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35(1990) APLIKACE M A T E M A T I K Y No. 3, 192—208 

COMPENSATED COMPACTNESS AND TIME-PERIODIC SOLUTIONS 

TO NON-AUTONOMOUS QUASILINEAR TELEGRAPH EQUATIONS 

EDUARD FEIREISL 

(Received February 1, 1989) 

Summary. In the present paper, the existence of a weak time-periodic solution to the nonlinear 
telegraph equation 

Utt + dUt - a(x, t, Ux)x + aU = f(x, t, Ux, Uv U) 

with the Dirichlet boundary conditions is proved. No "smallness" assumptions are made con­
cerning the function/ 

The main idea of the proof relies on the compensated compactness theory. 

Keywords: Telegraph equation, compensated compactness, vanishing viscosity method. 

AMS Classification: 35B10, 35L70, 35Q20. 

1. INTRODUCTION 

With DiPerna's results [6] concerning the convergence of approximate solutions 
to conservation laws, the compensated compactness theory developed by Ball, 
Murat and Tartar embraced truly nonlinear hyperbolic systems in one space dimen­
sion. Subsequent progress represented, for instance, by the papers of DiPerna [5], 
Serre [18], or Rascle [17] has resulted in successfully solving the Cauchy problem 
for a vast class of nonlinear equations. 

The present paper attempts to illustrate the power of this method when applied 
to boundary value problems of mathematical physics. To put it more exactly, for 
U = U(x, t) consider the equation 

(E) Utt + dUt - G(X, t, Ux)x + aU = f(x, t, Ux, Ut, U) 

for x e (0, /), t E R1 along with the conditions 

(B) U(0, t) = U(l, r) = 0 , 

(P) U(x, t + co) = U(x, t) 

for all x, t. 
To begin with, it is worth dwelling on the mathematical tools one became ac­

customed to employ when solving the problem in question. 
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The most frequent method, and to be sure the only one, leans on linearizing the 
equation and making use of a suitable iteration scheme. 

The first group of results associated with this technique comprises those of Matsu-
mura [10], Nishida [13], Milani [12], or Stedry [20] based on the classical mate-
matical tools as the Banach or Schauder fixed point principle. 

The second branch was opened with the remarkable research of Nash and Moser 
related to the hard implicit function theorems. Beginning with a truly pioneering 
work of Rabinowitz [16] we could go on through a relatively long list of papers 
represented, for instance, by Petzeltova [14], Craig [4], Krejci [9], or Petzeltova-
Stedry [15]. 

Using either of these methods, however, we are bound to deal with "small" solu­
tions corresponding to "small" data. This is the major shortcoming associated 
with all approaches referenced above. To our best knowledge, there seem to be 
no results concerning the large data problem unless some very restrictive assumptions 
are made. 

To fill this gap, we intend to prove the existence theorem for (E), (B), (P) under 
the following assumptions: 

(Aj) The constants a, d > 0 are supposed to satisfy 

(1.1) d2 - 4a ^ 0 . 

(A2) o = o(x, t, u): R3 -> R1 is a smooth function, the growth of which is restricted 
as follows: 

0- 2 ) K | » H > K»| > M > KJC«| = ci > 

(1.3) cru(x,t,u) = c2 > 0 

for all x, t, u, and 

(1.4) lim ou(x, t, u) = +oo uniformly in x, t. 
u-* + 00 

Besides, we require 

(1.5) o(x, t, u) = o( — x, t, u) , o(x + 21, t, u) = o(x, t, u) , 

(1.6) oUu(x> *> u) u > 0 whenever u + 0 , 

and (of course) 

(1.7) o(x, t + co, u) = o(x, t, u) 

for all x, t, u. 

(A3) The function / = f(x, t, ux, u2, u3): [0, /] x R4 -> R1 is smooth with 

(1.8) f(x, t + co, ul9 u2, u3) = f(x, t, uls u2, u3), 

(1.9) \f(x,t,ux,u2,u3)\ = c3 

for all x, t, uhi = 1, 2, 3. 
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The only justification for the above conditions is that they give rise to the existence 
of at least one weak solution (see Section 2) along with a relatively comprehensible 
proof of this fact (cf. Sections 3 — 6). The actual significance as well as possible 
improvements of each of our requirements will be discussed in the relevant parts 
of the paper. 

The nature of the method employed makes it necessary for us to transform the 
original equation to a hyperbolic system (see Section 3). 

