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SHAPE OPTIMIZATION OF AN ELASTO-PLASTIC BODY
FOR THE MODEL WITH STRAIN-HARDENING

VLADISLAV PISTORA
(Received July 28, 1989)

Summary. The state problem of elasto-plasticity (for the model with strain-hardening) is
formulated in terms of stresses and hardening parameters by means of a time-dependent varia-
tional inequality.

The optimal design problem is to find the shape of a part of the boundary such that a given
cost functional is minimized.

For the approximate solutions piecewise linear approximations of the unknown toundary,
piecewise constant triangular elements for the stress and the hardening parameter, and backward
differences in time are used.

Existence and uniqueness of a solution of the approximate state problem and existence of
a solution of the approximate optimal design problem are proved. The main result is the proof of
convergence of the approximations to a solution of the original optimal design problem.

Keywords: domain optimization, time-dependent variational inequality, elasto-plasticity,
finite elements.

AMS Subject Class: 65K 10, 65N30, 73E99.

INTRODUCTION

The optimal design problem on the class of domains that we consider in this
paper was studied first for the Poisson equation by Begis, Glowinski [1]. Optimiza-
tion of an elasto-plastic body has been studied by Hlavacek for Hencky’s model [ 12]
and for Prandtl-Reuss’s model [6] This paper is an extension of the latter work to
an elasto-plastic body with isotropic strain-hardening.

Following Johnson [9], we formulate the state problem as a time-dependent
variational inequality in terms of the stress tensor and the hardening parameter. For
the approximations we use backward differences in time and piecewise constant
finite elements for the stress and the hardening parameter.

For given body forces and surface tractions we have to find the shape of the part
of the boundary where the body is fixed, such that the given cost functional attains
its minimum. The cost functional is an integral of a function of the stress over the
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time-space domain. Using piecewise linear approximations of the unknown part
of the boundary and a quadrature formula in the cost functional we formulate the
approximate optimal design problem.

Further we prove existence of a solution of the approximate optimal design
problem and convergence of these approximate solutions to a solution of the original
optimal design problem. As a consequence of the results mentioned above we obtain
the existence of a solution of the optimal design problem.

1. FORMULATION OF THE STATE PROBLEM
EXISTENCE AND UNIQUENESS OF A SOLUTION

Let Q = R? be a bounded domain with a Lpschitz boundary. Assume that 0Q =
=rI,url, I',nTI,=0, where I', and I', are open in Q. On I', surface tractions
are prescribed, while on I', the body is fixed.

Let R* _ be the space of symmetric 2 x 2 matrices; on this space we define a norm
sym P p

g

{where the repeated index denotes summation over the range 1, 2).

Rsym* = (Ti.irij)uz

gLet a yield function f: R;‘ym — R be given, which is convex, continuously dif-

ferentiable in R%,,\ {0} and positively homogeneous (i.e. f(16) = || f(c) for all
AER, o€ R:ym). Consequently, f is Lipschitz continuous (with a Lipschitz constant
denoted by L). These assumptions are fulfilled e.g. for the well-known von Mises
function

(o) = (o505 + 5(0w)’)'"?

where a?j = 0;; — %0,;0, is the stress deviatoric, d;; is the Kronecker symbol.
Let the following vector functions be given:

Fe[(Q), ¢°e[X(r,)]*.

‘We consider the load process in the time interval I = <0, T, T < +o00. Assume
that the body forces F and the surface tractions g are of the following particular
form:

(L.1) F(t,x) =y(t) F(x) in IxQ,
g(t.x) = y(t)¢°(x) in I x I,

where ye C*(I) is a given real function, y(f) = 0 in a “small” interval <0,,),
0<t; <T
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Definition of some spaces and scalar products

In the usual I*(Q) space we denote the scalar product by <, )2, and the
norm by | |2, We introduce the following space of stress or strain tensors

5(Q) = {r: Q> RL; 1,;,€ X(Q), i,j = 1,2}

sym>

with the scalar product and norm defined by

(T, sy = Jati01dx 5 [t]s@ = <7 Dsa) -

We deal with the space of pairs
H(Q) = 5(Q) x IX(Q).

Elements of this space will be denoted e.g. by ¢ = (o, &), where ¢ and « are called
the stress tensor and the hardening parameter, respectively.
In R x R we define the scalar product

sym
{o(x), ®(x)> = 0;,(x) 7;,(x) + a(x) B(x)

and the norm
lo(x)] = <a(x), o(x)>""*.

In H(R) we introduce the scalar product
6,0 = [a<a(x), o(x)> dx = {0, 5@ + (& Bdraa)

and the norm
lelo.e = <o, 038" = ([ollsee) + lo]E2a)"’*

Let the elastic strain-stress relation be given by the inverse generalized Hooke’s law
;= byuoy i,j=12.

We assume that b;j;; € L°°(Q) and that there exists a positive constant b, such that

2 4 :
Reymt VOERG,, ae. in Q,

bijkl(x) 00k = bo""
and bij = by = byuje
Let a positive function x € L°°(Q) be given and let there exist such constants %, %,
that

0 < Sux) S %, < +o00 ae. in Q.
In H(Q) we introduce an extended energy scalar product
{o,7}0 = [o bijuoiTudx + [qxap dx
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and the norm

llolle = {s.0}a" .

Note that the norms ||+ | o and || - || are equivalent.
We define the space of test functions

V(Q)={we[H'(Q]> w=0onT,},
and the set of statically admissible stress fields at a moment ¢ € I:

E(Q, 1) = {t1e S(Q); (1,e(W))s) = Lo(w, 1) Ywe V(Q)},
where

1 /0w, oOw;
ei{w)=-(—+—) iLj=12,
%) 2<ax,. ax,.)

Lo(w, t) = 9(t) [[o Fiw, dx + Iy 99w ds] =" y(1) Liy(w) .
Let us further define the set

B ={(t,f)e R, X R; f(zr) = B} .
The set of plastically admissible pairs will be denoted by

P(Q) = {t = (1, p) e H(Q); (t(x). B(x)) e B a.e. in Q.

The set P(Q) is convex due to the convexity of the function f.
For all t € I we define the set

K(Q, 1) = (E(2,1) x Q) P(Q) = H(Q).

Let Co(I, S(Q)) be the space of continuously differentiable functions on the
interval I with values in S(Q), which vanish at 1 = 0. We define Hy(I, S(Q)) as the
closure of Cy(I, S(R)) in the norm

, 2 .0t
lellmorca,s0n = (15 [t]s2)'"?  where = a
Similarly, we define the spaces H'(1, I*(Q)), H'(I, H(Q)).
The validity of the following lemma is well-known.

Lemma 1.1. For all T € Hy(I, S(2)) we have

(12) [o()) = «()lse = [t = 012 [elurr.sian V1€l

A similar assertion is true for the spaces H'(I, I*(Q)), H'(I, H(Q)).

Throughout the paper, C will denote a positive constant not necessarily the same
at each occurrence, the symbols ¢t and x will be used for the time variable and the
space variable, respectively.
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A weak solution of the plasticity problem with an isotropic strain-hardening is
a pair of functions

o = (o,0) e Hy(I, S(Q)) x H'(I, I*(Q))
such that

(1.3) #(0

) =
oft) € K(Q 1) forae. tel,
{o(),t — o(1)}o =0 VreK(Q, 1), forae tel.
Here %, € 1’(Q) is a given function such that
(1.4) %9 = 0y ae. in Q,

where x, is a positive constant.
Throughout the paper the following assumption will be needed:
There exists & e S(Q) n [C'(Q)]* such that

(1.5) CE e W)sy = Lo{w) Ywe V(Q).

