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SHAPE OPTIMIZATION OF AN ELASTO-PLASTIC BODY 
FOR THE MODEL WITH STRAIN-HARDENING 

VLADISLAV PlSTORA 

(Received July 28, 1989) 

Summary. The state problem of elasto-plasticity (for the model with strain-hardening) is 
formulated in terms of stresses and hardening parameters by means of a time-dependent varia
tional inequality. 

The optimal design problem is to find the shape of a part of the boundary such that a given 
cost functional is minimized. 

For the approximate solutions piecewise linear approximations of the unknown boundary, 
piecewise constant triangular elements for the stress and the hardening parameter, and backward 
differences in time are used. 

Existence and uniqueness of a solution of the approximate state problem and existence of 
a sohition of the approximate optimal design problem are proved. The main result is the proof of 
convergence of the approximations to a solution of the original optimal design problem. 

Keywords: domain optimization, time-dependent variational inequality, elasto-plasticity, 
finite elements. 

AMS Subject Class: 65K10, 65N30, 73E99. 

INTRODUCTION 

The optimal design problem on the class of domains that we consider in this 
paper was studied first for the Poisson equation by Begis, Glowinski [ l ] . Optimiza
tion of an elasto-plastic body has been studied by HJavacek for Hencky's model [12] 
and for Prandtl-Reuss's model [6]. This paper is an extension of the latter work to 
an elasto-plastic body with isotropic strain-hardening. 

Following Johnson [9], we formulate the state problem as a time-dependent 
variational inequality in terms of the stress tensor and the hardening parameter. For 
the approximations we use backward differences in time and piecewise constant 
finite elements for the stress and the hardening parameter. 

For given body forces and surface tractions we have to find the shape of the part 
of the boundary where the body is fixed, such that the given cost functional attains 
its minimum. The cost functional is an integral of a function of the stress over the 
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time-space domain. Using piecewise linear approximations of the unknown part 
of the boundary and a quadrature formula in the cost functional we formulate the 
approximate optimal design problem. 

Further we prove existence of a solution of the approximate optimal design 
problem and convergence of these approximate solutions to a solution of the original 
optimal design problem. As a consequence of the results mentioned above we obtain 
the existence of a solution of the optimal design problem. 

1. FORMULATION OF THE STATE PROBLEM 

EXISTENCE AND UNIQUENESS OF A SOLUTION 

Let Q c K2 be a bounded domain with a Lpschitz boundary. Assume that dQ = 
— Fu u Fg, ru n Fg = 0, where FM and Fg are open in dQ. On Fg surface tractions 

are prescribed, while on Fu the body is fixed. 

Let Iv*ym be the space of symmetric 2 x 2 matrices; on this space we define a norm 

M*w = ( W a 

(where the repeated index denotes summation over the range 1, 2). 
^Let a yield function / : R*ym -> R be given, which is convex, continuously dif-

ferentiable in J\^ym\{0] and positively homogeneous (i.e. f(Xa) = \X\f(cr) for all 
X e R, G e R*ym). Consequently, / is Lipschitz continuous (with a Lipschitz constant 
denoted by L). These assumptions are fulfilled e.g. for the well-known von Mises 
function 

j(a) = (o°c% + i(akkyy> 

where <r?. = atj — %5tjGkk is the stress deviatoric, 5tj is the Kronecker symbol. 

Let the following vector functions be given: 

F«e[l}(Q)Y, 9°e[L\rg)Y. 

We consider the load process in the time interval I =• <0, T>, T < +oo. Assume 
that the body forces F and the surface tractions g are of the following particular 
form: 

(1.1) F(t9x) = y(t)F°(x) in I x Q, 

g(t, x) = y(t) g°(x) in I x Fg , 

where y e C2(l) is a given real function, y(t) = 0 i n a 6<small" interval <0, *i>, 

0 < tx < T 
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Definition of some spaces and scalar products 

In the usual l}(Q) space we denote the scalar product by <•, ">L-(«) anc* the 
norm by || • ||L2(il). We introduce the following space of stress or strain tensors 

S(Q) = {T: Q -* K4
m; xi} e L2(Q), i,j = 1, 2} 

with the scalar product and norm defined by 

<*, ^>s(0) = Jo tfJ(7fJ dx , \\T\\S(Q) = <*- T > ^ } . 

We deal with the space of pairs 

H(Q) = S(O) x L2(Q). 

Elements of this space will be denoted e.g. by a = (tr, a), where er and a are called 
the stress tensor and the hardening parameter, respectively. 

In jR4
ym x K we define the scalar product 

<<r(x), T(X)> = atj(x) Ttj(x) + oc(x) P(x) 

and the norm 

K * ) | = <*(*), a(x)>1 / 2 . 

In H(Q) we introduce the scalar product 

<<**, *>o = Jo <<K*), *(*)> d x = <°"> T>s(0) + <<*, H'>L2(Q) 

and the norm 

\\4o,o =- O, *>£'2 = (H|s
2

(n) + |« | |^a ))
1 / 2 • 

Let the elastic strain-stress relation be given by the inverse generalized Hooke's law 

eu = &vw*w i , j = 1 ,2 . 

We assume that 6fj-ftj e U°(Q) and that there exists a positive constant b0 such that 

bO*fei(x) (Jij(Tki - M H I - W VCT e K4
ra , a.e. in O , 

and 6 y w = b i i U = bklij. 
Let a positive function % e L 0 0^) be given and let there exist such constants xx, x2 

that 

0 < %! g x(x) :g %2 < +oo a.e. in £2. 

In H(Q) we introduce an extended energy scalar product 

{<*•> *}Q = Jo hjkfiiphidx + Jo *ajff dx 
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and the norm 

' J ß 

Note that the norms || • ||0>fl and ||| • ||fl are equivalent. 
We define the space of test functions 

U) •> V(Q) = {we[Hx(Q)Y\ w = 0 on FM 

and the set of statically admissible stress fields at a moment t el: 

E(Q, t) = {T G S(Q); <T, e(w)}sw = Lfl(w, t) Vw e V(Q)} , 

where 

/ v 1 /dw; dw\ . . 4 „ e " w ^ f e + d ••'-u2-
LJ,«, I) - r(l) [Jo f ? » , dx + fr> g°w, ds] = d - ' 7(() !?„(»). 

Let us further define the set 

B = {(r,f})eRfym x R; f(x) <, /}} . 

The set of plastically admissible pairs will be denoted by 

P(Q) = {T = (T, fi) e H(Q); (T(X), J8(X)) e B a.e. in Q] . 

The set P(^) is convex due to the convexity of the function f. 
For all t G I we define the set 

K(Q, t) = (E(Q, t) x L2(Q)) n P(Q) c H(Q). 

Let Cg(I, S(Q)) be the space of continuously differentiable functions on the 
interval I with values in S(Q), which vanish at t = 0. We define HQ(I, S(Q)) as the 
closure of Co(I5 S(Q)) in the norm 

aT II • II2 \ l / 2 ] • vt 

o IITII s(Q)J wnere x — — . 
at 

Similarly, we define the spaces H^I, L2(Q)), H\I, H(Q)). 
The validity of the following lemma is well-known. 

Lemma 1.1. For all x e Ho(I, S(Q)) we have 

(1.2) |K0 - T(f')|s(i.) ^ It - tf/2 ||t|U0.(/,SW) Vf, t'el. 

A similar assertion is true for the spaces HX(I, L2(0)), HX(I, H(Q)). 
Throughout the paper, C will denote a positive constant not necessarily the same 

at each occurrence, the symbols t and x will be used for the time variable and the 
space variable, respectively. 
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A weak solution of the plasticity problem with an isotropic strain-hardening is 
a pair of functions 

a = (O, a) e H0(1~, S(Q)) x Hl(l, L2(Q)) 

such that 

(1.3) a(0) = a0 , 

a(t)eK(Q,t) for a.e. tel, 

{<*(*), x - a(t)}n __ 0 VT G K(Q, t), for a.e. tel . 

Here a0 e L2(Q) is a given function such that 

(1.4) a0 __ ax a.e. in Q , 

where a_ is a positive constant. 

Throughout the paper the following assumption will be needed: 
There exists c e S(Q) n [C ( 0 ) 4 (S ) ] 4 such that 

(1.5) <{, e(w)>S(j7) = L°,(w) Vw e V(G) . 

