such a formulation of the optimal control problem is in harmony with the very 
realistic approach of J. Warga [13; Sec. III.l] who distinguishes, on the one hand, the 
"absolute" constraint formed by the state equation z = A(x) which is supposed to 
be governed by the laws of nature and should be fulfilled exactly (i.e. without toler
ance) because otherwise we would move "out of the world", and, on the other hand, 
the "desired" constraint g0(x, z) e C given by some technical or engineering requi
rements which may be satisfied only with a certain accuracy (in our notation, with 
tolerance). The optimal control problem is effectively treated after a transformation 
into the problem (P), representing then a mathematical programming problem on 
the space of controls X, by means of the substitution 

(6.1) f(x) = f0(x, A(x)) and g(x) = g0(x, A(x)). 

It is not difficult to see that, iff and g defined by (6.1) are taken for (P), this mathe
matical-programming transformation actually leads to the problem (P) which is 
equivalent to the original optimal control problem (P0) in the following sense: 
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&{P) = Prx#"(P0), inf(P) = inf(P0), and Jt(P) = VrxJi(P0), where Vrx:X x 
x Z -> X denotes the canonical projector. 

Nevertheless, the problem (P0) possesses certain specific features. Although the 
state operator should be treated without tolerance, sometimes it is sensible to con
sider an approximation A1 of A, which can arise from numerical evaluation of the 
state operator, or from errors in coefficients appearing in the state equation which 
may be obtained, say, by some measurements, etc. Then the above stated results 
will be preserved under the following data qualification: there exists a uniformity %z 

on Z such that A1 converge ^-uniformly to A and simultaneously f0(x, •): Z -> R 
are [%z, ^)-uniformly equi-continuous with respect t o x e l (i.e. VVe °UR 3We °llz 

\fxeX Vz1? z2 e Z: zxWz2 => f0(x, zt) Vf0(x, z2)), and similarly g0(x, •): Z -> Y are 
(%z, ^r)-uniformly equi-continuous. From these assumptions we immediately 
obtain (3.6) and (3.2) for f and g given by (6.1) andf1" = f0 0 A\ g[ = g0 o A\ We 
may conclude that the tolerance admitted for the constraint and the cost function 
allows us to admit some "tolerance" also for the state operator, originally considered 
without tolerance. 

R e m a r k 6.3. Some of the conditions used above may be sometimes too strong, 
e.g. (3.2) or (4.12) provided X and Xk are unbounded subsets of a normed linear 
space. However, often it is possible to employ a certain coercivity of the problem using 
some concept of boundedness of the subsets of X, and to weaken the mentioned 
conditions by restricting them to bounded subsets only. We will not deal with this 
idea in detail because it is rather standard. 

Example 6.1. Though in applications the tolerances will be mostly metrizable, 
it is worth giving a simple and quite natural example in which the tolerance need not 
be metrizable. Combining the problems from Remarks 6.1 and 6.2, we will consider 
the state-constrained optimal control problem for a dynamical system: 

minimize f0(x, z) on X x Z with tolerance > 
subject to dz/dt = F(x(t), z(t), t) for a.a. t e [0, T] , 

(P0) I z absolutely continuous, z(0) = z0 , 
z(t) meets C with tolerance > for all t e [0, T) , 
z(T) meets {zd} with tolerance > , 

where X = {x: [0, T] -> B measurable}, B is a bounded subset of Rm, Z = (Rn)i0*T\ 
F: Rm x Rn x [0, T] -> Rn determines the dynamics of the controlled system (we 
will suppose F(x, z, •) measurable, F(#, •, t) Lipschitz continuous, and |F(x, z, t)\ <^ 
g const. (1 + |zj)), C cz Rn

9 z0 e Rn, T > 0 is a finite time horizon, zd is a desired 
final state, and > is the Euclidean tolerance on Rn (i.e. the tolerance corresponding 
to the proximity induced by the Euclidean metric). By Remark 6A, the collection of 
the state constraints is equivalent to one constraint "z meets C0 with tolerance ^ 0 " 
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where C0 = C [0 ,T) x {zd} and ^>0 is the tolerance on (Rn)i0'rl corresponding to the 
proximity obtained by the product of the Euclidean proximities on Rn parametrized 
by t e [0, T] . As [0, T] is not countable, this proximity is not metrizable. 

However, the non-metrizable tolerance is rather formal here. Realizing that 
admissible trajectories z are equi-Lipschitz continuous (note that F has at most 
linear growth in z independently of x and t, and B and [0, T] are bounded), we can 
easily see that, if restricted to the subset of Z containing admissible trajectories only, 
the tolerance !>0 yields the same proximal neighbourhoods of C as the tolerance 
induced e.g. by the Chebyshev metric dz(zu z2) = sup0< f< r \zv(t) — z2(t)\. 