Having the subsequent application of compensated compactness in mind we 
approach the problem via the vanishing viscosity method. When slightly adapted 
the procedure of Amann [1] yields a sequence of approximate solutions provided 
that we are able to ensure certain a priori estimates (Section 4). 

ConseqLiently, a question of primary importance arises concerning the extension 
of the concept of invariant regions for parabolic systems (cf. [3]) to a non-autono­
mous case, i.e. when a does actually depend on x, t. Such a problem was studied 
in [7] and we adopt here the results. 

To pass to a limit in the sequence of approximate solutions, the method of com­
pensated compactness is used; more precisely, the lemma of DiPerna [6], related 
to the corresponding Young measure (see Sections 5, 6), plays the decisive role. 

Here again, the explicit presence of the variables x, t in o entangles the situation 
and prevents us from following the arguments of [6] in a direct fashion (Section 6). 

To conclude with, let us agree upon the notation used in the text. In our opinion, 
it is superfluoLis to repeat here all familiar denominations of the Sobolev spaces, 
Lebesgue spaces etc. If in doubt, the reader may consult, for example, the mono­
graph [22]. 

ThroughoLit the whole text, the symbols c or ch i = 1, ... stand for all strictly 
positive real constants. 

2. MAIN RESULTS 

There exist sound reasons (cf. Slemrod [19], Milani [11]) for us to deal with 
the class of weak solutions related to (E), (B), (P). 

Remembering all possible difficulties of taking care of boundary conditions we 
prefer to view all functions satisfying (B), (P) as double-periodic, i.e. defined, in 
fact, on a torus T2 = {(x, t) | x e S\ t e S2} where S1 = [ - / , / ] / { - / , / } , S2 = 
= [0,o>]/{0,0)}. 

Eventually, consider the cylinder 

2 = { ( x , t ) | x e [ 0 , Z ] , t e S 2 } . 

Definition 1. A function U belonging to the Sobolev space W^(Q) is said to be 
a weak solution of the problem (E), (B), (P) if the condition (B) holds and, for all 
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test functions <p e C°°(<2) satisfying (B), we have 

(2.1) JJQ -Utq>t + a(x, t, Ux) <px + (dU, + aU) cpdxdt = 

= n Q f ( x , t , U x , U „ U ) ( p d x d t . 

Note that, according to the embedding relation Wj(g) Q C(Q) (cf. [22]), all 
above assertions are fully justified. 

As claimed in Section 1, our main aim is to establish the following existence 
result. 

Theorem 1. Let the assumptions (A t), (A2), (A3) hold. 
Then there exists at least one weak solution to the problem (E), (B), (P). 

3. A HYPERBOLIC SYSTEM 

The only reason for assuming (VI) is the existence of two strictly positive constants 
al9 a2 > 0 making the following decomposition possible: 

d = ax + a2 , a = axa2 . 

After the change of variables u = U x, v = Ut + atU, the equation (E) takes the 
form of a hyperbolic system 

(S t ) ut + axu — vx = 0 , 

(S 2) vt + a2v - a(x, t, u)x = f. 

As shown in [7], a suitable parabolic regularization is provided by adding the 
terms 

s4xu = uxx + W(x, t, u)x , s/2v = vxx 

where 

y(*,t,«)=Г< T x u ( x ,ҷ )ch 
J-o °u{x,t, z) 

Thus, we are led to a perturbed problem 

(S\) ut + axii — vx = ss/xu , 

(S 2) vt + a2v — a(x, t, u)x = f£ + ss/2v , E > 0 . 

As we have already remarked in Section 2, we are primarily interested in classical 
solutions determined on T2, p being, for the present, a function belonging to the 
class C(T2). 

The relationship between the original function U and a solution of the system 
(Sj) , (S2) may be clarified with help of the following assertion. 

Lemma 1. Consider a classical solution (u, v) of the equation (S\) on T2. 

Then there is a unique function U e CX(T2) satisfying 

(3.1) ux = u , Ut + axU = v + £(ux + *F(x, t, u)) . 
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Proof. Multiplying the equation by eait gives rise to 

(eaitu)t - (eait(v + sux + eW(x, t, u)))x = 0 on R2 . 

Now, there is a function Von R2 satisfying 

Vx = eaitu , Vt = eait(v + FMX + eW(x, t, u)) , 

determined uniquely by the value V0 = V(0, 0). 

Consider a function U = e~aitV, U(0, 0) = V0. As the relation (3.1) is easy to verify 
for U, we have only to choose the constant V0 so that U may be double — periodic. 

