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COMPENSATED COMPACTNESS AND TIME-PERIODIC SOLUTIONS
TO NON-AUTONOMOUS QUASILINEAR TELEGRAPH EQUATIONS

EDUARD FEIREISL
(Received February 1, 1989)

Summary. In the present paper, the existence of a weak time-periodic solution to the nonlinear
telegraph equation
U, , +dU, — o(x,t, U), + aU= f(x, t, U, U, U)
with the Dirichlet boundary conditions is proved. No “smallness’ assumptions are made con-
cerning the function /.
The main idea of the proof relies on the compensated compactness theory.
Kevwords: Telegraph equation, compensated compactness, vanishing viscosity method.

AMS Classification: 35B10, 35L70, 35Q20.

1. INTRODUCTION

With DiPerna’s results [6] concerning the convergence of approximate solutions
to conservation laws, the compensated compactness theory developed by Ball,
Murat and Tartar embraced truly nonlinear hyperbolic systems in one space dimen-
sion. Subsequent progress represented, for instance, by the papers of DiPerna [5],
Serre [18], or Rascle [17] has resulted in successfully solving the Cauchy problem
for a vast class of nonlinear equations.

The present paper attempts to illustrate the power of this method when applied
to boundary value problems of mathematical physics. To put it more exactly, for
U = U(x, t) consider the equation

(E) U,+dU, — o(x,1,U,), + aU = f(x,t,U,, U, U)
forx € (0, I), t € R' along with the conditions

(B) U0, 1) = U(l, ) = 0,

(P) U(x, t + o) = U(x, 1)

for all x, t.

To begin with, it is worth dwelling on the mathematical tools one became ac-
customed to employ when solving the problem in question.
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The most frequent method, and to be sure the only one, leans on linearizing the
equation and making use of a suitable iteration scheme.

The first group of results associated with this technique comprises those of Matsu-
mura [10], Nishida [13], Milani [12], or St&dry [20] based on the classical mate-
matical tools as the Banach or Schauder fixed point principle.

The second branch was opened with the remarkable research of Nash and Moser
related to the hard implicit function theorems. Beginning with a truly pioneering
work of Rabinowitz [16] we could go on through a relatively long list of papers
represented, for instance, by Petzeltova [14], Craig [4], Krej¢i [9], or Petzeltovi-
Stédry [15].

Using either of these methods, however, we are bound to deal with “small” solu-
tions corresponding to “‘small” data. This is the major shortcoming associated
with all approaches referenced above. To our best knowledge, there seem to be
no results concerning the large data problem unless some very restrictive assumptions
are made.

To fill this gap, we intend to prove the existence theorem for (E), (B), (P) under
the following assumptions:

(A,) The constants a, d > 0 are supposed to satisfy

(1.1) d —4a20.
(A;) o = a(x, ¢ u): R —» R"is a smooth function, the growth of which is restricted
as follows:
(]2) ]o-xl H lo-tl > Ia-xul > Iaflll H Io-.v.\‘ztl § C1>
(1.3) a,,(x, t, u) =2¢; >0
for all x, t, u, and
(1.4) lim ¢,(x, t,u) = +co uniformly in x, 1.
u—+ o

Besides, we require
(1.5) o(x, t,u) = o(—x,t,u), ofx+ 2Lt u)=o(x,tu),
(1.6) Culx, t,u)u >0 whenever u 0,
and (of course)
(1.7) o(x, t + w,u) = a(x, t,u)
for all x, t, u.
(A;) The function f = f(x, t, uy, uy, u3): [0, 1] x R* —» R' is smooth with
(1.8) Flx,t + @, ug, uy, uz) = f(x, 1, uy, uy, u3)
(1.9) [fCx, by, uy, u3)| < ey

forall x, t, u;i = 1,2, 3.
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The only justification for the above conditions is that they give rise to the existence
of at least one weak solution (see Section 2) along with a relatively comprehensible
proof of this fact (cf. Sections 3—6). The actual significance as well as possible
improvements of each of our requirements will be discussed in the relevant parts
of the paper.