Lemma 1.2. Let (1.5) be fulfilled and let 6, €(0.a,/(1 + L)) (where x, occurs
in (1.4), Lis the Lipschitz constant for f).

Then for each t € I there exists a pair &t) = (&(1). {(1)) € K(Q. 1) such that
£(0) = (0. )
(1.6) &(t, \)—l—éreB Viel VieRy, xR; [f|]<1., aeinQ
(1.7) ge CY(1,S(Q)) x CYI., Q)
(1.8) €)oo = C Viel.

Sketch of the proof. Let us set
(1.9) ) =0¢, L) =[] Cs + alx)

where ¢ is from (1.5),

R e T

where C, is the maximum of f(&(x)) over Q, T € is the point at which ”( )[ attdins
its maximum and [ ]* denotes the positive part. As we can prove, the pair ((7), {,(
fulfils all requirements of the lemma except (1.7).

For the function y we can find such § € C*(I) that

(1.10) 1y = (1) veel,
H(t) =0 Vied0,1,),

where 1, is a fixed number from (0, 1,).
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It is readily seen that the pair (&(t), {(¢)), where
(1.11) Ut x) = (1) C3 + op(x)
is the one we looked for in Lemma 1.2.

Remark 1.1. As in the paper of C. Johnson [9], we can prove the existence and
uniqueness of a solution of the state problem (1.3) (supposing (1.5) and using also
Lemma 1.2).

2 FORMULATION OF THE OPTIMAL DESIGN PROBLEM

Following Begis-Glowinski [ 1], we introduce the set of admissible design variables

by

0
U,y = {v e C"1((0,1)); a v < b, s—v (x2)

0X,

for a.e. x,€0,1), ﬂ) vdx, = cz} >

where 0 < a = ¢, = b < w0, ¢; > 0 are given constants.

Throughout the paper we shall consider a class of domains Q = Q(v), where v € U4
and

Qv) = {(x1,x2) e R* 0 < xq < 0(x,), 0 < x, < 1}

Let I'(v) = {(x1, x5); X; = v(x,),0 < x, < 1} denote the graph of the function v
over (0, 1); I'(v) is the part of the boundary to be optimized.

)
1 . -d- ==
: I
I |
! I
P Qlv) Mv)
I i
: l
1 {
¢ !
0 a b 3

Fig. 1

Let us havé a constant 0 > b, denote
Q5 =1(0,6) x (0,1), I's={(x1,x2); x,=6,0<x, <1}.
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Convergence of functions which are defined on different domains Q{v), will be defined
by means of their extensions by zero to the domain 9;\ Q(v). Such extensions
will be denoted by a bar over the fucntion (e.g. G).

We will consider only the following case of partition of the boundary:

r,=1I(v),
I',=2o0a~\TI(v).

g

Let the functions b;j;;. %y, # be defined and fulfil the assumptions stated before
on the domain Q,. Let the functions F° e [I*(2,)]?%, g% € [*(¢Q,\T ;)] be given.
The state problem (1.3) is then defined for all domains Q(v), v € 4.

Let us assume:
There exists & e S(Q,) N [C©"'(25)]* such that

(2.1) CE e(W))si,) = Lb,(w) Ywe V(Q,) .

(We denote the Lipschitz constant for ¢ by Ly.)
Obviously, also any restriction élg(,,) fulfils analogous conditions on Q(v) and the
assertion of Lemma 1.2 is true for all domains Q(v), v € %,q4, provided (2.1) is fulfilled.

Remark 2.1. Let the boundary conditions be given by the following functions:

~——

9° = (910(x1), gzo(xl))T on {(xpxz); x;€40,6), x; =0

>

1

Il

——

9% = (guu(x1). gan(x1))" on {(xy. x2); x;, €0, 8), x, ,
9° = (QJL(—\'z)s gzL(-\'z))T on {(xl’ X5); x; =0, x, €0, 1>} .
Let the functions g, 95 9'ip» 9205 91m> 9om» Fou F9 be Lipschitz and let
910(0) = 92.(0)
—3g:u(0) = gau(1).

Then the condition (2.1) is fulfilled. (The function £ can be constructed explicitly.)
If we assume (2.1), there exists a unique solution of the state problem (1.3) on the
domain Q(v) for all v € # 4. This solution will be denoted by a(v) = (a(v), «(v)).

Let a function f,: RY,, = R be given such that
0 A=,

[fi(e1) = file2)| < Lifoy — o2

For all ve %,q, 0 € Hy(I, S(Q(v))) we define

j(v, 0) =[5 Jaw fi(o(t, x))dx dt .

4
s Vo, 0,eR,.

Rsym
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We shall now define the cost functional on the set %,4 as follows:

(2.3) F(v) = j(v, o(v)).
Now we can state the Optimal Design Problem:
Find a function u € %,4 such that

(2.4) Fu) £ J(v) Yoel,,.

3. FORMULATION OF THE APPROXIMATE PROBLEM

Let M be a positive integer and h = J/M. We denote by e;. j = 1,..., M, the
subintervals {(j — 1) h, jh) and introduce the set

Uiy = {0, € Uyg; vy, € Pi(e;), j = 1...., M},

where P,(e;) denotes the set of linear polynomials on e;.
Let us recall the following lemma (see Begis-Glowinski [ 1]).

Lemma 3.1. For any ve 4,y there exists a sequence {v,ﬂ, (h is of the type 1/M)
such that

O €Uy s Uy v in C(KO, 1))

Definition 3.1. Let a sequence of positive parameters h;, h; —.?0 be given.
i~
Let a polygonal domain Q; and a triangulation .’7,,1(91-) be given for every j.
A set of triangulations {f,,j(Q_,)} is said to be a system, if there exists a positive
C such that diam Q¢ < Ch; for all j and for all triangles Q € .7’,,1,(9.[).

A system of triangulations {7, (Q;)} is said to be regular, if
Jog >0 V; VQeT,(Q); Q)= w,,
where w(Q) is the minimal angle in Q.
A regular system of triangulations {7,,j(Qj)} is siad to be strongly regular, if

aC>0w;ﬁgc,
d;

where dj, d} are lengths of arbitrary two sides of 7, (Q;).

Triangulation of the domain

Let Q, denote the domain Q(v,). We choose a, € (0, a) (independently of h) and
divide the rectangle Z = (0, a,> x <0, 1) uniformly into M,. M rectangles, where
M, =1 + [a,M] (the square brackets denote the integer part). In the remaining
part Q,\Z let the nodal points divide the intervals <{ao,v,(jh)) into M, equal
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segments, where M; = 1 + [(b — ao) M]. Every quadrangle is divided into two
triangles as shown in Fig. 2.

X
2 JM\Z M,
1 - /~ N l
( f '
|
EAVAR
|
: /\/ |
\> !v |
M= ! h !
VA
! R ‘
0 Q@ a b X
Fig. 2

In this way, for any v, € %", we construct a unique triangulation, which will be
denoted by J (v,).

The set of triangulations {7 ,(v,)}. h = 0, v, € %!, forms a strongly regular system
of triangulations (see Hlavagek [5]).