Lemma 1.2. Lei* (1.5) be fulfilled and let 5X e (0, a1/(l + L)) (where ii occurs 
in (1.4), L is the Lipschitz constant for / ) . 

Then /Or each t e I /here ex/'sts a pair £(t) = (c(t), £(t)) G ^ A 0 such tnat 

£(0) = (0, a 0 ) , 

(\.6) S(t,x) + dxxeB VteI V t G R ^ x R ; |T| __ 1 , a.e. in Q 

(1.7) ? e C 2 ( U ( i 7 ) ) x C2(I, L2(fQ)) , 

(1.8) ||§(0lkfl = C V t e I . 

Sketch of the proof. Let us set 

(1.9) C(t) = y(t) c , d(t, x) = |y(t)| C3 + a0(x) 

where c , s from (1.5), 

_ f «, ________ 
3 = L 2 " ~ W ~ 

where C2 is the maximum of/(c(x)) over Q, t e I is the point at which |y(t)| attains 
its maximum and [ ] + denotes the positive part. As we can prove, the pair (i'(l), Ci(0) 
fulfils all requirements of the lemma except (1.7). 

For the function y we can find such y e C2(I) that 

(1.10) y ( r )= KOI V t e I , 

7(t) = () W e < 0 , t 2 > , 

where t2 is a fixed number from (0, tx). 
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It is readily seen that the pair (£(t), £(*)), where 

(1.11) £(t,x) = y(t)C3 + oc0(x) 

is the one we looked for in Lemma 1.2. 

R e m a r k 1.1. As in the paper of C. Johnson [9], we can prove the existence and 
uniqueness of a solution of the state problem (1.3) (supposing (1.5) and using also 
Lemma 1.2). 

2 FORMULATION OF THE OPTIMAL DESIGN PROBLEM 

Following Begis-Glowinski [ l ] , we introduce the set of admissible design variables 

dv 
<#ad = j t ) e O ° ' 1 > « 0 , l » ; a š v < b, 

for a.e. x2 e <0, 1> , j j v dx2 = c2\ > 

дx-
•(*-) ûc, 

where 0 < a — c2 g b < oo, cx > 0 are given constants. 

Throughout the paper we shall consider a class of domains Q = Q(v), where v e <?/ad 

and 

Q(v) = {(x., л-2) є R2; 0 < Xl < v(x2), 0 < x2 < 1} 

Let F(v) = {(x1? x 2 ); xx = y(x2), 0 < x2 < 1} denote the graph of the function v 
over (0, 1); F(v) is the part of the boundary to be optimized. 

Fig. 1 

Let us have a constant d > b, denote 

Qd = (0, 3) x (0, 1) , r5 = {(xu x2); xt - 5, 0 < x2 < 1} 
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Convergence of functions which are defined on different domains Q(v), will be defined 
by means of their extensions by zero to the domain Qd \ Q(v). Such extensions 
will be denoted by a bar over the fucntion (e.g. a). 

We will consider only the following case of partition of the boundary: 

ru = r(v), 

rg = dQ\r(v). . 

Let the functions biJkl, a0, x be defined and fulfil the assumptions stated before 
on the domain Qd. Let the functions F° e \L2(Qd)Y, g° e \L2(dQd \ F5)]

2 be given. 
The state problem (1.3) is then defined for all domains Q(v), v e ^ a d . 

Let us assume: 

There exists £ e S(Q0) n [C{0)A(QS)Y such that 

(2.1) <& e(w)}s(n6) = LQ
Q6(w) Vw E V(Qd). 

(We denote the Lipschitz constant for £ by L^.) 

Obviously, also any restriction %\Q(V) fulfils analogous conditions on Q(v) and the 
assertion of Lemma 1.2 is true for all domains Q(v), v e %ad, provided (2A) is fulfilled. 

R e m a r k 2.1. Let the boundary conditions be given by the following functions: 

g° = (0ID(*I)> 92D(XI))T o n {(*i, xz); *i e <0, S}, x2 = 0} , 

g° = (giHv*i)> 92H(XI)Y o n {(*i> ^2); *i e <°, <5>, *2 = 1} , 

g° = (gn.fe), g2LGv2))
T on {(xl5 x2); N! == 0, N2 e <0, 1>} . 

Let the functions giL, g'1L, g[D, g2D, g1H, g2H, Fl5 F2 be Lipschitz and let 

gio(0) = 02L(°) , 

- g l H ( 0 ) = g2L0). 

Then the condition (2.1) is fulfilled. (The function { can be constructed explicitly.) 
If we assume (2.1), there exists a unique solution of the state problem (1.3) on the 

domain Q(v) for all v e <?/ad. This solution will be denoted by o(v) = (O(v), a(v)). 

Let a function f1: K*ym -> R be given such that 

(2.2) f,(0) = 0 , 

| / i (*i) - / i ( ^ ) | -S ^ i | k i - ^2|U.ym4 Va,, °i e Ks
4

ym . 

For all v e ^ a d , O e H0(I, S(Q(v))) we define 

./(»>*) = Jo ln(v)f2Mt,*))dxdt. 
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We shall now define the cost functional on the set ^ a d as follows: 

(2.3) / ( „ ) = j(v, a(v)). 

Now we can state the Optimal Design Problem: 
Find a function u e ̂ /ad such that 

(2.4) f(u)Sf(v) Vve^ad. 

3. FORMULATION OF THE APPROXIMATE PROBLEM 

Let M be a positive integer and h = l/M. We denote by ep j = V ..., M, the 
subintervals <(j — 1) ft, j/?> and introduce the set 

< i = foe #ad; »J, i e P i (4 •/ = l> •••> M ) ' 
where Pi(e/) denotes the set of linear polynomials on ej. 

Let us recall the following lemma (see Begis-Glowinski [l]). 

Lemma 3.1. For any v e <#ad there exists a sequence {vh} (h is of the type l/M) 
such that 

» * e * ; d , »*-----.*• o «n C « 0 , 1 » . 

Definition 3.1. Let a sequence of positive parameters h-r hi — > 0 be given. 

Let a polygonal domain Qj and a triangulation .Th.(Qj) be given for every j . 

A set of triangulations {.Th.(Qj)} is said to be a system, if there exists a positive 
C such that diam Q 5i Chjfor all j and for all triangles Q e rTh.(Qj). 

A system of triangulations {r9~h.(Qj)} is said to be regular, if 

3to0 > 0 V; Vg e .rhj(Qj) ; oo(Q) = oo0 , 

where co(Q) is the minimal angle in Q. 
A regular system of triangulations {,Th.(Qj)} is siad to be strongly regular, if 

3 C > 0 V: ; -^ < C , 
d'j ~ 

where dj, dj are lengths of arbitrary two sides of 3Th{Q.f). 

Triangulation of the domain 

Let Qh denote the domain Q(vh). We choose a0 e (0, a) (independently of h) and 
divide the rectangle 01 = <0, O0> x <0, 1> uniformly into M2 . M rectangles, where 
M 2 = 1 + [#0M] (the square brackets denote the integer part). In the remaining 
part Qh\0l let the nodal points divide the intervals (a0,vh(jh)} into Mx equal 
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segments, where Mx = 1 + [(b — a0) M ] . Every quadrangle is divided into two 
triangles as shown in Fig. 2. 

мҷ 

1 

M 
__ * 

r-' 

^ X \ л / j 
' гv ' 

ҜU ì 
fү \ 

V vл 
Fig. 2 

In this way, for any vh e %\& we construct a unique triangulation, which will be 
denoted by $~h(vh). 

The set of triangulations {^~h(vh)}, h --> 0, vh e %\d forms a strongly regular system 
of triangulations (see Hlavacek [5]). 

Denoting the triangles of ^~h(vh) by Q and the space of polynomials of degree 
at most s on Q by PS(Q), we define the following finite element spaces: 

Sh(Qh) = {T, e S(Qh); T„| Q e [ P 0 ( S ) ] 4 Vf2 e -r,(r,)} . 

Z„(£2„) = {ft, e L2(.Q„); ft,|Q e P0(Q) VQ e ^„(i',)} , 

V„(<2,) = {w„ e V(Qh); wh\Q e [P t((2)]2 VO e * > » ) } , 

and the external approximation of the set L(i2„, t): 

Eh(Qh, t) = {T, e Sh(Qh); <T„ e(w„)>S(fili) = L9Jwh, t) Vvv, e V,(fl,)l . 