The nature of the method employed makes it necessary for us to transform the
original equation to a hyperbolic system (see Section 3).

Having the subsequent application of compensated compactness in mind we
approach the problem via the vanishing viscosity method. When slightly adapted
the procedure of Amann [1] yields a sequence of approximate solutions provided
that we are able to ensure certain a priori estimates (Section 4).

Consequently, a question of primary importance arises concerning the extension
of the concept of invariant regions for parabolic systems (cf. [3]) to a non-autono-
mous case, i.e. when ¢ does actually depend on x, t. Such a problem was studied
in [7] and we adopt here the results.

To pass to a limit in the sequence of approximate solutions, the method of com-
pensated compactness is used; more precisely, the lemma of DiPerna [6], related
to the corresponding Young measure (see Sections 5, 6), plays the decisive role.

Here again, the explicit presence of the variables x, t in ¢ entangles the situation
and prevents us from following the arguments of [6] in a direct fashion (Section 6).

To conclude with, let us agree upon the notation used in the text. In our opinion,
it is superfluous to repeat here all familiar denominations of the Sobolev spaces,
Lebesgue spaces etc. If in doubt, the reader may consult, for example, the mono-
graph [22].

Throughout the whole text, the symbols ¢ or ¢;, i = 1, ... stand for all strictly
positive real constants.

2. MAIN RESULTS

There exist sound reasons (cf. Slemrod [19], Milani [11]) for us to deal with
the class of weak solutions related to (E), (B), (P).

Remembering all possible difficulties of taking care of boundary conditions we
prefer to view all functions satisfying (B), (P) as double-periodic, i.e. defined, in
fact, on a torus T? = {(x,1)|xeS',teS?} where S' = [-LI][{-11}, S* =
= [0, 0]/{0, o},

Eventually, consider the cylinder

Q= {(x,t)|xe[0,1],1e S} .

Definition 1. A function U belonging to the Sobolev space W,.(Q) is said to be
a weak solution of the problem (E), (B), (P) if the condition (B) holds and, for all
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test functions ¢ € C*(Q) satisfying (B), we have
2.1) [lo =Up, + o(x, 1, U,) ¢, + (dU, + aU) ¢ dx dt =
= [[of(x,t,U,U,U)pdxdt.
Note that, according to the embedding relation W,(Q) G C(Q) (cf. [22]), all
above assertions are fully justified.

As claimed in Section 1, our main aim is to establish the following existence
result.

Theorem 1. Let the assumptions (A;), (A,), (A;) hold.
Then there exists at least one weak solution to the problem (E), (B), (P)

3. A HYPERBOLIC SYSTEM

The only reason for assuming (1.1) is the existence of two strictly positive constants
a,, a, > 0 making the following decomposition possible:
d=a,+a,, a=aja,.
After the change of variables u = U,, v = U, + a,U, the equation (E) takes the
form of a hyperbolic system
(S1) u, +au—v, =0,
(S,) v, + au —o(x, tu), =f.
As shown in [7], a suitable parabolic regularization is provided by adding the
terms
o =u, + Y(x,t,u),, Lw=u0,,
where

Y(x,t,u) = J gn,(inff) dz.

o 0u(x,1,2)
Thus, we are led to a perturbed problem
(S%) u, + au — v, = el qu,
(S3) v+ av —o(x, bu), =f"+ eslv, £>0.

As we have already remarked in Section 2, we are primarily interested in classical
solutions determined on T?, f* being, for the present, a function belonging to the
class C(T?).

The relationship between the original function U and a solution of the system
(S%), (S3) may be clarified with help of the following assertion.

Lemma 1. Consider a classical solution (u, v) of the equation (S) on T?.