Denoting the triangles of 7 ,(v,) by Q and the space of polynomials of degree
at most s on Q by P(Q). we define the following finite element spaces:

Sh(gh) = {Tlx € S(Q,); T/le € [PO(Q)]4 VQe '711(1'11)} .
Zh(Qh) = '(Lﬁh € LZ(QI.); ﬁh|Q € P()(Q) VQe -7:,(5/:\))) >
Vh(Qh) = {Wh € V(Q,); WI:‘Q € [PI(Q)]Z VO e j-h(l.h)} B
and the external approximation of the set E(€,, 1):
Eh(Qh- 1) = 1t € SQ); (s eWi)dsan, = Lo(Win 1) Yw, € Vh(Q/;)} .
Finally, we define the external approximation of the set K(€,, t):
KII(Q/P ’) = {\Eh('QIn f) X ZII(QII)) N P(Qh) .
Let us define some orthogonal projections into the above finite element spaces:

rh: S("Qh) - SII(Q’I) ’

(3.1 {t= 1t 05 =0 Vo,€ S(Q),
e LZ(_Q,,) = Z,(Q,):
(3.2) B = rmpooydigy =0 Vo€ Z,,(Q,,) ,
r H(Q,) = S|(Q) % Z,(Q,):
(3.3) {t— 1T, 0,00, =0 Vo,eS,(Q,) x Z,() .
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It is readily seen that st = (r,7, ;) for © = (r, B). These projections have the
mean value property, i.e.

(r)ijle = —l—j 1;dx VQeT,(v,) VieS(Q,). i.j=12,
Q) Je
where 1(Q) is the area of the triangle Q (and similarly for ry, r,).
Next we shall study approximative properties of finite elements for non-smooth
functions. First we shall restrict the choice of partition of the interval <0, 1. For
a sequence of positive numbers # = {h;}, we introduce the following condition:

ho =1,

Jj

1
(3.4) By, =—h

p;
where p; are positive integers greater than 1. (An example of such a sequence is
h; = 1/2/.) For simplicity, we shall henceforth write only .

Lemma 3.2. Let a sequence A satisfying (3.4) be given. For every he 5 let us
have a function v, € ", and a triangulation T (vy) on the domain Q, = Q(v,).

Let H be a fixed number from the sequence # and let Q¥ = Q; be a fixed poly-
gonal domain (with the corresponding part of the boundary piecewise linear
on the intervals e; = {(i — 1) H, iH)). We suppose the foilowing condition for Q":

(3.5) I >0; Yhed, h<h®; Q Q.

For every he #, h < h'®, we extend the triangulation 7 (v,) to the domain Q.
This extended triangulation will be denoted by T . This construction can be done
in such a way that the set {f/‘,’f} forms a system.

On the triangulation 7| we can define finite element spaces Z,(Q"), S,(Q")
(analogously to those for T ,(v,)) and the orthogonal projection
ri 2(Q") — Z,(Q")
and similarly r', v}l
For every fe LZ(QH) we then have the following convergence:

(3.6) lim |78 — B 2gqm, = 0.
h-0
Similar convergence results are true for the other projections.

Corollary. Let us assume (3.4), (3.5). From the mean value property we see that
for Be IX(QM) the projection r,'B is an extension of r;B to the domain Q".We have

(from (3.6))
}‘L”(‘) IriB = Bl = 0

(and likewise for the other projections).

382



Proof of Lemma 3.2. We shall prove only the convergence (3.6). Let us have an
arbitrary ¢ > 0. Obviously there exists f, € C7'(Q") such that | — B[ 20m < €/2.
Using the mean value theorem we obtain

1
VQ( a‘f 3'\‘1 € Qi ; VPN ﬁs /))s(X:) .
#(Q:) J o,

The boundedness of derivatives of the function f, together with the property of the
system of triangulations imply the estimate

B(x) = Bx)| = Ch Vxe 0(Qie 7T

Finally, we arrive at the following approximation result for the smooth function f3,:

1 P 2
| dx =
,“(Qi) J\Qi :l '

Zj [Bx) — BAxiy]? dx < zj Clh*dx = CZh*p(Q").
Q Qi

”ﬁs - ’h e”Lz(QH) [ﬂe -
Qe "H Qi

It

If we set
e

We) = — -
e) = 2C, V(u( Q"))

then for all h e A, h < h(e) we obtain
l\’ W= ﬂ“LZmH) W Be — ﬁ“L’m"» =

= “";,".Be - ﬁc”l,z(.Q”) + ”ﬁu - ﬁ”LZ(QH) =

& &
- +t-=¢
2 2

(here also the minimal property of the orthogonal projection has been used).

The time discretization

N\

Let N be a positive integer and k = T/N. We shall divide the interval I = <0, T
into N subintervals 1,, = {(m — 1)k, mky, m = 1,...,N. Let us denote 1" = mhk.

For the function y we shall assume that there exists such a partition of the interval I
(characterized by some N,) that y is piecewise monotone on this partition.

Further we shall consider the sequence of partitions characterised by the sequence
of positive numbers #~ = {k;} which satisfy the condition
(3.7) k=,

q;No

where ¢; is an increasing sequence of positive integers. (We will write only k instead
of k; sometimes.)
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Let us put
o,m — O'(fm)
>
Po_m — (o,m _ a.m—l)/'k .

Now the Approximate State Problem can be formulated (for fixed h, k) on the
domain Q, as follows:

Find @,; = (a,,..... o5y,) such that for any m = 1, ..., N the following relations
hold:

(38) O'Z; € Kh(Qlw tm) B
{ 16;:;\ T - 0’;:;(' Qpn 0 Vte le(QIx~ Im) s
where gy, = (0, 1) -

In what follows we will use the notation e}, = (o}, op)-
Let a quadrature formula with N + 1 equidistant nodes 1, ..., t" and with positive
coefficients be given:

N

QI G(1)d I~I<Zc,,,G(I

m=0

which is convergent for continuous functions (e.g. the trapezoidal or Simpson rule).
For all v, e 42y, oy € [S(Q2,)]Y, we define

julvw o) = kY e Y 1(Q)FH0n0) -

m=1 QeF n(vn)

Let us define the approximate cost functional on the set %", by
(3-9) /l;k(“h) = jhk(rh- (f/zk(‘/'h)) >

where a,,(t,) s the first component of the solution of the approximate state problem
(3.8) on the domain Q(r,).

Now we are able to state the Approximate Optimal Design Problem (for
given h. k).
Find a function u{*’ € %", such that

(310) jhk(“;:’\’) é jhk(ljh) vUh € %Zd .

In the following section we shall prove that the Approximate State Problem (3.8)
has a unique solution, so that the problem (3.10) has sense.
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4. EXISTENCE AND UNIQUENESS OF SOLUTION
OF THE APPROXIMATE STATE PROBLEM

Lemma 4.1. If © € P(Q,) then r,t € P(Q,) as well.

Proof. For every 7€ P(Q,) and for every triangle Q € 7 ,(v,) we want to prove
the following inequality:

(@.1) f(@far(x)d.) H(g)fﬁx)dw

Let us choose an arbitrary triangle Q € 7 ,,(v,,). On this triangle we can construct
a system of triangulations 7 ,Q), £ — 0. Analogously as in Lemma 3.2, for the
function t € S(Q) we can construct a sequence of functions

1, €5(0Q), o, €[Po(Q)]* Y0, 7,0Q)

such that
(4.2) -1 in S(Q).