Finally, we define the external approximation of the set K(QH, i): 

Kh(Qh, t) = (Eh(Qh, t) x Zh(Qh)) n P(Qh) . 

Let us define some orthogonal projections into the above finite element spaces: 

,: S(ß„) -+ S,(ß„); 

(3.1) 

(3.2) 

(3.3) 

<т h Gh>S(Qh) = 0 VG,, 6 S^Oft) , 

/•„: L2(ß„) -> Z„(ß„) ; 

<ß - rлft «„>LҶßh, = 0 Va„ є Z„(ß„), 

r„: Я(ß„) -* S„(ß„) x Z,(ß„) ; 

<т - r,т, <r„>fl(, = 0 V<r„ є S,(ß„) x Z,(ß„). 
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It is readily seen that rh% = (rhx, rhfi) for T = (T, /?). These projections have the 

mean value property, i.e. 

KG) J o 

where /i(Q) is the area of the triangle Q (and similarly for r'h, rh). 

Next we shall study approximative properties of finite elements for non-smooth 

functions. First we shall restrict the choice of partition of the interval <0, 1 >. For 

a sequence of positive numbers J f = {hj}, we introduce the following condition: 

(3.4) hJ + 1 =-hj, h0 = l , 

Pj 

where pj are positive integers greater than 1. (An example of such a sequence is 

hj = 1/2-7.) For simplicity, we shall henceforth write only h. 

Lemma 3.2. Let a sequence M" satisfying (3.4) be given. For every h e Mp let us 

have a function vh e %\^ and a triangulation &"h(vh) on the domain Qh = Q(vh). 

Let H be a fixed number from the sequence J^ and let QH cz Q5 be a fixed poly

gonal domain (with the corresponding part of the boundary piecewise linear 

on the intervals et = <(/ — l) H, iH}). We suppose the following condition for QH: 

(3.5) 3/i(0) > 0 ; Vh e #e , h < h(0) ; Qh a QH . 

For every h e Jtf, h < h(0\ we extend the triangulation &"h(yh) to the domain QH. 

This extended triangulation will be denoted by 3TH. This construction can be done 

in such a way that the set {$~H} forms a system. 

On the triangulation ZTH we can define finite element spaces Zh(QH), Sh(QH) 

(analogously to those for ^h(vh)) and the orthogonal projection 

r'h»:l}(QH)-+Zh(Q«) 

and similarly rH, rH. 

For every fi e l3(QH) we then have the following convergence: 

(3.6) lim ||-;-/? - p\\LHQH) = 0 . 
Л->0 

Similar convergence results are true for the other projections. 

Corollary. Let us assume (3.4), (3.5). From the mean value property we see that 

for ft e l}(QH) the projection r'h
Hp is an extension of rhh3 to the domain QH.We have 

(from (3.6)) 

lim \HP ~ P\\LHnh) = 0 
/.->o 

(and likewise for the other projections). 
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Proof of Lemma 3.2. We shall prove only the convergence (3.6). Let us have an 
arbitrary e > 0. Obviouslv there exists pEe CQ(QH) such that |[/? — PE\\L2(QH) = £/2» 
Using the mean value theorem we obtain 

Vß, є гrl Эл-'; є ß , ; J — ґ ßt Åx = ftfø). 
KQi) J ci 

The boundedness of derivatives of the function /?. together with the property of the 
system of triangulations imply the estimate 

\Pjx) - lijx'.)\ = CJi Vx 6 Qi(Qi e .T") . 

Finally, we arrive at the following approximation result for the smooth function fiB: 

f ["•--' 
Qi -

\$* ~ rň PE\\L2(QH) — L 
Q ІЄJ-Һ1 KQÒ J 

ß, 
C i 

dл 

= I [ßÁ.x) ~ Ä(*.)ľ d-v = I C;>2 dл- = C\h2џ(Qн) . 
Ö І JQ, c< Je, 

If we set 

/<в) = 
2CcV

,(K«'/)) 

then for all h e Jf, /i ^ /1(e) we obtain 

IKH/> - i&lUn*, g !'•;"& - /*IU««> ^ 

||L2(fiW) = 1 '"Áíí ~* /MIL-^) + ||ft: ~ /̂ ||L2(fiW) -S ~ + ~ 

(here also the minimal property of the orthogonal projection has been used). 

The time discretization 

Let N be a positive integer and k = T/N. We shall divide the interval 1 = <0, T> 
into N subintervals Im = <(m — 1) k, mk>, m = 1, ...,N. Let us denote tm = mk. 

For the function y we shall assume that there exists such a partition of the interval I 
(characterized by some N0) that y is piecewise monotone on this partition. 

Further we shall consider the sequence of partitions characterised by the sequence 
of positive numbers Jf = {kj} which satisfy the condition 

(3.7) *; = 
T 

ЧjNo 

where #• is an increasing sequence of positive integers. (We will write only k instead 

of kj sometimes.) 

383 



Let us put 

am = a(tm) , 

dam = (am - (Tw_1)/k. 

Now the Approximate State Problem can be formulated (for fixed h, k) on the 
domain Qh as follows: 

Find ahk = (o^, . ..,o^fe) such that for any m -= 1, ...9N the following relations 
hold: 

(3.8) am
keKh(Qh,t

m), 

{dam
k,T~aZ}Qh^0 V r e K ^ t ' " ) , 

where a°hk = (0, r > 0 ) . 

In what follows we will use the notation am
k == (<jm

k, 0Lm
k). 

Let a quadrature formula with N + 1 equidistant nodes t°, ..., tN and with positive 
coefficients be given: 

Ji G(/) df ~/<£cmG(r), 

which is convergent for continuous functions (e.g. the trapezoidal or Simpson rule). 

For all vh e
 J//h

d> ahk e [S^iQ^]^, we define 

jj^,^)-klcm x KG)fiK|Q). 
m = l Qe*rh(Vh) 

Let us define the approximate cost functional on the set ^/Jd by 

(3.9) fhkiph) = Jhk(»h> ohk{Vh)) •> 

where ohk(vh) is the first component of the solution of the approximate state problem 
(3.8) on the domain Q(vh). 

Now we are able to state the Approximate Optimal Design Problem (for 
given /?, k). 

Find a function u{
h

k) e %h
ad such that 

(3.10) >fhk(uik))Sfhk(vh) Vi; f ce*Jd . 

In the following section we shall prove that the Approximate State Problem (3.8) 
has a unique solution, so that the problem (3.10) has sense. 
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4. EXISTENCE AND UNIQUENESS OF SOLUTION 
OF THE APPROXIMATE STATE PROBLEM 

Lemma 4.1. If T e P(Qh) then rh% e P(Qit) as well. 

Proof. For every T e P(Qh) and for every triangle Qe<Th(vh) we want to prove 
the following inequality: 

гi)J>)đ*)s;å)j ß(x) dx . 

Let us choose an arbitrary triangle Q e <Th(vh). On this triangle we can construct 
a system of triangulations ^ ( Q ) , € -» 0. Analogously as in Lemma 3.2, for the 
function T e S(Q) we can construct a sequence of functions 

T ,eS(Q) , T,|Qre[P0(Q,.)]4 V Q r e ^ , ( Q ) 

such that 

(4.2) T , - > T in S(0. 

From the convexity of the function f we can prove the following inequality: 

(4-3) / f^(ф)àx)ѓ-j--{fШ)á> 
УfĄQÌJQ ) KQ).Q 

The convergence (4.2) and the continuity off imply the convergence of the left-hand 
side: 

f(-
' Ue) J 

т,(x) dx •/ 
1 

Ke) 
т(x) dx 

We can consider f as a mapping from S(Q) to L2(2) (f: T ^/CO)- Then from the 
Lipschitz property off we conclude that f is continuous. Together with (4.2) we have 

f(^) ->f(r) in L2(Q) and therefore 

i 

/'(Є) J 
/(т,(x))dx 

KЄ) Je 
dx 

Consequently, we can pass to the limit with / -* 0 in (4.3). We obtain the integral 
analogue of the Jensen inequality: 

f(л 

Ue) J 
т(л) dx < 

в / MЄ) 
/(т(x)) dx . 

The assumption T e P(Qh) yields f(T) S P a.e. in .Qft and so the inequality (4.1) 
holds. 