To this end, V0 will be determined uniquely by the requirement U(0, t + a>) = 
= U(0, t), i.e. the function U(0, •) is to be a unique operiodic solution to the ordinary 
differential equation 

(a) U,(x, •) + atU(x, •) = v(x, •) + e[ux(x, •) + *F(x, •, u(x, •))] 

for x = 0. 
With the relation U(x, t) = U(0, t) + [0 u(z, t) 6z in mind, we deduce that U 

is, in fact, co-periodic in t. 
To show periodicity with respect to x, we have only to realize that, firstly, the right-

hand side of (a) is 2l-periodic in x, and, secondly, U(x, •) is determined as the unique 
solution of (a) which is co-periodic in t. ffl 

4. APPROXIMATE SOLUTIONS 

To find co-periodic in t solutions of (S*), (S2), an indirect method will be used. 
It means that we are going to solve the initial value problem given by (S^), (S2) with 

(I) u(x, 0) = u°(x) , v(x, 0) = v°(x), u° , v° e C(S') 

and hope to succeed in finding a fixed point of the corresponding evolution operator. 
Whenever speaking about a solution (u, v) of (S*j), (S2), (I) on a certain time 

interval [0, t0), we tacitly assume that 

u, v e C(Sl x [0, t 0)) , ut, vt, ux, vx, uxx, vxx e C(SX x (0, t0)), 

and the equations together with (I) are fulfilled for x e S1, t e (0, t0). 
For later purposes, we introduce symmetry classes 

F! = {w I w e L2(S% vv(-x) = w(x)} , 

F2 = {w I w G L2(S
l), vv(-x) = - vv(x)} . 

As to the function fE, it is supposed to satisfy 

(4.1) reCv(T2), \fe\£c3, v e f O J ) 

and, for each t e S2, 

(4.2) n-,t)er2 
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(the symbol Cv stands for the class of v-H6lder continuous functions — cf. Amann 

The main ideas mentioned in this section can be traced back to Amann [1] we will 
quote systematically from. 

Let us start with a short review of basic properties of a linear operator related 
to our problem. For w e C00^1) we consider 

<£w = —ewxx + a2w . 

Rather than the operator j£? itself, its self-adjoint extension to the space L2(S
1) 

is of interest, namely, 

^ = £ K bk(w) ek 
keZ 

where 

•M = ÍC 0 S ^k^ ' k - ° 
k{ ' [sin fax), k> 0 

0 = pi0 < fix = /i_x < . . . < fik = /I_fc ..., fik & k, Xk = e/Î  + a25 and bfe are the 
Fourier coefficients of the function w with respect to ek. 

Consequently, we may determine a scale of spaces Xa = D(j£x) with a Hilbert 
norm 

w = [_«Wľ/2-keZ 

Let the symbol {Tt}t>0 denote the semigroup of linear operators on L2(S1) generat­
ed by — J_f, i.e. 

(4.3) TtW = lZe-?"'bk{w)ek. 
keZ 

Note in passing that 

seri c rf., i = 1,2 
and, consequently, the same is true for Tt: 

(4.4) TtTt c r , , f = 1,2, ^ 0 . 

The list of properties of {Tr} continues as follows: 

Lemma 2. Given a, /? e [0, 1], we have the inequalities 

(4.5) fTHIa-CMK'lHI/- j^ « = /*> 
(4.6) || 2 > - wj. _ c(a, j?) <»—||»v||̂  jor ,8 _ a . 

Moreover, if 0 < X < 2a — f, f/?ere /s an embedding relation 

(4.7) I . Q C ' ^ S 1 ) . 

As to the proof, we quote (see Amann [2]) the same result associated with the 
Dirichlet boundary conditions ([2, Proposition 4.1]). There seem to be no essential 
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difficulties when the periodic case is involved, particularly when taking the explicit 
expression (4.3) into account. 

At this stage, performing a well-known procedure from the theory of evolution 
equations, we rewrite (S^), (S2), (I) to the integral form 

(It) u(t) = Ttu° + J0 Tt.s[vx(s) + (a2 - a,) u(s) + sW(-9 s, u(s))x] ds , 

(l2) v(t) = Ttv° + J0 Tt„s[o(-, s, u(s))x + r(s)] ds . 

As to the system (lx), (l2), a standard fixed point technique provides the local 
existence result: 

Lemma 3. Given the initial data u°,v°eXp, J?e(f, 1), u° e Fl5 v° e F2, \\u0\\pT 

||v°\\p = Q, we are able to find a positive constant t0 = t0(/3, s, Q) such that the 
system (lx), (l2) possesses a unique solution u, v e C([0, t0], Xp), u(t) e Fl5 v(t) e F2 

for all te[0, t0]. 