From the convexity of the function f we can prove the following inequality:

The convergence (4.2) and the continuity of f imply the convergence of the left-hand

side:
(s [ 4995) 1 (5 [ 90%)

We can consider f as a mapping from S(Q) to I*(Q) (f: T+ f(1)). Then from the
Lipschitz property of f we conclude that f is continuous. Together with (4.2) we have
f(zz) = f(z) in I}(Q) and therefore

1 g X ——> *1— X X .
@ [ SN Lf( (x)d

Consequently, we can pass to the limit with £ — 0in (4.3). We obtain the integral
analogue of the Jensen inequality:

|
f< <) ) b j sz
1@Q) Jo
The assumption t e P(Q,) yields f(r) < f a.e. in @, and so the inequality (4.1)
holds.

Now we can proceed to the proof of the existence theorem.
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Theorem 4.1. Let the assumption (2.1) be fulfilled. Let a function v, € %", be given.

Then the Approximate State Problem (3.8) has a unique solution on the domain
Q, = Q(v,).

Proof.
First we show that K,(€,, ™) is non-empty.
If we assume (2.1), there exists

&) = (&(1), U(r)) e K(2y, 1) Vtel (see Lemma1.2).
Lemma 4.1 yields
1, &(t)e P(Q,) Viel. ‘ .

Let w, be an arbitrary function from the space V,(Q,) = V(2,). Then e(w,) €
€ S,(€,). Using the property (3.1) and the definition of E(€,, t), we obtain

Ce(wn), i E)sam = <e(wn)s EDs@n = La(Wi 1) -

Consequently, the projection r, &(f) is an element of K,(Q,, t). In particular,
Ky(2,,1") £ 0 for m=1,...,N.

The problem (3.8) is equivalent (at the m-th time level) to the minimization of the
functional

T %MT”I leh - {‘l', a;'nk_l}ﬂh

over the set K,(£,, ™).

It is not difficult to show that this functional is strictly convex, coercive and
weakly lower semicontinuous. The set K,(€,, t™) is non-empty, convex and closed.
There exists a unique minimizer o}, (which solves this minimization problem) for
any fixed o} ! (see Céa [2], Chap. 1V, Theorems 0.2, 0.3).

Since oy = (0, rj0,) is unique, we obtain by induction that the Approximate
State Problem (3.8) has a unique solution.

5. EXISTENCE OF SOLUTION
OF THE APPROXIMATE OPTIMAL DESIGN PROBLEM

First we prove an abstract lemma on the continuous dependence of the minimal
point of a functional on a parameter.

Lemma 5.1. Let H be a Hilbert space with the scalar product (-, *) and the
norm |+||.

Let a metric space X with a metric d(+, *) and a set of admissible parameters
U < X be given. Let u be an arbitrary but fixed element of U.
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Let a functional J, on the space H be given for every ve U. We assume that
this functional has the Gdteaux derivative everywhere in H with the following
properties:

3e>0; (Jyt) — Jfo), 1 —0o)2c|t—0o|* Vo.1eH
(strong monotonicity) ,

3Ly > 0; ||J)(x)— Jo)| £ Lot — o] Vo, 1eH
(Lipschitz continuity),

where the constants ¢, Ly are independent of v.
Let a convex, closed, non-empty set K, = H be given for every ve U.

Then for every ve U there exists a unique element o, € K, such that
Jo,) £ J (1) VieKk,.

Moreover, let the following assumptions be fulfilled:

(5.1) Ve>0 36>0 YoeU; d(v,u)<d=|Jy o)~ Jio)] <e.
1. - oy — B

(5.2) Ve>0 36>0 YoeU; d(vu)<d= It eKes o, T"?f =6
B'C“E Ku 5 “GV - T"“ <é.

Then the minimal point ¢, depends continuously on the parameter v at the
point u, i.e.:

Ve>0 36>0 YweU; dvu)<dé=|o, -0, <e.
Proof. The existence of the minimal point ¢, may be proved in the standard way
(see Céa [2]).
Let us prove the continuous dependence. For any ¢ > 0 there exists ¢ such that
{”J;(Ju) - J;(Ju)” < 62 5

(5.3) d(v,u) < 6 = rf,,e K,; o, — 7| <&,

Jr,eK,; |o.— 1] <€

We shall consider some v e U such that d(v, u) < 8. The elements o,. ¢, satisfy the
following variational inequalities:

(Jfo,), Tt —0,) 20 Viek,,
(Jo,).T—0,)20 Vrek,.

Substituting © = t,, into the first inequality and 7 = 7, into the second and adding
them we obtain

(Vo) — Ii0,), 0, — 0,) < (Ji0.), 1, — 0,) + (Julo.). 1. — 0,) +
+ (J:,(O'") - Jl’l(a")’ g, — UU) .
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Making use of the strong monotonicity of J,, the Schwarz inequality and (5.3), we
derive the estimate

clow = o = ([7oni] + || + low = auf) e -

Using again (5.3) and the Lipschitz continuity of J;, we obtain
17 = [730) = Tiledl + 9o = Jie)] + |Tilen] =
< Lolo, — o] + & + ||[J(c.)] -

Denoting ¢y, = | Ji(a,)

l. we may write
c|o, — o.* £ 2¢087 + & + (1 + L) ||o, — o,/ €.

The inequality is true for all ve U satisfying d(v, #) < 8. For such v the estimate
lo. — .| = ¢, holds and consequently,

low— 0, < cae YoeU; d(v,u) <.

The mapping v +— ¢, is thus continuous at the point u.

Next we are going to prove the boundedness of the solution of the Approximate
State Problem.

Lemma 5.2. Let the assumption (2.1) be fulfilled.

Let a sequence # and a fixed number k < t, be given. Let a function v, e U",
be given for every he A. The solution of the Approximate State Problem (3.8)
on the domain Q, = Q(v,) will be denoted by 6,, = (64 ..., oy) and its exiension
by zero 1o the domain Qz\ Q, by o

Then there exists a constant C (independently of h, v, m) such that

(5.4) lfohila, < C for m=1,...N.

Proof. We shall use the induction:

IL.m=1
Using the assumption k < t; we obtain the assertion that the pair (0, rja,) is in
K, (€. 1'). This pair also fulfils the inequality (3.8) and therefore

(5.5) oy = (0, rjoty) in Q.
From the property of the orthogonal projection we have

10, 30} fo.00 = rittollcacony = ltollzcon = 1@ Laan = C-
Using the equivalence of norms, we obtain

l'opllo, < C, (with C, independent of h, ).
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II. The induction step

Let us assume that [[a}, ', < C,_;.

We shall substitute © = r, &(1™) € K,(©,, ") in the inequality (3.8), where &(1)
is the function from Lemma 1.2 (obviously |[r, &(1")[ q, < C' holds, with C’ in-
dependent of f, v, m).

We obtain

2 f m—1 -1 1
lohlla, < {on ' ohida, + lom — an ' 1 E(™)} o, <

I m |1t ’ m i A Y —
= Crvz—l!E!ahk!ifQ;. + C(!!!ahk!!;gh + (m—-l) -

= (CI + Cm_l) I'[JZ;‘HQM + C"I—IC, .

Consequently, there exists a constant C,, (which depends on C,_,) such that
llohilla, < Cu. As k (and also N) is fixed, there exists a constant C (independent

of h, v,, m) which satisfies (5.4).

Lemma 5.3. Let h, k be fixed numbers, k < t,. Let u, be an arbitrary (but fixed)
function from Uj,. We assume that (2.1) is fulfilled.

Then, at every time level, the solution of the Approximate State Problem (3.8)
a}f’k(u,,) depends continuously on the control variable v, at the point u,.

Proof. For simplicity, we drop the subscripts h, k, whenever it is possible. We
shall prove the lemma by induction over m.