Although we can use equivalently the metrizable tolerance in this particular 
example, from the viewpoint of numerical solution the non-metrizable tolerance > 0 

seems to be more advantageous: we need not check the constraint within the whole 
trajectory, but only at a finite number of time levels (not prescribed in advance, 
however). 

Example 6.2. It may be said that the well-known relaxed-control theory (see 
J. Warga [13]) can serve as a very concrete example of compactification of optimal 
control problems. If we confine ourselves to the preceding example, the set of controls 
X is then imbedded in a natural way into the space (Lx(0, T; C°(B)))* by assigning 
to x a linear continuous functional on Ll(0, T; C°(B)) defined by (p i—•» J J cp(t, x(t)) dt, 
where B denotes the closure of B in R", C°(*) the space of all continuous functions, 
l}(0, T; •) the space of all Bochner integrable functions on [0, T] , and the star 
denotes the topological dual. Then X is precompact in the uniformity related with 
the weak-star topology of (L^O, T; C°(B)))* and, under some additional assumptions 
on F, the state operator x f-> z from Example 6.1 is uniformly continuous when taking 
the uniformity on the space of states Z coarse enough, say that induced by the 
Chebyshev metric dz from the Example 6.1. Moreover, this weak-star uniformity is 
metrizable on X and we can obtain a compactification simply by forming the comple
tion of X with respect to this metric. The elements of X, called relaxed controls, can 
be then identified with the functions on [0, T] whose values are random measures 
on B, i.e. positive Borel measures \i on B such that JLI(B) = 1. Moreover, this com
pactification is generally the coarsest (i.e. smallest) one. On the other hand, the cases 
when the compactification can be constructed as a metric completion and the elements 
of the compactified sets can be indentified in a similar manner as it was done for the 
relaxed controls are rather exceptional and in general the compactified spaces will 
not be metrizable (their elements being called generalized solutions in the author's 
former works [9 — 11]). 
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S o u h r n 

OPTIMALIZACE S OMEZENÍMI: OBECNĚ TOLERANČNÍ PŘÍSTUP 

TOMÁŠ ROUBÍČEK 

Pro překonání poněkud umělých těžkostí v klasické teorii optimalizace, týkajících se existence 
a stability řešení, se navrhuje nové pojetí optimalizačních úloh s omezeními (nazvanými úlohami 
s tolerancí) za použití daných proximitních struktur pro zadání okolí množin. Infimum a takzvaný 
minimalizující filtr se potom definují pomocí úrovňových množin indukovaných těmito okolími, 
což také odráží inženýrské chápání optimalizačních úloh s omezeními. Navíc je rozvinut odpoví
dající koncept konvergence filtrů, a dokázána stabilita minimalizujícího filtru jakož i jeho apro
ximace technikou vnější pokutové funkce použitím kompaktifikace úlohy. 

Pe3K>Me 

yCTOBHAJI OnTHMH3AHH>í: OELUFLÍÍ TOHEPAHTHOCTHBM nOAXOFT 

TOMÁŠ ROUBÍČEK 

7J,JUI IipeOAOJieHHH HeCKOJTfoKO MCKyCTBeHHbIX TpyflHOCTeH B KJiaCCHHeCKOií TeOpHH OnTHMH3aHHH, 

KacaiouinxcH cyiH,ecTBOBaHHH u ycToiíHHBocTM pemeHHM, npefljiaraeTCK HOBan nocTaHOBKa npo6jieM 
ycjiOBHOií onTHMH3aHMH (Ha3BaHHtix 3/Tecb npo6jieMaMH c TOJiepaHTHOCTbio), Hcnojn>3yiom;aH 
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cтpyктypы близocти для oпpeдeлeния o pecтнocтeй мнoжecтв. Hижняя гpaнь и тaк-нaзы-
вaeмый минимизиpyющий фильтp oпpeдeляютcя зaтeм nocpeдcтвoм мнoжecтв ypoвня пo-
poждeнныж этими oкpecнocтями, чтo тoжe oтpaжaeт инжeнepнoe пoнимaниe пpoблeм ycлoв-
нoй oптимизaции. Дaлee paзвивaeтcя пoдxoдящaя кoнцeгщия cxoдимocти филыpoв и пpи 
пoмoщи кoмпaктификaции пpoблeмы дoкaзывaeтcя ycтoйчивocть минимизиpyющeгo фильтpa 
и eгo пpиближeниe мeтoдoм внeшнeгo штpaфa. 
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