Then there is a unique function U € C*(T?) satisfying
(3.1 u,=u, U, + aU=v+eu + ¥(xtu)).
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Proof. Multiplying the equation by e*** gives rise to
(e"'u), — (e"*(v + eu, + e¢¥(x,t,u))), =0 on R*.
Now, there is a function V on R? satisfying
Ve=¢e"u, V,=e"(v+ eu, + e¥(x,1,u)),
determined uniquely by the value ¥, = V(0, 0).
Consider a function U = e”“'V, U(0, 0) = V,. As the relation (3.1) is easy to verify
for U, we have only to choose the constant ¥, so that U may be double — periodic.
To this end, ¥, will be determined uniquely by the requirement U(0, t + w) =
= U(0, 1), 1.e. the function U(C, +)is to be a unique w-periodic solution to the ordinary
differential equation

(a) Ufx, *) + a,U(x, *) = o(x, =) + e[ux, *) + ¥(x, -, u(x, )]

for x = 0.

With the relation U(x, t) = U(0, 1) + [ u(z, t)dz in mind, we deduce that U
is, in fact, w-periodic in ¢.

To show periodicity with respect to x, we have only to realize that, firstly, the right-
hand side of (a) is 2/-periodic in x, and, secondly, U(x, -) is determined as the unique
solution of (a) which is w-periodicin t. m

4. APPROXIMATE SOLUTIONS

To find w-periodic in ¢ solutions of (S5), (S3), an indirect method will be used.
It means that we are going to solve the initial value problem given by (S}), (S5) with

(1) u(x,0) = u°(x), o(x,0)=%x), u®, ®eC(S")

and hope to succeed in finding a fixed point of the corresponding evolution operator.
Whenever speaking about a solution (u, v) of (S%), (S3), (I) on a certain time
interval [0, #,), we tacitly assume that

u,ve C(S" x [0,10)), v, Uy, Uy, Uy, 0y € C(S' x (0, 1)),

and the equations together with (I) are fulfilled for x € S', 1€ (0, t,).
For later purposes, we introduce symmetry classes

Iy ={w|weLy(S"), w(—x) = w(x)},
Iy ={w|weLy(S"), w(—x) = —w(x)} .
As to the function f*, it is supposed to satisfy
(4.1) frec(r?), |ff| e, ve(0,1)
and, for each t e S?,

(42)  f(0er,
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(the symbol C* stands for the class of v-Holder continuous functions — cf. Amann
[2]).

The main ideas mentioned in this section can be traced back to Amann [1] we will
quote systematically from.

Let us start with a short review of basic properties of a linear operator related
to our problem. For w e C*(S') we consider

Fw = —ew,, + aw.

Rather than the operator & itself, its self-adjoint extension to the space L,(S')
is of interest, namely,

Lw =Y X b(w)e,

keZ
where

_ feos(mx), k=<0,
e(x) = {sin (x), k>0,

0=flg <y =ficy < ...<p=p_p..., il Xk, A =eu} + a,, and b, are the
Fourier coefficients of the function w with respect to e,.
Consequently, we may determine a scale of spaces X, = D(%*) with a Hilbert

norm
Il = L3, 5
Let the symbol {T;},., denote the semigroup of linear operators on L,(S") generat-
edby —%,i.e.
(4.3) Tw =23 e " b(w)e,.

keZ
Note in passing that
Pricr,, i=12
and, consequently, the same is true for T,:

(4.4) T, T, i=12 1t20.

The list of properties of {T;} continues as follows:

Lemma 2. Given o, f € [0, 1], we have the inequalities
@9 Tl RO uly for 228,
(4.6) [Tw — w|, < c(a, B) P2 w|, for B=o.
Moreover, if 0 < 1 < 20 — %, there is an embedding relation
(4.7) X,Q CIH(sY) .

As to the proof, we quote (see Amann [2]) the same result associated with the
Dirichlet boundary conditions ([2, Proposition 4.1]). There seem to be no essential

197



difficulties when the periodic case is involved, particularly when taking the explicit
expression (4.3) into account.

At this stage, performing a well-known procedure from the theory of evolution
equations, we rewrite (S}), (S3), (I) to the integral form

(I u(t) = Tu® + [§ T,_[v.s) + (ay — a,) u(s) + e¥(-, s, u(s)).] ds,
(L) o(t) = T + [ T,—[o(-, s, u(s)), + f5(s)] ds .