I.m=1

Assuming k < t;. we have (as in (5.5)) o,(v) = (0. rj%o). Where ry, is the
projection corresponding to the triangulation 7 ,(v). The number ol triangles in
this triangulation will be denoted by n = 2M(M; + M,).

Let v — u in C(€0, 1>). Let Q,(v) be a triangle in 7,(v). Q,(u) the corresponding
triangle in .7 ,(u). Then we obviously have '

(5.6) 1Qi(v) > 1(Qi(w))

vou
Jouwy %o dx “oon Jouw %o dx

and therefore
"l’x(u)“olgiw; on l‘,',(,,)oto[Qi(,,) Ci=1,...n

(as the convergence of real numbers).

I1. The induction step

We assume that a""‘(v) depends continuously on v at the point u. The problem
(3.8) is (at m-th time level) equivalent to searching an element ¢”(v) for which the
functional

Jv(") =1 lilfl‘xlfzm - {T- ‘7'"_1(" }Q(v)
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attains its minimum over the set E,(Q(v), t™) x Z,(€(v)) with the additional conditions

(5.7) (7o) £ Bloys i=1,...,n.
We shall formulate this problem using the vector notation. The functions from the
space S,(Q(v)) will be considered as vectors from R*" and denoted by © = (14, ..., 7,)7,
where 7; = (1,4}, 12 rzzj)T corresponds to the function 7 on the triangle Q;,
j =1,....n Similarly, the elements from Z,(Q(v)) will be denoted by f =
= (By,.... B,)T, B;€ R. Let us denote 7 = (1, f)T € R*".
The functional J,(t) can be written in the form

(5.8) J(t) = 417 C(v) * — =T C(v) 6" (v),

where
=% )

and B(v) is a block diagonal matrix of order 3n which has the following blocks on

the diagonal:
jbllll Zfbllll jb1122

Bi(v) = 2Ib1211 4_“’1212 Zjbuzz
Jb2211 2 [bazsa [br2za

(all the integrals are over the domain Qy(v)).
The matrix D(v) is diagonal of order n, with the diagonal elements

Dyi(v) = Jo,m #(x) dx .
We can easily verify that C(v) is symmetric and positive definite, i.e.
3C, >0 Vvedly YVieR*™; 7 C(v)t = C,|t|fen,

where C, is independent of v. We can also prove that the elements of C(v) depend
continuously on v and that the norm of C(v) is bounded by a constant independent

of v.
The condition t € E,(Q(v), ™) can be written in the form

(5.9) A(v) © = L(v),

where A(v) is an n’ x 3n matrix, L{v)e R", n' = 2(M + 1)(M, + M,) is the
dimension of the space V,(2(v)). The elements of A(v) are the scalar products

<9§1 1)7 e(wi)>5(!2(v))> <9§-12)’ e(wi)>S(.Q(v))9 <9‘(,'22)’ e(wi)>S(ﬂ(u)) ,
where 9" and w; are the basis functions of S,(Q(v)) and V;((v)), respectively. The
elements of A(v) and L(v) depend continuously on v.
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Finally, we have the following minimization problem:
(5.10) J(tr) =137 C(v)t — 17 C(v) " *(v) - min,
Av) T = L(v),
fz)<B;. j=1,..,n,
where f: R® = R corresponds to the function f:R
/() = 7)) = V@) Lft; = o)xs -

The problem has a unique solution (see Theorem 4.1), which will be denoted by 6™(v).
Now the abstract Lemma 5.1 can be applied. Let us set H = R*" with the Euclidian
scalar product, X = C(0, 1)), U = %,
The functionals J, have the Gateaux derivatives Jy(t) = C(v) t — C(v) 6™ *(v)
which fulfil the assumptions of Lemma 5.1. Let us set

E, = {teR*; A(v)t = L(v)},
P ={teR*" f(r)<B,j=1,....n},
K,=(E,x R)nP.

4
sym

— R. Obviously, we have

Obviously, K, is a convex, closed and non-empty set. Using Lemma 5.2 and the
positive definiteness of C(v), we obtain

(5.11) l6"(®)|gsn £ C YoeU, m=1,..,N.

Verification of the assumption (5.1)

920™0)) = ")) er = |
— [C) o) ~ C(o) 8" 0) — Cfw) () + Cfw) &™) e =
= [C@) — )]« [o"@)]xen + [CW)]« 6™ (w) = 6™ () |ren +
+ [ Cw) = )]s 0" (©)]rem =
< 2€|C(v) = CW)]« + [Cu)]+ o™~ () — 6™ (1) |ren
(]l |1« is the spectral matrix norm).
The convergence of the first member to zero (for v — u) follows from the con-

tinuous dependence of the entries of C(v) on the parameter v. The convergence of the
second member follows from the induction hypothesis.

Verification of the assumption (5.2)

First we shall prove that the matrices A(v) have full rank (i.e. r(A(v)) = n') for
all ve U.
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Let the rows of 4(v) be linearly dependent, i.e. let there exist numbers 1y, ..., 4,
(not all zeros) such that

.;)ui<95.“), e(Wisuy =0 for j=1,...n.
Consequently,
D e(W sy =0 J=1,...,n,

where w = ) A,w; is a non-zero element of V,,(Q(v)). A similar assertion holds
i=1
for 91, g2
i v

The tensor e(w) € S,(2(v)) is orthogonal to all elements of the basis of S,(Q(v)).
so that it must be zero. Finally, w = 0 in Q(v) can be deduced, which is a contra-
diction.

We can choose n’ linarly independent columns in the matrix 4(u). There exists
8, > 0 such that for all v e %.; with d(u, v) < &, the same choice of columns of A(v)
is linearly independent, too. By a suitable renumeration we can write the condition
(5.9) in the form

Ay(v) T + A4,(v) 7P = L(v),

where A;(v) is a square matrix of order n’, nonsingular for all v e %%y, d(v, u) < &,.
and A,(v) is an n’ x (3n — n’) matrix. The elements of these matrices depend
continuously on v.

The vector o(u) = (a(u), a(u))" € K, fulfils the following conditions:

Ay(u) o O(u) + Ax(w) 6P (u) = L(u),
flofu)) < afu), i=1,...,n.

Let us set 152 = ¢®(u). The vector 1" can be determined from the condition
Ay(v) TSV + Ay(v) 1 = L(v),

so that we have
o = A7 '(v) L(v) — A7 (v) Ax(0) 0 P(u) .

The norm of the difference can be estimated as follows:
lo() = 7l = o0 () — <7
< 47 () L(w) — A7'(v) L(v)
+ AT H(v) Aa(v) = A7 (u) Ax(w)]4x C

where | |« is the standard norm of linear operators from R**~" to R,

o <

RN’ +
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Let us choose & > 0. As the matrices A,(u), A,(v) are nonsingular and the elements
of A,(v), A,(v), L{v) depend continuously on the paramcter v at the point u, there
exists § < &, such that for all v e %", with d(u, v) < 6 the following estimate holds:

€
NIEIS

Let us return to the original numbering of the components of vectors. Obviously.

we have 7,€ E,. For the vector 7, we shall construct a vector f, such that t, =

= (1. B,) € P.
Let us denote by .#; the set of indices i for which f(t,;) < x,(u).

by .#, the set of indices i for which f(t,;) > a(u).

HU(LL) - Tp”Rsn <

Let us set
Boi = o{u) for ie.t,,
By = flr,) for ie.,.

