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Summary. The paper deals with the computation of Riccati-Bessel functions. A modification
of Miller method is presented together with estimates of relative errors.
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Scattering of electromagnetic radiation from a sphere, the so-called Mie scattering,
requires the computation of Riccati-Bessel functions [2, 3, 5].
Riccati-Bessel functions are functions ¥, and y, defined recursively by the formulas

(1.a) Yo(x) = sin x, (1.b)  zo(x) = cos x,
(2.a) Yq(x) = sinx _ cos x, (2.b) x1(x) = X 4 sinx,
x x

(Ga)  Yunal) = D) = i),

2n

T ) = o)

(3.b) Tt 1(X) =

It is known that the computation of i, by formulas (1.a)—(3.a) is highly unstable.
On the other hand, the computation of y, by formulas (1.b)—(3.b) is stable. These
facts are explained below.

Since the functions y, can not be computed by upward recurrence for large n,
they are usually computed by downward recurrence. This, the so-called Miller method,
is described in [1], pp. 206—7 and 270—1 for functions J, and j,. (The connection
between j, and y, is given by formula (5.a) below.)
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The idea of the Miller method is as follows. For sufficiently large N we put iy, =
=0, ¥y = 1, and ¥, are computed by downward recurrence, i.e.,
o 2n + 1 ~
(4) l»[/n-—l = - lpn - !//n+1 .

X

The values ¥,(x) may be obtained from i}, after multiplication by a constant C,
the value of which may be found as Y/, (or ¥/, when ¥, is near to 0).

The present paper gives a modification of the Miller method. This modification
is useful in the case when the values y, are also required (they are computed by
upward recurrence). For sufficiently large N we put

‘/71»' =0, ';N-—l = 1/XN

and {, are computed by (4). No multiplication is necessary, because there is an
effective estimate of |/, — 1| in terms of y,. This estimate gives a possibility to
determine N in the case when the required accuracy of the computation is given.

1. ELEMENTARY PROPERTIES OF RICCATI-BESSEL FUNCTIONS

Riccati-Bessel functions i, and y, are connected with Bessel functions J, .4,
and Y, ,,, and spherical Bessel functions j, and y, by the formulas

(52) ) = xix) = /(3—) Tovia(®).
(55)  n(x) = —xn() = - J(~> RES

2

The functions ¥, and y, may be expressed as the series

_ © (_l)k x2k+n+1
(62) ) k;o (k)1 (2k + 20 + DN
© (_1)n+k x2k—n

(6.b) Xn(x) =k;0 (Zk)!! (2k — 2n — ! ’

Relations (6.a) and (6.b) follow directly from the recurrence formulas (1)—(3).
For analogous expressions for j, and y, see [1], p. 256.
Note that '
(Zk)!! =24-...-2k,

k+ 1Nt =13-...-2k+ 1),
(-nn=1

ok - = (=D
(- 2k 1).._(%_1)”.

Il
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Relations (6.a) and (6.b) are not good for the evaluation when n is large, but
they imply the asymptotical behaviour of ¥, and y,

(72) ) ~ (2n + N
(7.b) X,,(x) ~ (_Zn_;nﬂ

when x is fixed and n - o or n is fixed and x — 0. (The symbol ~ means that the
limit of the quotient of both sides is 1.) It means that the asymptotical behaviour
of ¥, and g, is determined by the initial term of series (6).

Relations (7) may be deduced also from the behaviour of J, and Y, given in [1],
p. 187 and [4], p. 548.

We suppose that x is a fixed positive number and we write ¥, and y, instead
of ¥,(x) and x,(x) if it causes no confusion.

Proposition 1. Functions , and y, satisfy the relations

I lpll Xﬂ
(8) Uit dnet i

= l//an+1 - lpni—l%n = 1 fOr a]l n.

Ifn + % > x, then

(93) lpn >0 s (9b) An = 0 >
(103) l//n > l//n+1 ) (IOb) Xn < Xn+l >
(11) LI v, < o ,

Xn+1 An+1 = Xn
(12) In+v1 = Xn = Xn = Xn—1-

Proof. Relation (8) follows from (1)—(3) by induction. The functions y,(x) and
1.(x) have a constant sign when x € (0, n + 1), because the smallest positive zero
of the functions J, and Y, is greater than v [6], p. 385 and 387. Relations (7) show
that the functions ,(x) and X,,(x) are positive for small x. This proves relations
(9.a) and (9.b).