Now we can proceed to the proof of the existence theorem. 
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Theorem 4.1. Let the assumption (2.1) be fulfilled. Let a function vh e %\d be given. 
Then the Approximate State Problem (3.8) has a unique solution on the domain 

Qh = Q(vh). 

Proof. 
First we show that Kh(Qh, tm) is non-empty. 
If we assume (2A), there exists 

£(t) = (£(t),t;(t))eK(Qh,t) V t e I (see Lemma 1.2) . 

Lemma 4.1 yields 

rh%(t)eP(Qh) V t e I . 

Let wh be an arbitrary function from the space Vh(Qh) a V(Qh). Then e(wh) e 
e Sh(Qh). Using the property (3.1) and the definition of E(Qh, t), we obtain 

<e(wh), rh £(t)ySinh) = <e(wh), £(t)}s&h) = LQh(wh, t) . 

Consequently, the projection rh £(t) is an element of Kh(Qh, t). In particular, 
Kh(Qh,t

m)*Q for m = 1,...,N. 
The problem (3.8) is equivalent (at the m-th time level) to the minimization of the 

functional 

over the set Kh(Qh, tm). 

It is not difficult to show that this functional is strictly convex, coercive and 
weakly lower semicontinuous. The set Kh(Qh, tm) is non-empty, convex and closed. 
There exists a unique minimizer om

k (which solves this minimization problem) for 
any fixed om

k
l (see Cea [2], Chap. IV, Theorems 0.2, 0.3). 

Since ahk = (0, rhcc0) is unique, we obtain by induction that the Approximate 
State Problem (3.8) has a unique solution. 

5. EXISTENCE OF SOLUTION 
OF THE APPROXIMATE OPTIMAL DESIGN PROBLEM 

First we prove an abstract lemma on the continuous dependence of the minimal 
point of a functional on a parameter. 

Lemma 5.1. Let H be a Hilbert space with the scalar product (•, •) and the 
norm ||*||. 

Let a metric space X with a metric d(*, •) and a set of admissible parameters 
U cz X be given. Let u be an arbitrary but fixed element of U. 
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Let a functional Jv on the space H be given for every v e U. We assume that 

this functional has the Gateaux derivative everywhere in H with the following 

properties: 

3c > 0 ; (J'V(T) - J'v(a), T - a) ^ C\\T - O||2 VO, T e H 

(strong monotonicity) , 

3L 0 > 0 ; || J J ( T ) ' - J'Ja)\ ^ L 0 | | T - a\\ V<7, T e H 

(Lipschitz continuity) , 

where the constants c, L0 are independent of v. 

Let a convex, closed, non-empty set Kv a H be given for every v e U. 

Then for every v eU there exists a unique element av e Kv such that 

JV(OV)^JV(T) VTEK,. 

Moreover, let the following assumptions be fulfilled: 

(5.1) Ve > 0 38 > 0 Vv e U ; d(v, u) < 3 => \\Jv(au) - Ju(^»)\\ < e , 

\3TVEKV ; Iau - T J < e , 

[3TUEKU; \\av - TM|| < e . 

Then the minimal point av depends continuously on the parameter v at the 

point u, i.e.: 

Ve > 0 3D* > 0 Vv e U ; d(v, u) < 3 => \\av - au\\ < s . 

Proof. The existence of the minimal point av may be proved in the standard way 

(see Cea [2]). 

Let us prove the continuous dependence. For any & > 0 there exists 3 such that 

WO- 4K)|| <*\ 
|3T„ eK„ ; \\au - T J < e2 , 

3TMeKM ; \\av - T J < e2 . 

(5.2) Vs > 0 Эô > 0 Vu є U ; d(p, и) < (5 

(5.3) d(v, u) < ð 

We shall consider some v e U such that d(v, u) < 5. The elements <r„, o\. satisfy the 
following variational inequalities: 

( J > „ ) , T - (7,.) ̂  0 Vie/C,., 

( I K ) < t - <r„) > 0 VT e K„. 

Substituting T == TV into the first inequality and T = TM into the second and adding 

them we obtain 

(J'v(°u) ~ J'v(°v), <7„ - O S (Jfav)* ?v ~ O + (Jfau), Tu - O + 

+ (J'v(°t) - Ju(°u\ °u ~ O • 
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Making use of the strong monotonicity of J'v9 the Schwarz inequality and (5.3), we 
derive the estimate 

c\\au - Gj;||
2 g (||J;(<ry)|| + ||JH(<rM)|| + \au - ov\\)s

2 . 

Using again (5.3) and the Lipschitz continuity of J,', we obtain 

\\rv(<jv)\\ s pfa) - J'MW + KK) - WW + ||JK)I ^ 

-S L0\\av - au\\ + s2 + ||J:(<rM)|| . 

Denoting clu = |JM(G.,)||, we may write 

e||<rM - crt,||
2 S 2clu8

2 + s4 + (1 + L0) \\au - av\\ s
2 . 

The inequality is true for all veU satisfying d(v, u) < d. For such v the estimate 
||(TM — av\\ < c2u holds and consequently, 

\\au — av\\ S c3us Vv e U ; d(v, u) < 6 . 

The mapping v h-> r/t, is thus continuous at the point u. 
Next we are going to prove the boundedness of the solution of the Approximate 

State Problem. 

Lemma 5.2. Let the assumption (2.1) be fulfilled. 

Let a sequence 3tf and a fixed number k < ti be given. Let a function vhe °U\A 

be given for every h e Jtf7. The solution of the Approximate State Problem (3.8) 
on the domain Qh = Q(vh) will be denoted by ahk = (a\k, ..., ahk) and its extension 
by zero to the domain Qd \ Qh by ahk. 

Then there exists a constant C (independently of h, vh9 m) such that 

(5.4) M k ^ C for m=\,...,N. 

Proof. We shall use the induction: 

I. m = 1 
Using the assumption k < ti we obtain the assertion that the pair (0, rha0) is in 

Kh(Qfr tx). This pair also fulfils the inequality (3.8) and therefore 

(5.5) ajtk = (0, r'ha0) in Qh. 

From the property of the orthogonal projection we have 

||(0, 'VXj)||0tQd = ||^a0 | |L2 (Dh) ^ po||L2(^,.,) = lro||L-(fl.5) = C 

Using the equivalence of norms, we obtain 

ll̂ fckllfla = Q (with C, independent of h, v^) . 
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II. The induciion step 

Let us assume that |||<r™fc
 1\\\Q6 _i Cm_v 

We shall substitute % = rh £(tm) e Kh(Qh, tm) in the inequality (3.8), where §(f) 
is the function from Lemma 1.2 (obviously |||rft §(*m)|flh = C holds, with C in
dependent of h, v/n m). 

We obtain 

M i l s Kr1, <Ck + {< - <r l, r, {(r)}^ <s 
^c_1|||<fciuh + c(|||^|i!^ +cw^)-= 
= (C + Cm->1) 1<CIU. + ^m-lC' • 

Consequently, there exists a constant Cm (which depends on C,n_t) such that 
1 tf/TfcIIInh — Cm- As k (and also N) is fixed, there exists a constant C (independent 
of h, vh, m) which satisfies (5.4). 

Lemma 5.3. Let h, k be fixed numbers, k < tx. Let uh be an arbitrary (but fixed) 
function from %\d. We assume that (l.l) is fulfilled. 

Then, at every time level, the solution of the Approximate State Problem (3.8) 
am

k(vh) depends continuously on the control variable vh at the point uh. 
Proof. For simplicity, we drop the subscripts h, k, whenever it is possible. We 

shall prove the lemma by induction over m. 

I. m = 1 
Assuming k < tu we have (as in (5.5)) a\k(v) = (0, rrt(t;)a0), where r'h(j0) is the 

projection corresponding to the triangulation &~h(v). The number of triangles in 
this triangulation will be denoted by n = 2M(M1 + M2). 

Let v -» u in C(<0, 1>). Let Qt(v) be a triangle in 3~h(v), Q((u) the corresponding 
triangle in $~h(u). Then we obviously have 

(5.6) K e ^ - ^ - K e ^ ) ) , 

lam ao dx ~^T fo*(») a° dx 
and therefore 

= 1, ..., H 

(as the convergence of real numbers). 