As to the system (I;), (I,), a standard fixed point technique provides the local
existence result:

Lemma 3. Given the initial data u°, °eX,, Be(; 1),u’el,v°erl,, ”uollﬂ,
Huollﬂ < o, we are able to find a positive constant t, = to(,B, €, 0) such that the
system (1,), (I,) possesses a unique solution u, ve C([0, t,], X;), u(t)e 'y, v(t) eI,
Sor all te [0, t,].

Proof. Take a set
) = {(u,0) | u(0) € Ty, o) € T [y + o0, < 6. e 0. 1]
along with a mapping K = (K, K,),
K (u, ) () = Tu® + [§ T, [vs) + (ay — ay) u(s) +
+ e¥(, s, u(s)),] ds,
K,(u, v) (1) = Tp° + [§ T,—[a(-, s, u(s)), + f(s)] ds .

To begin with, observe that u(t) e I'y, v(t) e I', combined with (1.5) bring forth
o(+, t,u(t)) eI, and, consequently, o(-,t, u(t)),eI',. Thus, the relations (4.2),
{4.4) ensure that K, (u, v) (t) € I', whenever v° € I',.

Similarly, ¥(-, 1, u(t)) e I', implies ¥(-, t, u(t)), € I',. We infer that K;(u, v) (t) e
eI, provided u®eI,.

The next step is to estimate the expression

Z [Ki(u", o) (1) = Ki(u?, v*) (1),

for (w’, v’), j = 1, 2 belonging to #(9).

With g = ¢ or g = ¥ the hardest term takes the form
Jo [Te-Lg(c> 5, u'(s))s = g(- 5, u?(s))][lp ds <
(in view of (4.5))
S B Jo(t=5)" g5 u'()e — (s 5 u*(s))sfo ds =

(according to (4.7))

S o, 6.e) [o (t = 5)7 Ju'(s) — w?(s)]pds =

e(p0:¢) 167" sup Ju'(s) = u*(s)] -

///! //
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The remaining terms being much more easy to handle, we arrive at the estimate

(@) swp ¥ [Ki(ut, o) s) — K, ) ()], <

s€[0,t0] i=1
< ¢(B, 8, ¢) 157" sup [u'(s) — u?(s)]|; + [v'(s) = v*(s)]5-
se[0,t0]

Alternatively, we have
2
3 IKO.0 () = [Tl + [Ta%), +

+ Jo [ Ti=slou(+, 5, 0) + f(s)][p ds =

(according to (1.2), (1.9), (4.5))

< C(ﬂ, 5) [Q + t(l)_ﬂ(ﬁ + C;)] s
which together with (a) implies

(6) sup 3 [Kiu o) 0)], = c(Bre) [o + B7%e, + )] +

se[0,t0] i=1
+ (B8, 6) 11" .
Now, it is a matter of routine to choose §, t, > 0 (t, small) so that K: #(¢) — #(5)

may be a contractive mapping. Thus, a straightforward application of the Banach
fixed point theorem completes the proof.

As the next step we observe that the mild solution we have just obtained is, in fact,
a classical one.

Lemma 4. Every pair u, ve C([0, t,], X,), B > 3 satisfying (1,), (I,) is a classical
(smooth) solution of the Cauchy problem (S3), (S5), (I).

Proof. Taking the well-known regularity results related to the one dimensional
heat equation into account we are to verify

(a) o(, s u)y P(, vy u)y U, u, 7€ C(ST x [0, 1,])
_ foracertainy > 0.

In view of (4.1), we may restrict ourselves to the pair (u, v); more specifically,
we need

(4.8) u,, v, e C"(S" x [0,1,]), y,>0.
Finally, due to (4.7) it suffices to show

(b) u,ve C([0, t,], X,)

for we(3B), 1.€(0,8—a).

To verify (b), take y = z and estimate
Ju(v) = u@)]a,  [o(y) = v(2)]s-
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Thus,

“Tw - TWOH = ”T y_,w - wo)Ha =
(according to (4.5), (4.6))
S (o, B) ly — 2P~ [w];” where w® = u®, 0°.