Proof. Take a set 

a(S) = {(u, v) | u(t) e F1? v(t) e F2, \\u(t)\\p + \\v(t)l ^S,te [0, t0]} 

along with a mapping K = (K1? K2), 

Kx(u, v) (t) = Ttu° + J0 Tt_s[vx(s) + (a2 - a,) u(s) + 

+ eV(%s,u(s))x]ds, 

K2(u, v) (t) = Ttv° + J0 F,_s[cr(-, 5, u(s))x + f£(s)] ds . 

To begin with, observe that u(t) e Fl5 v(t) e F2 combined with (1.5) bring forth 
o(', t,u(t))e Tt and, consequently, o(% t, u(t))xe F2. Thus, the relations (4.2),. 
(4.4) ensure that K2(u, v) (t) e F2 whenever v° e F2. 

Similarly, *F(-, t, u(t)) e F2 implies <P(-, t, u(t))x e I\. We infer that Kx(u, v) (t) e 
e F! provided u° e T1. 

The next step is to estimate the expression 

i\HuW)(i)-Klu\*)(i)\, 
i = 1 

for (uJ, vJ),j = 1,2 belonging to @($). 

With g — a or g = ¥ the hardest term takes the form 

Jo l - . - , | > ( - , s, ul(s))x - g(; s, «2(s))»]||, ds = 

(in view of (4.5)) 

§ c(P) J'o (t - s)~' \\g(-, s, u\s))x - g(; s, u2(s))x\\0 ds 5g 

(according to (4.7)) 

§ C(P, S, e) Jo (t ~ s)~' y(s) - u2(s)\\f ds ^ 

§ c ( ^ , a ) ( J - ' sup \\ul(s) - u2(s)l. 
ss[0,ro ] 
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The remaining terms being much more easy to handle, we arrive at the estimate 

(a) sup i\\Ki(u\^)(s)-Ki(u\v')(s)l^ 
se[0,to] i= 1 

<; c{p, 5, e) t\-> sup \\u\s) - u2(s)l + ||«'(s) - »2(s)||, . 
•ve[0,to] 

Alternatively, we have 

i||K,.(O,O)(0|^ \\Ttu°l+ \\T,v0l + 
1=1 

+ ^||r,-sK(-,^o)+r(s)]i /,ds^ 
(according to (1.2), (1.9), (4.5)) 

<£ dp, e) [Q + .•„-'(-. + c3)], 

which together with (a) implies 

(b) sup i lKt(u, v) (s)l Z dP, «) [Q + tl
0-'(ct + c3)] + 

se[0,f0 ] i - 1 

+ c(p,5,e)tx
0-'8. 

Now, it is a matter of routine to choose S, t0 > 0 (t0 small) so that K: @l(S) -
may be a contractive mapping. Thus, a straightforward application of the Banach 
fixed point theorem completes the proof. • 

As the next step we observe that the mild solution we have just obtained is, in fact, 
a classical one. 

Lemma 4. Every pair u, v e C([0, t0], Xp), ft > f satisfying (lx), (l2) is a classical 
(smooth) solution of the Cauchy problem (S\), (S2), (I). 

Proof. Taking the well-known regularity results related to the one dimensional 
heat equation into account we are to verify 

(a) G(; ; u)x, W(; ; u)x, vx, u,f* e C^S1 x [0, t0]) 

for a certain y > 0. 
In view of (4.1), we may restrict ourselves to the pair (u, v); more specifically, 

we need 

(4.8) f ^ . e C ' f S 1 x [0 , f 0 ] ) , yt > 0 . 

Finally, due to (4.7) it suffices to show 

(b) u , " e C " ( [ 0 , . o ] , X a ) 

for ae(l,p), y2e(Q,p-a). 

To verify (b), take y >. z and estimate 

\\u(y)-u(Z)l, \\v(y)-v(z)l. 
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Thus, 
| | T X - T 2 w 0 | | a = | | T 2 ( T y _ 2 , v 0 - , v 0 ) | | ^ 

(according to (4.5), (4.6)) 

g c(a, p) \y - z\'~* | | w ° | / where w° - u°, v°. 