II. The induction step 

We assume that am~x(v) depends continuously on v at the point u. The problem 
(3.8) is (at m-th time level) equivalent to searching an element am(v) for which the 
functional 

•rJд^łЫw-iъť-Қvp JП(») 
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attains its minimum over the set Eh(Q(v), tm) x Zh(Q(vj) with the additional conditions 

(5.7) f(r\Ql) g f}\Ql , i = l,...,n. 

We shall formulate this problem using the vector notation. The functions from the 
space Sh(Q(v)) will be considered as vectors from R3" and denoted by T = (T 1 ; ..., T„)T, 
where T} = (T1XJ, T12J, T22J)T corresponds to the function T on the triangle Qj, 
j = 1, ..., n. Similarly, the elements from Zh(Q(v)) will be denoted by P = 
= ( & , . . . , p„)T

9 fij e R. Let us denote % = (T, p)T e R4n. 

The functional JV(T) can be written in the form 

(5.8) JV(T) = iTT C(v) T - TT C(v) am~\v) , 

where 

U V 0 D(t>)f 

and B(v) is a block diagonal matrix of order 3n which has the following blocks on 
the diagonal: 

J b u l l 2 Jb1112 Jbu22) 

2 jb i 2 i i 4 j b 1 2 1 2 2 j b 1 2 2 2 

J^2211 2 j b 2 2 1 2 Jb2222/ 

(all the integrals are over the domain 2i(y))-
The matrix D(v) is diagonal of order n, with the diagonal elements 

Du(v) = Jfii(P) K x ) d x • 

We can easily verify that C(v) is symmetric and positive definite, i.e. 

3C2 > 0 Vv e *J d VT E K4"; TT C(v) T ^ C2||T||^„, 

where C2 is independent of v. We can also prove that the elements of C(v) depend 
continuously on v and that the norm of C(v) is bounded by a constant independent 
of v. 

The condition T G Eh(Q(v), tm) can be written in the form 

(5.9) A(v) T = L(v) , 

where A(v) is an n' x 3n matrix, L(v) e Rn\ n' = 2(M + 1) (Mx + M2) is the 
dimension of the space Vh(Q(vj). The elements of A(v) are the scalar products 

0jn\ e(wt)ySWv)), <^.12>, e(wi))s(Q(v)), <5f2>, < w , ) > w . „ , 

where 9(jkl) and w,- are the basis functions of Sh(Q(v)) and VA(0(v)), respectively. The 
elements of A(v) and L(v) depend continuously on v. 
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Finally, we have the following minimization problem: 

(5.10) Jv(x) = it1" C(v) T - TT C(v) o"1"1^) -> min , 

A(v) T = L(v) , 

J(rj)£Pj9 j = l , . . . , n , 

where f: R3 -> K corresponds to the function f:K*ym -» K- Obviously, we have 

| / ( ^ ) - / K ) l = V ( 2 ) L | | T , - f f ; | | K 3 . 

The problem has a unique solution (see Theorem 4.1), which will be denoted by am(v). 
Now the abstract Lemma 5.1 can be applied. Let us set H = K4M with the Euclidian 

scalar product, X = C«0, 1 » , U = %\^ 
The functional Jv have the Gateaux derivatives J'v(x) = C(v) T — C(v) <rm-1(i>) 

which fulfil the assumptions of Lemma 5.1. Let us set 

EV={TE R3n; A(v) % = L(v)} , 

P = { T e K 4 w ; f ( T J . ) g ^ , j = l , . . . , n ) , 

Kv = (Ev x Rn)nP. 

Obviously, Kv is a convex, closed and non-empty set. Using Lemma 5.2 and the 
positive definiteness of C(v), we obtain 

(5.11) \\am(v)\\R4n ^ C VveU , m = l , . . . , N . 

Verification of the assumption (5.1) 

| |j;«u)) - JK(»))1*<» = 
= \\C(v)am(u) - C(v)am-1(v) - C(u)am(u) + C{u)&"-l(u)^ rg 

£ \\C(v) - C(tt)||, l f f " ( u ) | | R 4 „ + | | C ( u ) | | * H ^ - ^ U ) - < T ' " - 1 ( » ) | | R < n + 

+ ||C(u) - c(v)\u Ik"- 1^)!^ ̂  
^ 2C\\C(v) - C(u)||* + HC(u)||* H^-'Xtt) - ff""1^)!^ 

(I • ||* is the spectral matrix norm). 
The convergence of the first member to zero (for v -> u) follows from the con

tinuous dependence of the entries of C(v) on the parameter v. The convergence of the 
second member follows from the induction hypothesis. 

Verification of the assumption (5.2) 

First we shall prove that the matrices A(v) have full rank (i.e. r(A(v)) = n') for 
all v e U. 
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Let the rows of A(v) be linearly dependent, i.e. let there exist numbers Xu ...? Xn> 
(not all zeros) such that 

I Xt0jll\ e(Wl)}smv)) = 0 for ; = 1 , . . . , n . 
i = l 

Consequently, 

<Sa i\e(w)>S(n ( l> ) ) = 0 j = ],..., n, 

n' 

where w — ]T X-Wi is a non-zero element of Vh(Q(v)). A similar assertion holds 

for 3<12>, sf2>. 
The tensor e(w) G S^(.Q(v)) is orthogonal to all elements of the basis of Sh(Q(v))^ 

so that it must be zero. Finally, w = 0 in Q(v) can be deduced, which is a contra
diction. 

We can choose n' linarly independent columns in the matrix A(u). There exists 
Sx > 0 such that for all v e °U\& with d(u, v) < 8i the same choice of columns of A(v) 
is linearly independent, too. By a suitable renumeration we can write the condition 
(5.9) in the form 

Ax(v) T (1 ) + A2(v) T (2 ) = L(v), 

where Ay(v) is a square matrix of order n\ nonsingular for all v e ^ d , d(v, u) < 8U 

and A2(v) is an n' x (3n — n') matrix. The elements of these matrices depend 
continuously on v. 

The vector a(u) = (a(u), oc(u))T e Ku fulfils the following conditions: 

Ai(u) O(1)(u) + A2(u) O(2)(u) = L(u), 

f((?i(u)) _S a f(u), i = l , . . . , n . 

Let us set T ( 2 ) = O(2)(u). The vector T (1 ) can be determined from the condition 

A1(v)^ + A2(v),v
2> = L(v), 

so that we have 

TU> = A-t\v)Uv) - ATl(v)A2(v)a^(u). 

The norm of the difference can be estimated as follows: 

K « ) - rv\\R3n = ||a<'>(u) - T^>||R„. rg 

^ . | | A r 1 ( « ) L ( M ) - A r 1 ( " ) ^ ) | | R - + 

+ U A r V ) ^ ) - Al\u)A2(u)\^C, 

where ||*||** is the standard norm of linear operators from R3"-"' to R". 
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Let us choose £ > 0. As the matrices Ax(u)9 Ax(v) are nonsingular and the elements 
of Ai(v), A2(v), L(v) depend continuously on the parameter v at the point H, there 
exists S < 5{ such that for all v e °?/h

ad with d(u, v) < 5 the following estimate holds: 

K " ) - rtJR3" 
"* "V0+2L2) 

Let us return to the original numbering of the components of vectors. Obviously, 
we have xveEv. For the vector xv we shall construct a vector pv such that xv = 
= {tv.pvyeP. 

Let us denote by J(x the set of indices i for which f(rvi) ^ a,(u), 

by .///2 the set of indices i for which / ( T ^ ) > a,-(u). 
Let us set 

&. = a-(ii) for i e ^ , 

&i = j fo i ) for i G . ,# 2 . 

Obviously, f(rvi) S Pvi holds for i = 1, ..., w, that is, T„ e P. 

We estimate: 

1/3, - «(")||R- = I I/K-) - «;(«)|2 ^ I IjK,,-) - j>f("))|2 =s 
ieJii ie.fi 2 

g 2 Z 2 | K , - a ( U . ) | | ^ ^ 2 L 2
r +

£ 2
2 L 2 . 

Finally, we have 

IK - <<U)IIR4" = IK - G{U)\\R*» + \\Pv - a (w ) | |R - == e" • 
Likewise, we can construct tu e Ku for a(v) e Kv. 

The continuous dependence am(v) on the parameter v at the point u follows now 
from Lemma 5A. 

Theorem 5.1. Let the assumption (2.1) be fulfilled. Then the Approximate Optimal 
Design Problem (3.10) has a solution for arbitrary h = l/M, k = T/N. 