With g = ¢ or ¥, the most difficult term, as usual, seems to be
s 7afc u(s» ds — [ Toeg( 5, u(s)). ds], <

5 (T, —) 9(+, s u(s) ds|l, + [[I5 T—s g(+, 5, u(s)), ds|, .
Denoting the former term on the right-hand side by B; we get

By = 55 |TuiTy . — 1d) g, . u(s)) ], ds <

(using (4.5), (4.6))

() ]y = 272 s [T g . ()] ds <

< dlu b sup [ 570y = =

Il/\ lIA
ﬁ

The latter term being denoted by B,, we obtain
By < o) 2y = )7 oo s, u(s)) o ds <
< o e, sup Ju(s)lp) [y — 2|* .
se[0,10]

Estimating the other terms in a similar fashion we complete the proof. ]

Now, we turn to the question of global existence. In view of [1], the L,, — a priori
estimates would guarantee the results we look for. To this end, consider the Riemann
invariants

r(x, tu,v) = v+ 5 S(ou(x, 1, 2)) dz,

s(x, t,u,v) = v — 4 \/(au(x, t,z))dz

along with a set
M = M(cy) = {(x,,u,0)| —cg 1,5 < ¢} = R*.
From [7] we quote the following result.
Lemma 5. [7, Theorem 1.]

There is a sufficiently large constant c,, independent of ¢, such that any local
solution (u, v) of (S%), (S3), (1) with

[x, 0, u%(x), v°(x)] € M(c,) forall xeS*
is bound to satisfy
(4.9) [x, 1, u(x, 1), v(x, t)] € M(c,) forall xeS', tel0,1].

To exploit the above information for showing the global existence, we will prove:
If (4.9) holds, then the local solution (u, v) admits the estimate

(4.10) Ju(®)]s + [o(®)]ls = h(t)
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where h: [0, +o0) — [0, + o) is bounded on bounded sets. In other words, (u, v)
may be prolonged to become a global solution, i.e. t, = + co0.
For this purpose, we need the following generalization of the Gronwall lemma.

Lemma 6. [8, Lemma 7.1.1.]
Letw = 0,w e Ly(0, t,) satisfy

w(t) < est™ + ¢ [5 (t — s) P w(s)ds, Be(0,1).
Then
(4.11) w(t) < ¢5c(cs, B to) 177, te(0, 1] .
With (4.9) in mind, we estimate
lu@lls + lo@®ls = (B, 2) {{u°]s + [0°]5 +
+ 5o (t = )77 [Jod)o + o s, uls)sllo +
+ [#Cs s u())lo + Ju()o + es]ds} =
(according to (4.7), (4.9))
< (B, s ca) {tol[[ullp + [0°lp) 77 + J5 (£ = )7 (Ju(s)]5 +
+ [[o(s)]s) ds} -
Consequently, the conclusion of Lemma 6 implies (4.10).
As the final step, we establish the existence of time-periodic solution to (S5), (S%).
Consider the set
M= {(u,v) | u, v-eX,, , uel,vel,,
[x, 0, u(x), v(x)] € M(c,) forall xeS'}.
One easily observes that ./#, being regarded as a subset of the space Xj, is a non-

empty closed convex set. Note in passing that, in view of the periodicity of o, the
condition

[x, 0, u(x), v(x)] € M(c,)
is equivalent to
[x, ko, u(x), v(x)] € M(c,), keZ.

Moreover, taking the above results into account we are able to define the Poincaré
operator
mn: 4 - M

where IT(u°, 1°) = (u(w), v(w)), u, v being the unique solution of (I,), (I,).

Lemma 7. IT is a mapping continuous and compact with respect to the X s-topology
induced on M, where B e (3, 1).

Proof. By virtue of Lemma 6, the continuity of IT may be proved by taking
advantage of the procedure which has become standard in this section.
As to the compactness of IT(.#), it suffices to prove the boundedness of this set
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in X, x X,, ye (B, 1) since the embedding X, Q X, is compact whenever y > f.
To show this, we compute

[@l, + [0, = <G> 2) {(ullo + [oo) 7 +
+ Jo (e = )7 [Jo( 5, uls)ello + [ods)o + Ju(s)]o +
+ [P0, us))o + es] ds} -
Now, (4.7), (4.9) combined with Lemma 6 give finally
(O, + o], = e 055, )- .