With g = a or *F, the most difficult term, as usual, seems to be 

||Jo F,-Sg(', s, u(s))x ds - J0 Tz-Sg(-, s, u(s))x ds||a _g 

g || Jo (T,- s - Fz_s) g(-, 5, u(s)), ds||« + || JJ F,_s #(•, s, II(S)), ds||. . 

Denoting the former term on the right-hand side by Bt we get 

B, ^ f0 ||r-_-(T__- - Id) g(; s, u(s))x\l ds ^ 

(using (4.5), (4.6)) 

^ c(a,j?)|>> - z\'-l% | |T 2_ sa ( - ,s ,H (s))Xds _S 

S c(a, /?, £, sup |t«(_)||,) tl-'\y - z | " - . 
S6[0,to] 

The latter term being denoted by B2, we obtain 

B2Sc(a)$l(y-sy«\\g(-,s,u(s))x\\0ds^ 

<* c(a, e, sup ||u(5)||^) \y - z | 1 _ a . 
se[0,r0] 

Estimating the other terms in a similar fashion we complete the proof. • 

Now, we turn to the question of global existence. In view of [1], the L^ — a priori 
estimates would guarantee the results we look for. To this end, consider the Riemann 
invariants 

r(x, t, u, v) = v + JS J(au(x, t, z)) dz , 

s(x, t, u, v) = v - J0 J(au(x, t, z)) dz 

along with a set 

M = M(c4) = {(x, t, u, v) | - c 4 ^ r , s g c 4 } c U 4 , 

From [7] we quote the following result. 

Lemma 5, [7, Theorem 1.] 

There is a sufficiently large constant c4, independent of e, such that any local 
solution (u, v) of(S\), (S2), (I) with 

[X,0,U°(X),V°(X)]GM(C4) for all x e S1 

is bound to satisfy 

(4.9) [x, t, u(x, t), v(x, t)] e M(c4) for all x e S1 , te [0, *0] . 

To exploit the above information for showing the global existence, we will prove: 
If (4.9) holds, then the local solution (u, v) admits the estimate 

(4-10) \u(t)l + \\v(t)\\p 2: h(t) 
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where h: [0, +00) -> [0, +00) is bounded on bounded sets. In other words, (u, v) 
may be prolonged to become a global solution, i.e. t0 = +00 . 

For this purpose, we need the following generalization of the Gronwall lemma. 

Lemma 6. [8, Lemma 7.1.1.] 
Let w _ 0, w e Lt(0, t0) satisfy 

w(t) S c5t'> + c6 f< (/ - s)~> w(s) ds, /? e (0, 1). 
Then 

(4.11) w(t)^c5c(c6,p,t0)r
p, r e ( 0 , t 0 ] . 

With (4.9) in mind, we estimate 

lu(t)\\p+\\v(t)l^c(p,s){\\u%+\n + 

+ $o(t-sy>[lvx(s)f0+\\a(;s,u(s))x\\0 + 

+ |y(.,s,«(-)),||0+ ||«(s)||0 + c3] ds} g 

(according to (4.7), (4.9)) 

g c(p, 8, c4) { a ! " 0 ! , + U»°||,) t~> + P0(t- s)~> (\\u(s)l + 

+ \\v(s)l)ds}. 

Consequently, the conclusion of Lemma 6 implies (4A0). 
As the final step, we establish the existence of time-periodic solution to (Si), (S2). 
Consider the set 

Jt = {(w, v) | u, v e Xp , u e F1? v e F2 , 

[x, 0, u(x), v(xj] e M(c4) for all xeS1} . 

One easily observes that M, being regarded as a subset of the space Xp, is a non­
empty closed convex set. Note in passing that, in view of the periodicity of a, the 
condition 

[x, 0, u(x), v(x)~\ e M(c4) 

is equivalent to 

[x, koj, w(x), v(x)] e M(c4) , ke Z . 

Moreover, taking the above results into account we are able to define the Poincare 
operator 

U:M -* Jt 

where n(u°, v°) = (u(co), v(co)), u9 v being the unique solution of (lx), (l2). 

Lemma 7. 17 is a mapping continuous and compact with respect to the X^topology 
induced on Jt, where ft e ( | , 1). 

Proof. By virtue of Lemma 6, the continuity of IT may be proved by taking 
advantage of the procedure which has become standard in this section. 

As to the compactness of U(Jt), it suffices to prove the boundedness of this set 
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in Xy x Xy, y e (ft, 1) since the embedding Xy Q Xp is compact whenever y > /?. 