Obviously, f(r,;) < B,; holds for i = 1. ..., n, that is, 7, € P.
We estimate:

18, = dw)lan = 3 [J(7r) = au@)” = 3 |F(70i) = T )

iedl > ietls

2

=

5

&
< 207, ~ ofwin = 201 7

Il

Finally, we have

|

o) + [, — o) < 5

Likewise, we can construct 7, € K, for ¢(v) € K,,.
The continuous dependence ¢”(v) on the parameter v at the point u follows now
from Lemma 5.1.

7. = o)z = |

Theorem 5.1. Let the assumption (2.1) be fulfilled. Then the Approximate Optimal
Design Problem (3.10) has a solution for arbitrary h = 1/M, k = T|N.

Proof. Let I, k be fixed.

There exists a unique solution 6,(v,) of the problem (3.8) for all v, € %4y (see
Theorem 4.1). From the previous lemma and the Lipschitz continuity of f{ we
conclude that the approximate cost functional

N
2
fhk(vh) =k Z Cin z ﬂ(Qi(Uh))fl(U;:;;(Dh)lQi(m,))
m=1 Qi(vn)eT n(vn)
depends continuously on v,. The set " is obviously compact and consequently the

problem (3.10) has a solution.

Remark. We cannot say anything concerning the uniqueness of the solution of the
Approximate Optimal Design Problem.
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6. CONVERGENCE OF THE APPROXIMATE SOLUTIONS

In this section we shall follow the arguments of Hlavagek [6]. The main idea is to
insert some semidiscrete solution 6, (discretized only in time) between o, and 6.
We shall also use some results of Johnson [9].

Proposition 6.1. Let the assumption (2.1) be fulfilled. Let a sequence H# which
satisfies (3.4) and a fixed k < t, be given. Then in particular h — 0, and all limits
will be considered for he A (if not stated otherwise). Let a function v, Uy
be given for all h € # and let v, —> v in C(<0, 1)), where v € U,4. We shall denote
the solution of the Approximate State Problem (3.8) on the domain Q, = Q(v,)
by 64 = (6p. ..., o}) and its extension by zero into Q;\ @, by Gy

Then there exists &, = (&}, &) € H(Q;) for m = 1, ..., N such that

(6.1) on — 6y in H(Q),
and
(6.2) o =(0,0) ae in Q\Q(v).

If we use the notation &}|g, = of then o, = (o, ...,0}) is the solution of the
following semidiscrete problem on Q(v):

for m=1,....N we have
(6.3) oy € K(Q(v), 1),
(007, — Pl 2 0 Ve K(@Ae). 1),
where o) = (0, o).
Proof.
1)

According to Lemma 5.1, there exists a constant C (independent of h, v,, m) such
that

(6.4) llehllo, < C for m=1,..,N.

Hence, there exists a subsequence of {(Gy ..., Gj)}ner (We shall denote it by the
same symbol) and an N-tuple of functions (&, ..., 6;), &y € H(®Q;) such that

(6.5) oy — oy (weakly) in H(Q;) for m=1,..,N.

2)

We shall prove by contradiction that &5 = (0, 0) a.e. in Q;\ Q(v).
Let there exist a set # < Q;\ Q(v), p(.#) > 0, such that ||&%[| 4 > 0. From the
convergence v, —» v in C(<0,1)) it follows that u(Q,n ) — 0. Denoting the

394



characteristic function of .# by x, and using the weak convergence (6.5), we obtain

—m

(& 2408 | 0y = v Xk} Qs = “ ” w>0.

On the other hand, we have

f=m —m

[ 1400 0| = (G 87} ] = 10l 0 (187 e = O,

which is a contradiction.

3)

We shall verify that e} € K(Q(v), ) for all m.

Let an arbitrary w e V(Q(v)) be given and let its extension by zero into Q;\ Q(v)
be denoted by w.

There exists a sequence {w,}, / — 0, such that w, e [C”(@Q;)]*, supp w, = Q(v),
suppw, 0 I'(v) = 0 and
(6.6) We—sgm W n [H'Y(Q)]*.
For fixed ¢ there exists /1o(¢) such that supp w, = Q,, supp w, 0 I, = 0 holds for
allhe #, h < h(/). and consequently w,|q, € V(£,).

Let m,: V(2,) 0 [C*(2,)]* = Vi(2,) be the standard interpolation using the piecewise
linear finite elements. There exists (/) < ho(¢) such that supp mw, = Q(v) Vhe #,
h < hy(?).

Denoting by @,w, the extension of m,w, by zero into Q;\ Q, and using the fact
that o}, € E,(€Q,, ™), we obtain

(6~7') { k> e(ﬁh“’/»smﬁ) = Lflg(ﬁhwh tm) .
Following Ciarlet [3], we can prove the estimate
HW/ - 7T/.W/”1,Q,, = Ch|W:|2,Q,, >

where ||||;,0, denotes the norm in [H'(2,)]* and ||, g, is the usual seminorm
‘in [H*(2,)]*. The constant C is independent of h , v,
Similarly, we have

(6.8) Tw, = w, in [HY(2)]?
and consequently
(6.9) e(yw,) — e(w,) in S(Qs).

Using also the continuity of the trace operator (for the convergence of the right-
-hand sides) and the weak convergence (6.5), we can pass to the limit for he #
in (6.7) obtaining

{ay, e(w,))s(g&) = LQG(W/, t"') .
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Passing to the limit for / — 0 and using the properties supp w < Q(v), supp
w N I'(v) = 0, we conclude

(6.10) Coits (WD scaqy = Lag(w: "),

so that o' € E(Q(v), 1) (as w e V(Q(v)) was arbitrary).
Since P(€;) is closed and convex, it is weakly closed. As 6} € P(Q,) Vhe # and
ap — &' in H(Q,), we have 6} € P(Q;) and consequently o}’ € P{Q(v}).

4)

We shall verify the inequality occurring in (6.3) and the strong convergence (6.1)
by induction.

L. m=1

From the weak convergence (6.5) we obtain

(6.1 1) (e Ds@s T gy B>L2(Q,;) - (G}, Tsios + ay, B)Lz(_oé)
Ve = (2. f) e H(Q,)
Choosing ff = 0 and using (5.5), we have
0 = (G}, Trsi, VTeS(Q,)

and so &; = 0 a.e. in Q.
According to 2), & = 0 holds a.e. in Q;\ Q(v). We shall use the notation o, =
= @] (). Let us choose a parameter ¢ € (0, a) and define the domain Q¢ = Q(v — ).
We shall prove by contradiction that o} = a, a.c. in Q% Let there exists a set
M= Q8 p(H) >0, such that [ag — o 2.0y > 0. Obviously, Q° = @, and also
A = Q, holds for sufficiently small h. From (6.11) and (5.5) we find that

o = o — o in LX)
We may write
0 < [og — o = {oy — o} — rlog) +
1% = % lL2cy = Ko Oy O %o 2 L2y
1 ’ 1
+ (oo = %, Fpdo — Uk Dr2ca -

Recalling also the corollary of Lemma 3.2, we observe that the two members of the

right-hand side converge to zero for A € 2. Thus we arrive at contradiction.
Passing to the limit for ¢ — 0, we obtain @} = &, a.e. in Q(v) and so 6, = (0, )

a.e. in Q(v). Then do, = (0, 0) and the inequality in (6.3) holds for m = 1 trivially.
Let us prove the strong convergence:

”dhk 0.2 = ”“hk “11”22(96) =

= j!!(u)r\ﬂ;. (rh“o - “0) dx + j!z(v)\g,. “é dx + IQ;.\Q(v) (";.0‘0)2 dx.
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The convergence of the first term follows from the corollary of Lemma 3.2, the
convergence of the second follows from the property p(Q(v)\@Q,) = 0. The con-
vergence of the third term can be obtained irom the inequality

“"t;“onmuzh\rz(u» = “”;:“0 — do L2anewn + HaOHLZ(Qn\Q(U))

by using the corollary of Lemma 3.2 and the property u(,\ Q{v)) - 0.