Making use of the Schauder fixed point theorem we achieve the final result.

Lemma 8. Let (4.1), (4.2) hold.

Then there exists at least one classical, double-periodic (i.e determined on TZ)
solution to the parabolic system (S5), (S5).

Moreover,

(4.12) u(-,t)el’y, v(-,t)el, forall teS?*,
and, in view of (4.9), the estimate
(4.13) lulecrsy + [elecrn = €
holds independently of ¢ > 0.
Finally, due to (4.8), there is ¢ = u(e) > 0 such that

(4.14) u,, v, e C*(T?).

5. A LIMIT PROCESS

In this section we are going to construct a weak solution to (E), (B), (P) taking
advantage of the following limit process.
Let us set

U(x,t) = [3u(z,t)dz, xe[0,1], teS*.
For ¢, = (1/n), we define

for=y"(x) f(x, t,u,v — a, U, U) for xe[0,1], teS?
with

1 X €

<
A
=
N
I
m
—
L
—
—
Iy

]

=

m

} S|
S N
| S—
C

f -
|
:JN
|
S |-
—)
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Under such circumstances, the function f* may be prolonged onto T2 to satisfy
(4.2).

In view of (1.9), all results of Section 4 apply to the problem (S7), (S3') with the
right-hand side f* determined above (in fact, it is an integro-differential system).
Consequently, Lemma 8 gives rise to the existence of a solution pair (u", v").

Moreover, according to Lemma 1, there is a function U” satisfying

(5.1 Ur=u", U;+a,U" ="+ (1/n)(ur + ¥Y(x,1,u")).
The relation (4.13) induces a very important estimate

(5.2) [« lccrzy + 0" lcsy £ C for n=1,2,...
According to (4.12), (5.1) we get

(5.3) Un(0,1) = U"(I,f) =0, teS?, n=1,2, ..,

which implies that U" and U coincide on [0, [] x R'.
Being led by analogy with autonomous systems we introduce the concept of
entropy-flux pairs.

Definition 2. A couple of functions n =n(x,t,u,v), q = g(x,t,u,v): T* x
x R* — R* is called an entropy-flux (e—f) pair if n, q are of the class C' in x, t,
C? in u, v, and solve a linear system of equations

(5.4) 4, +1n,=0
qu + ox, t,u)n, =0
for all x, t, u, v.
As a natural example, consider the pair

2
7= 6 t) = St +

q = o(x, t,u,v) = —vo(x, t,u),
where 2(x, 1, u) = [4 o(x, t, z) dz, corresponding to the total energy.

To be apparently short, we adopt the following convention. For an arbitrary
function g = g(x, t, u, v), the symbol g" stands for the superposition g(x, 1, u"(x, t),
v"(x, t)). In other words, g" is understood as a function of the variables x, ¢ only.

After a rather lengthy but straightforward computation, we arrive at the formula:

(59 (@)= 2B

where

n n n n n ngen 1 n

By = u} + g% + o, — mau" — mua" + npf" + . mY¥s,
1 n.n

BZ = :l ((rluux)x + (7]:17:))‘) s
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n

1
. (mau2)® + 2mp 0ol + i (02)?),

Il

B,

B,

Il

1 n n n n n n..n
; (‘”xuu.v = Myl + "u'fluux)

on T? for each (e —f) pair , g.
Thus the special choice # = &, g = ¢ combined with integration by parts of the

relation (5.5) leads to

1., 2
0 == [[r: oh(u})* + (v2)*dx dt + lfjrz ot + "Vl + ...
" & ... bounded terms.
Evoking the estimate (5.2) one obtains
loxlee s o™i, < co
which, with help of (1.3) and the Cauchy-Schwarz inequality, yields
1 n n
(5-6) (il + 1) s e -
The key for obtaining a weak solution to our problem is contained in the rather
surprising conjecture, the proof of which we postpone to the next section:
(H) uw'—u, v"->v forae (x,1)eQ

passing to subsequences as the case may be.
One easily observes that, due to (4.12), (H) holds, in fact, on T?.
As a direct consequence of (5.2), (H), we deduce