To show this, we compute 

K 0 1 , + K0lT^c(y,«){(KIo + H o ) r ^ + 

+ Jo (* - * r y CK->5> w (^llo + IkvOllo + KOIo + 
+ | | !P(-,5,l l(5)) | |o + C 3 ] d s } . 

Now, (4.7), (4.9) combined with Lemma 6 give finally 

KOL + IKOfly = *(y> ^ e> 3̂, c4). • 
Making use of the Schauder fixed point theorem we achieve the final result. 

Lemma 8. Let (4.1), (4.2) hold. 

Then there exists at least one classical, double-periodic (i.e determined on T2) 

solution to the parabolic system (S\), (S 2). 

Moreover, 

(4.12) u(-,t)eF1? v(-,t)eF2 for all t e S2 , 

and, in view of (4.9), the estimate 

(4-13) ||«flC(rI) + \\v\\C(T2) g C 

holds independently of e > 0. 

Finally, due to (4.8), there is /x = fi(e) > 0 such that 

(4.14) ux,vxeC»(T2). 

5. A LIMIT PROCESS 

In this section we are going to construct a weak solution to (E), (B), (P) taking 

advantage of the following limit process. 

Let us set 

U(x, t) = j * u(z, t) dz , xe [0, /] , t e S2 . 

For en = (l/n), we define 

f* = \l/n(x)f(x, t,u,v - ax U, U) for x e [0, /] , teS2 

with 

ф"(x) = 

x є —oo, - u / , + 00 ] 

«J L » / 
[0,1] for x € p , - l u [ / - - , / - - ] 

\_n n] \_ n n] 

X 6 -, / - - . 
\_n n] 
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Under such circumstances, the function fe" may be prolonged onto T2 to satisfy 
(4.2). 

In view of (1.9), all results of Section 4 apply to the problem (S£
t
n), (S^) with the 

right-hand side f£n determined above (in fact, it is an integro-differential system). 
Consequently, Lemma 8 gives rise to the existence of a solution pair (un, vn). 

Moreover, according to Lemma 1, there is a function U" satisfying 

(5.1) Un = un, Un + axU
n = vn + (1/n) (un + V(x, t, un)) . 

The relation (4.13) induces a very important estimate 

(5.2) |M|c(r-) + H C ( T - ) = C for n = 1, 2 , . . . . 

According to (4.12), (5.1) we get 

(5.3) U"(0, i) = Un(l, t) = 0 , teS2 , n = l,2,..., 

which implies that Un and U coincide on [0, /] x R1. 
Being led by analogy with autonomous systems we introduce the concept of 

entropy-flux pairs. 

Definition 2. A couple of functions ^ = ^(x, t, u, v), q = q(x, t, u, v): T2 x 
x R2 -» R1 is called an entropy-flux (e—f) pair if ^, q are of the class C1 in x, t, 
C2 in u, v, and solve a linear system of equations 

(5.4) qv + nu = 0 

gu + crM(x, t, u)^v = 0 

for all x, t, u, v. 

As a natural example, consider the pair 
v2 

t] = <f (x, t, u, v) = l(x, t, u) H , 

q = cp(x, t, u, v) = —va(x, t, u) , 

where l(x, t, u) = Jo c(x, t, z) dz, corresponding to the total energy. 
To be apparently short, we adopt the following convention. For an arbitrary 

function g = g(x, t, u, v), the symbol gn stands for the superposition g(x, t, un(x, t), 
vn(x, t)). In other words, gn is understood as a function of the variables x, t only. 

After a rather lengthy but straightforward computation, we arrive at the formula: 

(5-5) (n
n)t + (q% = ^Bi 

i=l 

where 

B^nl + ql^ « ~ nla.W - r,"va2v" + n
nJ" + - rf^l, 

n 

B2 = - {{n>% + (nX)x), 
n 
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B3 = - - (riUKY + 2 0 > " + >/"K)2) . 
n 

/I 

on T2 for each (e—f) pair ^, g. 
Thus the special choice n = $, q = <p combined with integration by parts of the 

relation (5.5) leads to 

o = - nT2 <«y + (v:)2 dx dt + 1 JJT2 O-x + O - P X + . . . 
. . . bounded terms. 

Evoking the estimate (5.2) one obtains 

IKIL. Ik-dL = <* 
which, with help of (1.3) and the Cauchy-Schwarz inequality, yields 

(5.6) -(HH + HlD^c,. 
n 

The key for obtaining a weak solution to our problem is contained in the rather 
surprising conjecture, the proof of which we postpone to the next section: 

(H) un -> u , vn -» v for a.e. (x, t) e Q 

passing to subsequences as the case may be. 