II. The induction step

Let m be fixed. Let us suppose
{6.12) Gt et in H(Q,).
Let an arbitrary but fixed © = (t, f) € K(Q(v), 1) be given. We have to verify the
inequality
{6.13) o). 1 — o} oy 2 0.
Let us introduce a parameter 2 > 0, 1 < § — b and set Q* = Q(zv + A).

First, we shall construct a function t* = (%, f*) which satisfies the conditions
(6.14) e K(Q% 1),

(6.15) [e* — IHO,QM = 0.

Let &(r) = (&(1), {(1)) be the function from Lemma 1.2 defined by (1.9), (1.11).
Let us define the function
o =1 = 1" e S(Quv)).
Obviously, {w, e(w)>sa), = 0 Vw e V(Q(v)). Let us denote by & the extension of @

by zero to the negative half-plane. We shall define the following transformation of

coordinates:
Yi=Xp— A, yy=X,.

Then for x e Q* we have that ye Q(v) U (—7,0) x (0,1) =%F Q** We definc the

function

w(x) = oly).
We shall prove that {w’, e(w)ygq:, = 0 Ywe V(Q%). For arbitrary we V(Q) we
define w*(y) = w(x). Obviously w*|q,, € V(€(v)) holds and then

(@, e(¥))s(02) = [gue @(1) eri(wH(v)) dy =

= Jow @i») €W aw(1) dy = <o, eW*|o,Dsom = 0.

Finally, sctting
‘L')' = é(fm) + w}“ s

we observe that 1% e E(Q7, "),
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We have to construct a function p* such that f(¢*) < p* a.e. in Q%
Let us set

_ [BO) + LLp(@] for xe @'\,
Bi(x) = {C(tm’ x) : for xeQ,,

where Q; = (0,2) x (0,1). We have t* = &(™) in Q, and since &(1") e P(Q,). we
obtain
J(@) = fE@m) = 4 = B
In the domain Q*\ Q, we may write
Px) = & ) + 0(y) = " 2) + () — e ).
From the Lipschitz continuity of f and ¢ we obtain
|f(*(x)) = f((¥))] = Lf*(x) = ()
= Lf»(rm) [&(x) = &)]
Finally, we have
JEE) < S0) + L 2 S B) + LLE(D] 2 = B

Let us set t* = (7%, p*). It remains to verify the condition (6.15).
Obviously, the following holds:

Rsym® —

Reyet = LLefy(D)| [x = yllre = LLJy(D)| 2.

|7 =[S0y = llo* = o[5@w) 5557 0

(see Necas [11], Chap. 2, Th. 1.1).
For the second component we have to study two cases.

InQ;: p*— B =101~ Bel¥Q), nQ:)—=5>0

A0

holds and then [[B* — |,20,, —=5> 0.

In Q)N Q1 BHx) — B(x) = LLy(7)| 2 + B(y) — B(x)
and then

1B = Blizawnon = LLp(B)] 2 V((2(v))) +

(see again Negas [11]).
The function 7% has the required properties.

For sufficiently small & we have Q, < Q*
The restriction 11]9,‘ is obviously an element of K(,. 1™). Henceforth this restriction
will be denoted only by 7.

Let us construct the projection r,t*. As in the proof of Theorem 4.1, we can prove
that

(6.16) 1t e Kiy(Q, 1) .
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There exists H e # (for a given 1) and a polygonal domain Q4.1 (with the same
properties as the domain Q¥ in Lemma 3.2) such that

(6.17) Q¥ < gii < @
There exists h©(2) such that for all h < h®(2)
618  ocon

holds and so @, = Q**. The assumption (3.5) of Lemma 3.2 is fylfilled. As in this
lemma we shall construct the system of triangulations {072 e of the domain Q%1
the finite element spaces and the orthogonal projections. The lemma yields

(6.19) lim [[re* — %]y gan = 0.

From the mean value propeity we observe that rit* is an extension of r,t* onto QMM
We can insert »,7” into (3.8) obtaining

(6.20) {0a}, it — o}, = 0.
After some modifications we obtain

0.

v

(6.21) Oho 17 0, — Lo Yo, — lonlla, + ok ' anla,

The weak convergence (6.5) and the convergence (6.19) imply that

IS m VAl VA
L"hk"h“ JQ: = {ahk’ "I-T }Q/ H {“ka"" jQrH = Lo'k’ T i) »

and similarly
G P S LA S PR
From the weak convergence (6.5) and the induction hypothesis (6.1 2) we observe that

{ m—1 m =m—1 —m) —m—1 —m: _ { m— mY
oh ' oo, = {Oh S Ofa, = 10000, = (o} o'l\jﬂ(z)

Using again the weak convergence and the weak lower semicontinuity of the func-
5,» we conclude

—m

(622 timinfloifla, = lim inf [|& |5, = [l67]la, = llo¥{law -
Passing to the limit with h € # in (6.21), we arrive at
(6.23) {ol. ?ow = {0 Taw + {607 0} o 2 [lo¥lae) -
Passing to the limit with 2 — 0 and using (6.15). we obtain
(007, 7 — a7} 2 0.

As t € K(Q(v), 1) was arbitrary, we observe that a7 is a solution of the semidiscrete
problem (6.3).
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Finally, we have to prove the strong convergence.

m

Let us insert © = o' into (6.21):

1

{"ZZ-, "/.(_6;:'}”} Fo ‘{“;."k_la "h(";:l ;'}Q;. + {“Tk_" Ohil oy 2 H!o’,’,’}‘méh

In a parallel way we can pass to the limit with h € # and then with A — 0 on the
left-hand side:

m)

{00 0 oy — (087" ol aw + {001 o} aw 2 l'm Sup llohill, -

Using (6.22), we conclude

lim sup [|oi |5, < [lo%(|aw = tim inf (o5, -

heX het
The weak convergence (6.5) and the convergence of squares of norms yield the strong
convergence (6.1).

We can easily prove that the semidiscrete problem has a unique solution and then
the whole sequence {6y} ., converges (strongly) to & in H(Q;) form = 1, ..., N.

Proposition 6.2. Let the assumption (1.5) be fulfilled in the domain Q(v). Let
o, = (6,:. a}j) be the solution of the semidiscrete problem (6.3) in the domain
Q(v) for ke A (where the set A" fulfils the condition (3.7)). Let us denote by o the
solution of the State Problem (1.3) in Q(v).

Then there exist positive constants ko, C such that for all ke A", k < k, the
following estimate holds:

max [o(1") = 67000y < CK'2.
1<m<T/k

Proof. The poposition can be proved by modifying slightly the arguments of
Johnson [7], [8] (for more details see also Hlavacek [4]). The most important step
is an a priori estimate

S Kl|oo?||2, < C

m=1

which can be proved by the penalization method.