(5.7) u"—u, " —>v stronglyin L,(T?) forall p < +oo0.
According to (5.2), (5.6),
(5.8) 1 ul, 1 v, 1 ¥" - 0 stronglyin L,(T?).

u n n

Seeing that the functions U}, U" are orthogonal in L,(T?) we draw from (5.1) that

(5.9) U"— U strongly in W, (T?)
with
(5.10) U,=u, U+ aU=nv.

Moreover, by (5.3), (5.9) we obtain
(5.11) U, )=U(l,*)=0 on S?
at least in the sense of traces.

Finally,

(5.12) o(+, -, u") > a(+, , u)
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strongly in, say, L,(T?), and

(5.13) fo— J strongly in, say, Ly(T?)

where f(+, 1) e I',, te S, and

(5.14) J(x, 1) = f(x, 1, U, U, U) forae. (x,1)eQ.

Being multiplied by a test function ¢ € C*(T?), ¢(-,t)e I', and integrated by
parts the equation (S%) takes the form

(515)  [fr2 =", — (Un) 0" o + ar" o + ox, ,u" ) @, — frpdx di =0,
which, combined with the symmetry properties (4.12), gives rise to

(5.16) [l =v" o, — (Un) 0" oy + o(x, t,u"* ") o, +
+ a,p"t o — frredxdt = 0.

Taking advantage of the aforementioned relations concerning the convergence
of (u", v") we are able to pass to the limit in (5.16) to obtain (2.1.)

In the conclusion, note that (5.10) gives successively U, = v — a,U € L,(Q).
pe[l, + ), Ue C(Q) and, finally, U e Wy(Q), U satisfying (B) due to (5.11).

Theorem 1 has been proved.

6. THE PROOF OF THE CONJECTURE (H)

As already remarked, the compensated compactness theory along with the concept
of the Young measure proved to be very useful when dealing with passage to the
limit in weakly convergent sequences.

Following the line of arguments presented in [6], we intend to prove the con-
jecture (H) claimed in Section 5. However, note that some differences appear as
a consequence of the explicit dependence of o on the variables x, t.

We start with the Young measure related to our system, the basic reference material
being represented by Tartar’s work [21].

Consider the sequences {u"}, {v"} viewed as functions defined on R*. By virtue
of (5.2), there are subsequences (not relabelled for convenience) such that

(6.1) u"—u, v"—>v weakly-starin L (Q).

We determine two auxiliary sequences {w}, {w}} as wi(x, t) = x, wi(x, 1) = ton Q
We have (obviously!)
(6.2) Wi = w,, wj—w, uniformlyon C(Q)
wherew, = x, w, = 1.

It can be shown (cf. [21]), passing to subsequences if necessary, that the limit

lim g(w}, w3, u",v") = g

does exist for all ge C(0), 0 = Q x [~C,C]* in the sense of the weak-star
topology on L_(Q).
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Moreover, there is a family of probability measures v, , (the Young measures)
on the set O satisfying

(6.3) e 9> = g(x, 1) forae. (x,1)eQ.

It is easy to see (cf. [21]) that (H) holds if, (and only if) v, , reduces to a Dirac mass
(centered at the point [x, 1, u(x, 1), v(x, t)]) for a.e. (x, ) € Q.

To prove the last assertion, we desire to minimize the possible support of v, ,.

Lemma 9. Under the hyhotheses (6.1), (6.2), the Young measure v, , is supported
by the set N,

N = {[wy(x, 1), wy(x, 1), u, v] ] (u,v)e[-C, C]*}.

In other words, for our particular choice of w}, w}, there is a probability measure
V.. on[—C, C]? such that

(6.4) e 9 = T g(x, 1,0, 0

Proof. Take a continuous function g such that supp (g9) " N = 0.

We are to show (v, ,, g> = g(x, t) = 0.