One easily observes that, due to (4A2), (H) holds, in fact, on T2. 

As a direct consequence of (5.2), (H), we deduce 

(5.7) un -> u , vn -> v strongly in Lp(T
2) for all p < + oo. 

According to (5.2), (5.6), 

(5.8) - un , - v^ , - !P" -> 0 strongly in L2(T
2). 

u n n 

Seeing that the functions Un, Un are orthogonal in L2(T
2) we draw from (5.1) that 

(5.9) Un -> U strongly in W2(T
2) 

with 

(5.10) Ux = u, U,+ axU = v. 

Moreover, by (5.3), (5.9) we obtain 

(5.11) U(0, •) = U(l, •) = 0 on S2 

at least in the sense of traces. 
Finally, 

(5.12) <r(-, % w «) - -<r ( % . , „ ) 
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strongly in, say, Li(F2), and 

(5.13) fEn -> f strongly in, say , L,(T2) 

where / ( • , t) e F2, t e S2, and 

(5.14) f(x91) = f(x, *, UX9 Ut9 U) fora .e . ( x , f ) e Q . 

Being multiplied by a test function <p e C°°(T2), <p(-,t)eF2 and integrated by 
parts the equation (S2

n) takes the form 

(5.15) JJ r2 - v " + V t - ( V n ) ! / , + V « + a 2 ^ + V + <x(x, t,u"+1) <px ~fE"cpdxdt = 0, 

which, combined with the symmetry properties (4A2), gives rise to 

(5.16) JfQ -vn+W< - (1/n) ^ V « + *(*, f, u"+1) 9 , + 

+ a 2 v " + V -f£"<B-dxdt == 0 . 

Taking advantage of the aforementioned relations concerning the convergence 
of (un

9 v
n) we are able to pass to the limit in (5A6) to obtain (2A.) 

In the conclusion, note that (5A0) gives successively Ut = v — atU e Lp(Q). 
p e [1, + oo), U e C(Q) and, finally, U e W^(Q)9 U satisfying (B) due to (5.11). 

Theorem 1 has been proved. 

6. THE PROOF OF THE CONJECTURE (H) 

As already remarked, the compensated compactness theory along with the concept 
of the Young measure proved to be very useful when dealing with passage to the 
limit in weakly convergent sequences. 

Following the line of arguments presented in [6], we intend to prove the con­
jecture (H) claimed in Section 5. However, note that some differences appear as 
a consequence of the explicit dependence of a on the variables x, t. 

We start with the Young measure related to our system, the basic reference material 
being represented by Tartar's work [21]. 

Consider the sequences {un}9 {vn} viewed as functions defined on R2. By virtue 
of (5.2), there are subsequences (not relabelled for convenience) such that 

(6.1) un -> u , vn -> v weakly-star in L^Q) • 

We determine two auxiliary sequences {w"}, {w2} as w"(x, t) = x, w"(x, t) = t on Q 
We have (obviously!) 

(6.2) w" -> wx , w" ~* w2 uniformly on C(Q) 

where wx = x, w2 •= t. 
It can be shown (cf. [21]), passing to subsequences if necessary, that the limit 

Mm g(w\9w
n

29u
n
9v

n) = g 
/1-+0O 

does exist for all geC((9)9 (9 = Q x [— C, C]2 in the sense of the weak-star 
topology on L^(Q). 
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Moreover, there is a family of probability measures vxt (the Young measures) 

on the set 0 satisfying 

(6.3) <vx>„ a> = g(x, t) for a.e. (x, t)eQ. 

It is easy to see (cf. [21]) that (H) holds if, (and only if) vXit reduces to a Dirac mass 

(centered at the point [x, t, u(x, t), v(x, t)J) for a.e. (x, t) e Q. 

To prove the last assertion, we desire to minimize the possible support of v^,. 

Lemma 9. Under the hyhotheses (6.1), (6.2), the Young measure vXtt is supported 

by the set N, 

N = {[wL(x, t), w2(x, t), u, v] | (u, v) e [ - C , C]2} . 

In other words, for our particular choice of w\, wn

2, there is a probability measure 

vxt on [ — C, C ] 2 such that 

(6.4) (vXft, g} = (vXft, g(x, t, ' , - ) > • 

Proof . Take a continuous function g such that supp (g) n N = 0. 

We are to show <v*,r> g} = g(x, t) = 0. 