Proof. Let /z, k be fixed. 
There exists a unique solution ahk(vlt) of the problem (3.8) for all vh e °U\d (see 

Theorem 4.1). From the previous lemma and the Lipschitz continuity of fl we 
conclude that the approximate cost functional 

SJ?*) = kjtcm £ /«(QK>)/K*M<M«,>) 
m = l Qi(vh)e^h(vh) 

depends continuously on v/r The set ^ ' j is obviously compact and consequently the 
problem (3.10) has a solution. 

Remark . We cannot say anything concerning the uniqueness of the solution of the 
Approximate Optimal Design Problem. 
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6. CONVERGENCE OF THE APPROXIMATE SOLUTIONS 

In this section we shall follow the arguments of Hlavacek [6]. The main idea is to 
insert some semidiscrete solution ak (discretized only in time) between ahk and a. 
We shall also use some results of Johnson [9]. 

Proposition 6.1. Let the assumption (2.1) be fulfilled. Let a sequence ffl which 
satisfies (3.4) and a fixed k < t2 be given. Then in particular h -> 0, and all limits 
will be considered for h e M7 (if not stated otherwise). Let a function vhe%\<i 

be given for all h e <?f and let vh -> v in C(<0, 1>), where v e <?/ad. We shall denote 
the solution of the Approximate State Problem (3.8) on the domain Qh = Q(vh) 
by ahk = (a]lk, ..., ahk) and its extension by zero into Qd \ Qh by ahk. 

Then there exists a™ = (dv
k\ a™) e H(Qd)for m = 1, ..., N such that 

(6.1) * » - > * » in H(Qd), 

and 

(6.2) a™ = (0, 0) a.e. in Q5 \ Q(v) . 

If we use the notation o}
k\Q(<v) = a™ then ak = (a\, ...,<rk) is the solution of the 

following semidiscrete problem on Q(v): 

for m = = l , . . . , N we have 

(6.3) a™eK(Q(v),r), 

{5< , t - ^ } f l ( p ) H VreK(Q(v), tm), 

where a\ = (0, a0). 

Proof. 

1) 

According to Lemma 5.1, there exists a constant C (independent of h, vh, m) such 
that 

(6.4) I K J I ^ C for m = l,...,N. 

Hence, there exists a subsequence of {(a\k, ..-,&hk)}he^ ( w e shall denote it by the 
same symbol) and an N-tuple of functions (a\, ..., ak), a™ e H(Qd) such that 

(6.5) ff& - a™ (weakly) in H(Q6) for m = 1, ..., N . 

2) 

We shall prove by contradiction that ak = (0, 0) a.e. in Qd \ Q(v). 
Let there exist a set Jt a Qs\Q(v), \i(Jl) > 0, such that | | | ^ | | | ^ > 0. From the 

convergence vh -> v in C(<0, 1>) it follows that \x{Qhc\ M)-+§. Denoting the 
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characteristic function of Ji by XM and using the weak convergence (6.5), we obtain 

f=m -m\ ( -m -m\ | | | j=t"|ll2 -^ O 

On the other hand, we have 

K - m -m\ I __ I f - m - m | I ^ Ml ^=m III ll!..?»»||[ v r\ 

°hk9 AJl°k)Q6\ — \\uhk9<>k)nhnJl\ = ||r/ife|||fl<5 llrfe Hlflhn^ " * U 9 

which is a contradiction. 

3) 

We shall verify that < e K(Q(v), tm) for all m. 

Let an arbitrary w e V(-3(i>)) ^e given and let its extension by zero into Q5 \ Q(v) 
be denoted by w. 

There exists a sequence {w,}, £ -> 0, such that w, e [C°°(^)]2 , supp w, c -Q(v), 
supp w, n F(v) = 0 and 

(6-6) u V ^ - w in [H\Qd)Y. 

For fixed i there exists h0(/) such that supp we c <2/n supp wec\Th — 0 holds for 
all he $f, h S h0(£), a n < i consequently w,|Qhe V(Oft). 

Let 71,,: V(.Q/,) n [C°°(.Q^)]2 -> V/f(Oft)be the standard interpolation using the piecewise 
linear finite elements. There exists hx{£) ^ h0(£) such that supp nhW; a Q(v) \fh e ffl, 
A = hx(S). 

Denoting by nhw£ the extension of 7r,.w, by zero into Qd\Qh and using the fact 
that (Jh\ e Eh(Qlr tm), we obtain 

(6.7) « , e(7i,w,)>S(Dd) = LQ6(nhw^ tm). 

Following Ciarlet [3], we can prove the estimate 

where |*||i.#h denotes the norm in [H 1 ^, , ) ] 2 and | • 12.o^ *s t n e usual seminoma 
in [H2(QhJ\2- The constant C is independent of /i , vh. 

Similarly, we have 

(6.8) **w,-*w, in [ H 1 ^ ) ] 2 

and consequently 

(6.9) <%w,) ~> e(w,) in 5 (0 , ) . 

Using also the continuity of the trace operator (for the convergence of the right-
-hand sides) and the weak convergence (6.5), we can pass to the limit for he ^ 
in (6.7) obtaining 

<<C e(w£)\{Qd) = L0t(w« tm) . 
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Passing to the limit for ^ -> 0 and using the properties supp w cz Q(v), supp 
w n F(v) = 0, we conclude 

(6.10) <<\e(w)ys(Q(v))^LQ(v)(w9r), 

so that a™ e E(Q(v), tm) (as w e V(Q(v)) was arbitrary). 
Since P(Qd) is closed and convex, it is weakly closed. As dn

h\ e P^) V/z e Jf and 
**k ~* < i n H(Qd), we have < e P(QS) and consequently < e P(Q(v)). 

4) 

We shall verify the inequality occurring in (6.3) and the strong convergence (6.1) 
by induction. 

I. m = 1 

From the weak convergence (6.5) we obtain 

(6.11) <crfcV T)S(Q6) + <a*fc, ^ > L 2 ( ^ } -> <o\l, f>S(D<5) + <a£, 0>L2(f ld) 

VT = ( fJ)er / fe ) . 
Choosing /? = 0 and using (5.5), we have 

0 - ( ^ , i ) w V f e S ( ^ ) 

and so ^ = 0 a. e. in Qd. 

According to 2), a\ = 0 holds a.e. in Qd\Q(v). We shall use the notation a,J = 
= oil\Q(vy Let us choose a parameter O e (0, a) and define the domain QQ = 0(v — O). 

We shall prove by contradiction that al
k = a0 a.e. in QQ. Let there exists a set 

J( cz Qe, /i(.#) > 0, such that ||a0 - 4\mji) > 0. Obviously, QQ c Qh and also 
Ji cz <Q;i holds for sufficiently small h. From (6.11) and (5.5) we find that 

vo - 4u -* a* in L2(-0 • 
We may write 

0 < ||a0 - 4\\LHJO = <ao ~ 4> a0 " Wo>mjt) + 

+ <a0 - afc, r^a0 - cck}L2(J{) . 

Recalling also the corollary of Lemma 3.2, we observe that the two members of the 
right-hand side converge to zero for h e J"f. Thus we arrive at contradiction. 

Passing to the limit for O —> 0, we obtain CK,\ = a0 a.e. in Q(v) and so o\ = (0, a0) 
a.e. in Q(v). Then da\ = (0, 0) and the inequality in (6.3) holds for m = 1 trivially. 

Let us prove the strong convergence: 

|| _ i _ i i|2 || - l - 1 || 2 
\\ahk ~~ ffk\\0,Q6

 = ||a/jfc ~" ak\\L2(Q6)
 = 

= )Q(v)nQh ( r / t a 0 ~ a o ) &X + \o(v)\Qh
 a 0 ^ x + J.Qh\fi(u) ( r / > a o ) ^ x . 
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The convergence of the first term follows from the corollary of Lemma 3.2, the 
convergence of the second follows from the property f.i(Q(v) \ Qh) -> 0. The con
vergence of the third term can be obtained from the inequality 

||rfca0||L2(.Qh\_Q(D)) = | | r / . a 0 ~~ ao||L2(f2hVQ(t;)) + | | a 0 \\L2(Q}I\Q(V)) 

by using the corollary of Lemma 3.2 and the property fi(Qh \ Q(v)) -> 0. 