According to (6.2), there is a neighbourhood 4" of the point (x, ) and an index n,
such that

[w7, w3, u", v"] ~ supp (g9) = 0

forall(y,s)e N, n = n,.

Consequently, g = 0 on . |

At this stage, let us turn to the relation (5.5). We set @ = {(x, 1) | x e (=21, 2I),

te(—2w,2w)}.
With help of the estimates (5.2), (5.6), one deduces:

(a) * B, isbounded in L (Q),

(b) B, belongs to a compact set of W, '(Q),
(c) Bj is bounded in L,(Q),

(d) B, is bounded in L,(Q),

(e) {n"}, {q"} are bounded in L (<),

for any (e—f) pair #, g and independently of n.  In view of the above relations,
Murat’s lemma [21] offers the following conclusion:

(6.5) (n"), + (¢"). belongs to a compact set of W, '(Q)
independently of n.
For any (e—f) pair n,, ¢;, i = 1, 2, denote by
VS TR e
the corresponding weak-star limits on Lw(Q).

The estimate (6.5) enables us to evoke the classical result of the compensated
compactness theory — the “div-curl” lemma in order to obtain

niq> — n3q7 = 1.z — 241 -
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In another form:

(6.6) o 112 = M1 = Ve 10 Vi €22 = Gy 1) Con 41 -

For fixed (x, t) € Q, consider a pair of functions 7 = n(u, v), ¢ = q(u, v) solving
(5.4). It is a matter of routine to construct an (e —f) pair 4}, § (in the sense of Definition
2) satisfying

i, t,+,°)=n, qx,t,-,")=q.
Note in passing that such an extension is by no means uniquely determined.
Thus, the relation (6.4) together with (6.6) gives finally

(6.7) Ty Mz = 12910 = e ) Teo 420 — Tep 12) e 419

for each pair #;, q;, i = 1, 2 satisfying (5.4) for fixed (x, ¢).

The relation (6.7) is nothing else than the Tartar equation for the Young measure
V.. appearing when dealing with autonomous hyperbolic systems of nonlinear elas-
ticity, the functions #;, q; representing some entropy-flux pair in the classical sense
(see DiPerna [6]).

However, by virtue of the remarkable result of DiPerna [6, Section 5], v, , is
bound to be a Dirac mass whenever (1.3), (1.6) hold.

Thus, the conjecture (H) is proved.
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Souhrn

METODA KOMPENSOVANE KOMPAKTNOSTI A CASOVE PERIODICK A
RESENI NEAUTONOMNI KVASILINEARNI TELEGRAFNI ROVNICE

EDUARD FEIREISL

V praci je dokazana existence slabého &asové-periodického feSeni nelinearni telegrafni rovnice
U, + dU, — o(x, 1, U, + aU=f(x, 1, U, U, U)

s Dirichletovymi okrajovymi podminkami. Prava strana rovnice nemusi byt nutn& ,,mala‘.
Idea dukazu je zaloZena na metod& kompensované kompaktnosti.

Pesome

METO/J KOMIIEHCUPOBAHHOM KOMITIAKTHOCTU U IMEPUOJAUYECKUE
BO BPEMEHU PEHIEHMS HEOJHOPOJHOI'O KBA3SWJIMHEMHOI'O
TEJIETPA®HOI'O YPABHEHUA

EDUARD FEIREISL

B pabote m0ka3aHO cyniecTBOBaHME IO KpaiiHEHl Mere OAHOIrO Cilaboro IePUOAMYECKOrO BO
BPEMEHHM PelLIeHUs ISt ypaBHEHHS
U, + dU,— a(x, t, U), + aU= f(x, t, U, U, U)

C TpaHHYHbIMYU yCnoBuAMHU Jupuxie. OTMETHM, 4TO Ha QyHKLmIO f He HAlaraloTCsl HUKAaK1e yCIIOBUs

,,MayocTu‘’,
OcHOBHast H/iesl JOKa3aTebCTBA — METOJ, KOMIEHCHPOBaHHOM KOMIIAKTHOCTH.
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