Theorem 6.1. Let the assumption (2.1) be fulfilled. Let the sequence # and A~ fulfil
the conditions (3.4) and (3.7), respectively. Let a function v, € U"; be given for all
he # and let v, > v in C((O 1)), ve U,q. Let us denote by ¢ the cost functional
defined in (2.3). Let ¢, be the approximate cost functional defined in (3.9) for
given he #, ke A .

Then there exists a function h(k): R* — R* with lim h(k) = 0, such that

k—>0+
lim  Zu(v) = #(v).
ket

he# h<h(k)
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Proof. Let us denote

H) = [FF()dt, where F(1) = [o,f3(5(1, %)) dx,
N
Fulvn) =k ; P, where Fp = [q,f1(7(x))dx .

Using the Lipschitz continuity of f, we obtain for a.e. x € Q,
|[FH(T()) = fi(e(™, )| =
< Lylam(x) — (™, x)”R.ym4 @lf(a(m, )| +
+ L[ 7(x) = 61" X)) =

< Li|m(x) = (1™, X)|R, e + 2Ly || G0(x) — &(1", x)

Roym* lfl(&<tm’ x))‘ .
Consequently, we may write
|7 — F(m)| <
< Li|an — 6(1")[Sep + 2Li ]G0 — 6™ scp [/1(5(™)] 2oy -
The properties of f; and Lemma 1.1 yield
1716 z2cen = [faw LG(, X)]| Ry X112 =
= Ly [[6(t")|sap = La(t™)'"? 6] ft01c1,520n = C -
Finally, we have
(6.24) |Z . — F(™)] = C(|om — a(™)[5s + 5% — 5(1™)]|scs) -

The assumptions of Propositions 6.1 and 6.2 are fulfilled so that we may conclude

(6.25) max [Gn — (") s <
m=1,..,T/k
\ S Wl e I = oo i O
From (6.24), (6.25) we derive
(6.26) lim max |#Fp, — F(")| =0.
= T/k

ket m
he# ,h < h(k)

In a way analogous to (6.24) we can derive that #(¢) is a continuous function.
Supposing that the quadrature formula is convergent for all continuous functions,
we have

(6.27) lim |{§ # (1) dt — klzij e F(tM)] = 0.
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Finally, we write
If (U) -7 hk(ulx)l =

N N N
S|feF(dt — kY e, Z(")] + |k Y e (") — kY. 0 Fii] <
m=1 m=1 m=1

N
< |j€ F(1)dt — kY ¢, FI™| + C,;T max |7 (™) — Ful .
m=1 m=1,.., T/k

The assertion of the theorem follows now from (6.26), (6.27).

We can pass to the final convergence theorem.

Theorem 6.2. Let the assumption (2.1) be fulfilled. Let an arbitrary real p > 1
be given. Let the sequences # and A fulfil the conditions (3.4) and (3.7), respectively.
Let {ufP}, ke A, he #, h < h(k) be a sequence of solutions of the Approximate
Optimal Design Problem (3.10) (these solutions exist according to Theorem 5.1).
Then there exists a subsequence {us: '} such that

ult?) = u  (weakly) in W"P(€0, 1)),

where u € U, is a solution of the original Optimal Design Problem (2.4).
The following convergence holds for the subsequence of solutions of the Approxi-
mate State Problem:

(628) fnaXT/AlHE;,",,\,(u,(ff’)) — &"‘(u)“o‘m m 0
m=1,.,T/k

(Here we have used the notation (u) (") = 6™(u) .)
Moreover, every weak accumulation point of the sequence {uy"} in W'7(0, 1))
is a solution of the Optimal Design Problem (2.4).

Proof. The set %,, is obviously closed in W'?(<0, 1)). As it is convex, %,q is
also weakly closed in W'?(<0, 1>). From the boundedness we obtain the weak
compactness of %,4 in W'7(<0, 1)).

As ul? € Uhy = U,q, we can select from {ul”’} a weakly convergent subsequence

ulf) ~ued,y in W0, 1)) for Ked, Wesd, W < hK).

From the theorem on the compact imbedding of W"? into C (see [10], Th. 5.8.3)
we obtain the strong convergence

u? > u in C(<0,1)).

Let an arbitrary v e %,4 be given. There exists a sequence {v,}, h € #, such that
04 € Uag, V4 ——> v in C(<0,1)) (see Lemma 3.1). Obviously, the selected sub-
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sequence {1, } converges to v as well. Theorem 6.1 implies that

lim 7 (ut”) = #(u),
k'ex
h'ed ,h' <h(k’)

lim  #(v,) = #(v).
k'et
h'exd ,h’ <h(k’)
By the definition (3.10), we have
jh’k’(u;;’f,)) = fh'k'(vh') .
Passing to the limit, we obtain
Au) = (o)

so that u is a solution of the Optimal Design Problem (2.4). The convergence (6.28)
follows from Propositions 6.1 and 6.2 (similarly as (6.25)).

The last assertion of the theorem is true, because the argument used above can be
applied to every selected weakly convergent subsequence.

Corollary 1. Let the assumptions of Theorem 6.2 be fulfilled.
Then there exists a subsequence {u;’} such that

ukV >y in C(<0, 1).

Proof is an immediate consequence of the compact imbedding of W'?(<0, 1))
into C(€0, 1)).

Corollary 2. Let the assumption (2.1) hold.
Then there exists at least one solution of the Optimal Design Problem (2.4).

Proof follows from Theorems 5.1 and 6.2.
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Souhrn

OPTIMALIZACE TVARU PRUZNE-PLASTICKEHO TELESA
PRO MODEL SE ZPEVNENIM DEFORMACI

VLADISLAV PISTORA

Stavova tloha pruZné-plastického télesa pro model se zpevnénim deformaci je formulovana
v napétich a parametrech zpevnéni pomoci evoluéni variaéni nerovnice. Minimalizuje se u&elovy
funkcional (integral z funkce napéti) vzhledem k Casti hranice, na niZ je (dvojrozmérné) téleso
upevnéno. Pomoci metody koneénych prvkia se definuje aproximovana tloha a dokazuje se
existence priblizného feSeni a konvergence k feSeni puvodni optimalizaéni ulohy.

Pe3rome

OIITUMMBALIA ®OPMBI VIIPYI'OITNIACTUYECKOI'O TEJIA
JJISI MOJEJIM C YIIPOYHEHMEM ITOCPEJCTBOM JE®POPMALIUN

VLADISLAV PISTORA

3amaya COCTOSHHUS YIPYroIUTACTAYECKOrO Tella AJisi MOIENH C YHPOYHEHHEM ITOCPeICTBOM Aedop-
Manmit GopMyIHMpOBaHA OBOMCTBEHHBIM MOOXOAOM B (hOpME IBOMIOLHOHHOTO BapHALMOHHOIO
HepaBeHCTBA. HeM3BECTHBIME SBJISIOTCS TEH30p HAXPSDKCHMI M mapameTp ynpoyHeHus. MUHAMHA-
3APYeTCs LesieBOR (DYHKIIHOHAI OTHOCHTEBHO YaCTH IPAHMIBI, HA KOTOPO# Tejio GHKCHPOBAHO.

IIpu moMonm MeToAa KOHEYHBIX 3JIEMEHTOB ONPEeIseTCsl NPHOIMKEHHOE PeIeHne W JOKashl-
BAeTCsl CYIIECTBOBAaHHME 3TOr0 NPUO/IMKEHHOrO PEHIEHHsI M CXOAAMOCTh K DEINEHHIO HCXOMHOMN
npoGeMbl ONITUMHU3ALIUH.
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zovu 2090, 143 16 Praha 4.
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