According to (6.2), there is a neighbourhood Jf of the point (x, t) and an index n0 

such that 

[w\,wn

2,u
n,vn]nsupp(g) = 0 

for all (y, s) e Jf', n _ n0. 

Consequently, fj = 0 o n / . • 

At this stage, let us turn to the relation (5.5). We set Q = {(x, t)\xe( — 2l, 21), 

te(~2co,2co)}. 

With help of the estimates (5.2), (5.6), one deduces: 

(a) Bt is bounded in Ljfi) , 

(b) B2 belongs to a compact set of W2

1(Q), 

(c) B3 is bounded in LL(Q), 

(d) B4 is bounded in L2(Q), 

(e) {nn}, {qn} are bounded in LjQ), 

for any (e — f) pair rj, q and independently of n. In view of the above relations, 

Murat's lemma [21] offers the following conclusion: 

(6.5) (nn)t + (q% belongs to a compact set of W2~
X(Q) 

independently of n. 

For any (e — f) pair rji9 qb i = 1, 2, denote by 

n] -> m > <fi ~*~i 

the corresponding weak-star limits on L^Q). 

The estimate (6.5) enables us to evoke the classical result of the compensated 

compactness theory — the "div-curl" lemma in order to obtain 

,л" „n 
ПiЧг ~ Пi л -+П1Ч2 - П2 1 
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In another form: 

(6-6) (yXtV r\&2 ~ ^qx) = (vx,t, r\xy (vXJ, q2> - ( v ^ „2> ^ q±y . 

For fixed (x, t) e Q, consider a pair of functions q = -J(MJ ^ ^ = ^(w? -,) solving 

(5.4). It is a matter of routine to construct an ( e - f ) pair fj9 q ( m the sense of Definition 

2) satisfying 

?j(x, l, •, •) = rj , q(x, t, •, •) = q . 

Note in passing that such an extension is by no means uniquely determined. 

Thus, the relation (6.4) together with (6.6) gives finally 

(6.7) (vx>t, ^q2 - J72g!> - (vXit, tf^ <vx>t, q2) - (vxt, ni) (vxt, qt) 

for each pair rji9 q{, i = 1, 2 satisfying (5.4) for fixed (x, t). 

The relation (6.7) is nothing else than the Tartar equation for the Young measure 

vxt appearing when dealing with autonomous hyperbolic systems of nonlinear elas­

ticity, the functions ^i9 qt representing some entropy-flux pair in the classical sense 

(see DiPerna [6]). 

However, by virtue of the remarkable result of DiPerna [6, Section 5], vxt is 

bound to be a Dirac mass whenever (1.3), (1.6) hold. 

Thus, the conjecture (H) is proved. 
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Souhrn 

METODA KOMPENSOVANÉ KOMPAKTNOSTI A ČASOVĚ PERIODICKÁ 
ŘEŠENÍ NEAUTONOMNÍ KVAS1LINEÁRNÍ TELEGRAFNÍ ROVNICE 

EDUARD FEIREISL 

V práci je dokázána existence slabého časově-periodického řešení nelineární telegrafní rovnice 

Utt + dUt - a(x, t, Ux)x + aU = f(x, t, Ux, Uv U) 

s Dirichletovými okrajovými podmínkami. Pravá strana rovnice nemusí být nutně ,,malá". 
Idea důkazu je založena, na metodě kompensované kompaktnosti. 

Pe3K)Me 

METOA KOMnEHCHPOBAHHOÍÍ KOMnAKTHOCTH H nEPHOAMHECKME 
BO BPEMEHH PEDTEHHil HEO^HOPO^HOrO KBA3HJIHHEÍÍHOrO 

TEJIErPAOHOrO yPABHEHHJI 

EDUARD FEIREISL 

B pa6oTe AOKa3aHO cyiuecTBOBamie no KpaiíHeH Mere OflHOro cna6oro nepHO/jHHecKoro BO 
BpeMeHH pemeHHa AJIH ypaBHemifl 

Utt + dUt - <r(x, t, Ux)x + aU = f(x, t, Ux, Ut, U) 

C rpaHHHHblMH yCJIOBHHMH ^ H p H X J i e . OTMeTHM, HTO Ha ýVHKHHK) f He HaJiaraBDTCH HHKaKMe yCJlOBHH 

,,MaJIOCTH". 

OcHOBHaa Hflea flOKa3aTejn>CTBa — MQTOJX KOMneHcnpoBaHHOH KOMnaKTHoCTH. 

Author's address: Matematický ústav ČSAV, Žitná 25, 115 67 Praha 1. 
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