II. The induction step 

Let m be fixed. Let us suppose 

(6.12) • S f 1 - . ? ? - 1 in H(Ot). 

Let an arbitrary but fixed T = (T, fi) e K(Q(V), tm) be given. We have to verify the 
inequality 

(6.13) {daf, T - <%,.,) S: 0 . 

Let us introduce a parameter A > 0, X ^ S — b and set Qx = 0(v + A). 
First, we shall construct a function tA = ( T \ /?A) which satisfies the conditions 

(6.14) T A e K ( Q \ r ) , 

(6.15) | | ^ - T | | 0 ^ ) - T _ r o . 

Let £(t) = (c(t), C(0) be the function from Lemma 1.2 defined by (1.9), (1.11). 
Let us define the function 

o) = T - £(tm) e S(qv)) . 

Obviously, <OJ, e(w)>s(^(t;)) = 0 Vw e V((2(v)). Let us denote by OJ the extension of co 
by zero to the negative half-plane. We shall define the following transformation of 
coordinates: 

y! = XX - X , y2 = X2 . 

Then for x e Qx we have that y e Q(v) u ( - 2 , 0) x (0,1) =d e f iQA*. We define the 
function 

o/(x) = d>(y) . 

We shall prove that <co\ e(w)}s(QA) = 0 Vw e V{QX). For arbitrary w e V(0;) we 

define w*(y) = w(x). Obviously w*|^ ( r )e V(&(i>)) holds and then 

<a>\ e(w))SiQA) = JflA, &. .(y) e,7{w*(y)) dy = 

= jo(to W/j(y) e//w*|^((;)(y')) dy = <cO, <w*jDU!))>S(r3(,, = 0 . 

Finally, setting 

tA = £(tm) + w~ , 

we observe that xx e £(£H, ;m). 
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We have to construct a function fix such thatf(tA) ^ j3x a.e. in £>A. 
Let us set 

fl*M - W + LhW)\* for *et3xsfi i, 
P W \Z(C\x) for x e 2 „ 

where g , = (0, X) x (0, l). We have TA = £(tm) in & and since $ ( r ) e P(_2.), we 
obtain 

/ ( t A )= / (C( t m ) )_C( t m ) = /3A. 

In the domain .Q* \ 5A we may write 

TX(X) = £ ( r , x) + co(y) = £(*», x) + T(y) - £(*", y) • 

From the Lipschitz continuity off and £ we obtain 

./(**(*)) - / « > ) ) | _ L | - - ( X ) - T(>)|R,;m4 = 

= i|b(tm) [{(*) - M| |R s y m . _ LL,|Ki)| fl* - y|Ra = LL,|r(.)| x. 
Finally, we have 

f(z\x)) ^ f(x(y)) + LL,\y(i)\ X ^ p(y) + LL,\y(t)\ X = px(x). 

Let us set TA = (TA, fix). It remains to verify the condition (6.15). 
Obviously, the following holds: 

||* l l S W f ) ) - II*" u/HS(n(i;)) A _ 0
 v 

(see Necas [11], Chap. 2, Th. 1.1). 

For the second component we have to study two cases. 

I n g A : p* - p = C(tm) - P e L2(QA), ^ - - O 

holds and then \\px - /J|| t f (<u, — ^ 0. 

In 0 ( » ) N Q,: P\X) - p(x) = LL?|y(?)| X + p(y) - p(x) 

and then 

|/?A - Plmwo* = LL«b(t)l ^ VM«(»))) + 

+ LJД-(o))-H!đ*—° 
(see again Necas [ l l ] ) . 
The function TA has the required properties. 

For sufficiently small h we have Qh a Qx. 
The restriction *x\nh is obviously an element of K(Qh, tm). Henceforth this restriction 
will be denoted only by TX. 

Let us construct the projection rhx
x. As in the proof of Theorem 4.1, we can prove 

that 
(6 A 6) rht

xeKh(Qh,t
m). 
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There exists II e j f (for a given X) and a polygonal domain Q*»H (with the same 
properties as the domain QH in Lemma 3.2) such that 

(6.17) Qk/2 c Qk>H c <_A 

There exists ft<°>(A) such that for all h < h(0\X) 

(6.18) C* c o A / 2 

holds and so ;<_,, c _2A,H. The assumption (3.5) of Lemma 3.2 is fulfilled. As in this 
lemma we shall construct the system of triangulations {9~H}he# of the domain Q*'H, 
the finite element spaces and the orthogonal projections. The lemma yields 

(6.19) l i m | | r , V - T A | | 0 ^ , H - 0 . 

From the mean value property we observe that rHxk is an extension of rhx
k onto Qk,H. 

We can insert rh%
7 into (3.8) obtaining 

(6.20) { 3 < „ r , / - < J f t h _ 0 . 

After some modifications we obtain 

(6.21) {_«, V V - {.--', rh*%h - \\\aZ\U„ + K" 1 , <}„„ _ 0 . 

The weak convergence (6.5) and the convergence (6.19) imply that 

n 
iO(v) > 

f— m „ _A) f_~řřl .J^-Al v f z m _A) f^.m jn 
l*/,ft> V )QH = î Afc, Â * jfl*.-- ~> i^fc ?

 T ]__*.« = t^fc, t '* 
and similarly 

f _ . ' " - ! « -A) _ f-"1"1 -A) 

l̂ Afc > V K ~* {** , T ji_(») • 

From the weak convergence (6.5) and the induction hypothesis (6.12) we observe that 

C^.m—1 _ m ) ( -m— 1 - m ) . fzpn—l -m, f_,m— 1 _.m) 
i^Afc . ^/ik/flh = i^Afc > °AfcJ-__ ~ * i^fc » fffc jfl_ = i^fc 5 */./__(_•) • 

Using again the weak convergence and the weak lower semicontinuity of the func
tional I "111 ,̂ we conclude 

(6.22) lim inf | | | < f c | | | l = lim inf |||dj-|||J_ ^ || |5J|| |* _ = \\^\\\2
Q{v) . 

AeJP A-_T 

Passing to the limit with h e _?f in (6.21), we arrive at 

(c i i \ f.-"1 -A) f.-"1"1 -A) i f_-'«-f ^."O --> I I I . , " 1 ! ! ! 2 

( 6 . 2 3 ) (<r f c, T j D ( u ) - (<rfc , T } f l ( w ) + [<rk , <r f c ; fl((;) => |||<xfc \\\Q{v) . 

Passing to the limit with X ~> 0 and using (6.15), we obtain 

{ a < , T -<}_.(_.) j . 0 . 

As T e K(0(t), *m) was arbitrary, we observe that <rm is a solution of the semidiscrete 
problem (6.3). 
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Finally, we have to prove the strong convergence. 
Let us insert x = a™ into (6.21): 

f _m „ / _ m X} S ~m~~ - .. / . -m\A) i f - . m " " l —m 1 ^ I I I — i 

W * ^ K 1 / * - „ ~ i^/c , r / iK ) )fih + I*** > ^/sjflh = \\n hkWlíih 

In a parallel way we can pass to the limit with he ^ and then with A -> 0 on the 
left-hand side: 

K " 1 , *T}0W + WT1. «?}.*-) _ limsup I*; 

Using (6.22), we conclude 

fc9w*iO(i») ~ l ° fc > wfciSl(u) T \"fc , w fc /0( i ; ) = " " l a u p |||Ofck|||oh 

heJf 

lim sup I I K I l ^ ^ IK'I I I^ , g lim inf |||<-£||& . 

The weak convergence (6.5) and the convergence of squares of norms yield the strong 
convergence (6.1). 

We can easily prove that the semidiscrete problem has a unique solution and then 
the whole sequence {^k}hB^ converges (strongly) to <xm in H(Qd) for m = 1, ..., N. 

Proposition 6.2. Let the assumption (1.5) be fulfilled in the domain Q(v). Let 
<jk = (<Tl

k, ..., ak) be the solution of the semidiscrete problem (6.3) in the domain 
Q(v) for k e Jf (where the set Jf fulfils the condition (3.7)). Let us denote by a the 
solution of the State Problem (1.3) in Q(v). 

Then there exist positive constants k0, C such that for all k e JT, k ^ k0 the 
following estimate holds: 

max ||«r(r) - ^\\0Mv) _ Ck112 . 
1 ^ m £ T/fc 

Proof. The poposition can be proved by modifying slightly the arguments of 
Johnson [7], [8] (for more details see also H lav ace k [4]). The most important step 
is an a priori estimate 

I fc||Kll£(„) _ c, 
m= 1 

which can be proved by the penalization method. 

Theorem 6.1. Let the assumption (2.1) be fulfilled. Let the sequence 34? and JT fulfil 
the conditions (3.4) and (3.7), respectively. Let a function vhe ^ a d be given for all 
he Jf and /et vh —> v in C(<0, I)) , v e $/ad. Let us denote by $ the cost functional 
defined in (2.3). Let fhk be the approximate cost functional defined in (3.9) for 
given h e 34?, k e C/f. 

Then there exists a function h(k): R + —> R+ with lim h(k) = 0, such that 
fc->0 + 

lim fhk(vh) = f(v). 
keoť 

he#r,hSh(k) 
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Proof. Let us denote 

S(v) =\l2F(i)dt, where &(t) = \Rj\(d(t,x))dx , 

Mv*) = k I c ^ k , where # £ = \ajl(S^k(x)) dx. 
m = l 

Using the Lipschitz continuity of fl9 we obtain for a.e. x e Qs 

|ff(^(x))-/^(r,x))| = 

= L j < ( x ) - _<<-, x)||R.y„4 (2|/.(g(r, x))| + 

+ L^X) - d(r,x)\\Rtyj ^ 

= L? | | ^ (x ) - S0». x)| |^ym< + 2L1|<r™(x) - a(r, x)\\R^\fl(a(r,x))\ 

Consequently, we may write 

i*s - nn\ = 
= _.f||_a - oC/ - ) !^ , + 2L.l«a - cf(r)||S(Ca) ||L(a(r))[| i2(fl4). 

The properties of fj and Lemma 1A yield 

l|f^(tm))!U«„ = [ k L2Ktm, *)Il_.- d *] 1 / 2 -
= LilKt-jlU) g L^*)1 '2 l-l„0,(/fS(0j)) _ c 

Finally, we have 

(6.24) | j r - _ j r ( r ) | <; cfl|5£ _ a(r)\\2
S(S}6) + ||a* - a(r)\\S(Sii)). 

The assumptions of Propositions 6.1 and 6.2 are fulfilled so that we may conclude 

(6.25) max ||g£ - <x(tm)||S(JW = 

m=l,...,T/fc 

= ^_IK-^|S(«).+ ! - « J ? - ^ k - s _ n ^ o . 
m=l,...,Tfk m = l TД kєЖ ,hє*Є ,h-šh(k) 

From (6.24), (6.25) we derive 

(6.26) lim max |jr™ - #" ( r ) | = 0 . 
fteJf m=l , . . . ,T / fc 

/ie.?r,fc^/j(fc) 

In a way analogous to (6.24) we can derive that !F(t) is a continuous function. 
Supposing that the quadrature formula is convergent for all continuous functions, 
we have 

(6.27) lim | JJ &(t) dt - k t cm Htm)\ = 0 • 
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Finally, we write 

|/(») - /_(»*)| _ 

g |15 ^ ( 0 dt - fc J cm _^ ( r ) | + |fc I cm j r ( r ) _ fe £ Cm j r - i .g 
N N 

m = 1 m = 1 m = 1 

£ |J5 ^ ( 0 dt - k I cm ^ ( r ) | + C , r max |^( t») - _ ^ | . 
m = I m=l,...,T/k 

The assertion of the theorem follows now from (6.26), (6.27). 

We can pass to the final convergence theorem. 

Theorem 6.2. Let the assumption (2.1) be fulfilled. Let an arbitrary real p > 1 
be given. Let the sequences 2tf and C% fulfil the conditions (3.4) and (3.7), respectively. 

Let {uh
k)}, k e JT, h e 34?, h :g h(k) be a sequence of solutions of the Approximate 

Optimal Design Problem (3.10) (these solutions exist according to Theorem 5.1). 
Then there exists a subsequence {uy H such that 

u{P - u (weakly) in Wi,p((0, 1 » , 

where u e %ad is a solution of the original Optimal Design Problem (2.4). 
The following convergence holds for the subsequence of solutions of the Approxi

mate State Problem: 

(6.28) max \\S?>Ju$'>) - om(u)L Qa , — — — > 0 . 
V J II h K \ h ) \ J\\U,Us k'e^,h'eJ^,h'^h(k') 

m= 1 ,...,T/k 

(Here we have used the notation a(u) (tm) — am(u) .) 
Moreover, every weak accumulation point of the sequence {u{

h
k)} in Wi,p(($), 1 » 

is a solution of the Optimal Design Problem (2.4). 

Proof. The set ^ a d is obviously closed in W1,p(<0, 1 » . As it is convex, ^ a d is 
also weakly closed in W1,p((f), 1» . From the boundedness we obtain the weak 
compactness of <?/ad in W1,p(<0, 1 » . 

As u[k) e °U\d c ^ a d , we can select from {u[k)} a weakly convergent subsequence 

u 
(fc') 
Һ' ueW.dd in WUp(<f), 1 » for k'e Jť , h' e Jť , hř g h(k') . 

From the theorem on the compact imbedding of W1,p into C (see [10], Th. 5.8.3) 
we obtain the strong convergence 

ttgP-m in C«0, 1 » . 

Let an arbitrary v e %ad be given. There exists a sequence {vh\, h e _*f, such that 
vhe ^ad? vh h jr* v m C(<0, 1 » (see Lemma 3.1). Obviously, the selected sub-
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sequence {vh>} converges to v as well. Theorem 6.1 implies that 

lim /M»P) = /(«) > 
JťeJíT 

WeJťth'áHk') 

lim fh>k{vh) = 
WeXT 

WeJť,h'áHk') 

By the definition (3.10), we have 

Passing to the limit, we obtain 

/(«) ^ /(») 
so that u is a solution of the Optimal Design Problem (2.4). The convergence (6.28) 
follows from Propositions 6.1 and 6.2 (similarly as (6.25)). 

The last assertion of the theorem is true, because the argument used above can be 
applied to every selected weakly convergent subsequence. 

Corollary 1. Let the assumptions of Theorem 6.2 be fulfilled. 
lW J 

u{p->u in C«0, 1 » . 

Then there exists a subsequence [ufi *} such that 

P r o o f is an immediate consequence of the compact imbedding of Wl'p((f), 1>) 
into C « 0 , 1 » . 

Corollary 2„ Let the assumption (11) hold. 
Then there exists at least one solution of the Optimal Design Problem (2.4). 

P r o o f follows from Theorems 5.1 and 6.2. 
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Souh rn 

OPTIMALIZACE TVARU PRUŽNĚ-PLASTICKÉHO TĚLESA 
PRO MODEL SE ZPEVNĚNÍM DEFORMACÍ 

VLADISLAV PlŠTORA 

Stavová úloha pružně-plastického tělesa pro model se zpevněním deformací je formulována 
v napětích a parametrech zpevnění pomocí evoluční variační nerovnice. Minimalizuje se účelový 
funkcionál (integrál z funkce napětí) vzhledem k části hranice, na níž je (dvojrozměrné) těleso 
upevněno. Pomocí metody konečných prvků se definuje aproximovaná úloha a dokazuje se 
existence přibližného řešení a konvergence k řešení původní optimalizační úlohy. 

Р е з ю м е 

ОПТИМИЗАЦИЯ ФОРМЫ УПРУГОПЛАСТИЧЕСКОГО ТЕЛА 
ДЛЯ МОДЕЛИ С УПРОЧНЕНИЕМ ПОСРЕДСТВОМ ДЕФОРМАЦИЙ 

У Г А О ^ А У РгётокА 

Задача состояния упругопластического тела для модели с упрочнением посредством дефор
маций формулирована двойственным подходом в форме эволюционного вариационного 
неравенства. Неизвестными являются тензор нахряжений и параметр упрочнения. Миними
зируется целевой функционал относительно части границы, на которой тело фиксировано. 

При помощи метода конечных элементов определяется приближенное решение и доказы
вается существование этого приближенного решения и сходимость к решению исходной 
проблемы оптимизации. 

АшИог'з аЛйгезз: 1ШОг. У1ааЧьШ РШога, С8с, Уухкшппу йз1ау агтагига ро1тЫ, К N 0 ^ 
2оуи2090, 143 16 Ргапа 4. 
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