Suppose that for some n, > x — + we have ¥, . = ¥,,. Then relation (3.a)
gives Y, = ¥, for all n = n,. But this is impossible, because lim ,(x) = 0
by (7.a). e

Now, we shall prove (10.b). The function J}(x) + Y2(x) is an increasing function
of the parameter v when x is fixed. This follows from the integral representation
of this function in [6], p. 444. It means that the sequence {7 + x>}, is increasing.
Using (9.a), (9.b) and (10.a) we obtain (10.b).
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Relation (8) gives Yuln+1 = 1+ Yoy Ifn + 4 > x, then we have ¢,%,+1 > 1
and Yz, ., < L + Y2 by (9) and (10). The last inequalities imply (11).
If n + % > X, then In+1 = (2” + 1) Xn/x — In-1 > 2Xn - Xa—-1> Wthh implies

(12).
2. COMPUTATION OF RICCATI-BESSEL FUNCTIONS

Now, we shall explain why the computation of ,(y,) by upward recurrence is
unstable (stable). This fact is well known and it is presented only for the sake
of completeness.

Suppose that the values ¥, are computed by formulas (1.a)—(3.a). Owing to the
rounding error the computed values i, and the actual ones 1, are generally different.
Let §, = (1 + a,) ¥,, i.e., the relative error of the computation V,, is «,. To see the
behaviour of relative errors better we will assume that the equality i, , = (2n + 1).
u/x — ,_ holds exactly for n = N + 1 where N is fixed. Then three sequences
Wb, (ahney and ()72 are solutions of the recurrence cquation u,., =
=(2n+ Du/x —u, ;.

Since {,},-y and {y,} . y are linearly independent by (8), {1}, } -y must be a linear
combination of {y,};%y and {x,};%y, i.e., ¥, = Ay, + By, for all n = N, where A
and B are constants. From the initial conditions

lZN = (1 + OCN) Wy s
l/;N+1 = (1 + ocN+1) Unat

we obtain a system of linear equations
YnAd  + B = (1 + ay) Yy,
Uni1A + gy B = (1 + ocN+1) Unit -

The Cramer rule and relation (8) give

A=1+ (“N‘//NXNH — oyp1¥ys1xy) and
B = (“NH — ay) YWyt -

It means thatforalln = N

l/7n =y, + (“N'//NXN+1 - “N+1‘/’N+1XN) W, + (“NH - “N) UNUN+ 10
and
. (;n - Xn
o, =— — 1= (“N'//NXNH - “N+1‘/’N+1}CN) + (O‘NH - OCN) UnWyer =5

lpn l//n

Using (7) we obtain lim |o,| = oo whenever (cty.; — ay) Ya¥y+, * 0. It means

n— o

that in the general case the relative error of ¥, tends to infinity even in the case
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when the computation is exact for n = N + 1. This shows that the computation
of Y, by upward recurrence is unstable.
Now, suppose that

Z" = (1 + ﬁn) Xn forall n 2 0 and

2 1
Zn+1 = nr Zn - iu—l for all n ; N + 1.

X

Then we obtain (by the same method as before)

In = An T (/31\'+ Wadn+1 — .BN‘//NHXN) An + (ﬁN — Br+ 1) ANIN+ 1V s

In 1= (ﬂN+1‘//NXN+1 - BN¢N+1XN) + (ﬁN — By+1) XNXN-FIL/L"

Xn Xn

il

ﬁn

foralln = N.
Since lim y, [y, = 0 by (7), the sequence {f,},~ y is bounded. Moreover, there are

n—oo
constants K and L such that |,| < K|By| + L|By+4| for all n = max (x — 1, N).
We see that the computation of y, by upward recurrence is stable.
Assume that the values y, are computed for n = 0,...,N + 1 by upward re-
currence, where N is sufficiently large. Put

(13) le =0,
(14) l/71\1'—1 = 1/XN

and compute i, by downward recurrence (4). Then U, = Ay, + By, (if the rounding
error is neglected). Relations (13), (14) and (8) imply 4 = 1 and B = —iy/xy-
Hence

(15) l/;n =y, — ('//N/XN) Xn -

Take ¥, as an approximation of v,. Denote by 7, the relative error of this approxi-
mation. Then

l];n l10N}(n
16 =t ] = — YN
( ) ! wn XN‘//n

Using (11) we obtain the following theorem.

Theorem 1. The relative error vy, satisfies the inequality

(17) - .
XN(XN-H — XN)

whenever N =2 n > x — 4.
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Now, suppose that for some n, > x — % it is necessary to compute ¥, so that
[y,,ol < y where y > 0 is prescribed. We find the minimal index N such that

(18) V_XnoXno—Fl é N
XN(XN+1 - XN)

(The existence of N follows from (9.b), (10.b), (12) and (7.b).) If we start downward
recurrence from this index N, then for all n between n, and x — 1 we shall have
[] < . It follows from (10.b), (17) and (18).

We shall give another estimate of the relative error which may be used for all n.
Relation (15) implies

Vo= 0+ 22y,
AN

and

Y W

ll/n XN l/]n
Relation (11) gives
(19) Y _ ‘ < L |4

n XN(XN+1 - XN) v,

Note that |(y,/¥,) — 1| and |(,/y,) — 1] are nearly the same if one of them
is small.
Relations (16), (11), (1) and (2) yield the following estimates for y, and y,:
(20) o] < _M_,
XN(XN+1 - XN)
1 |1 + x tg x|

iltvss — w) Jtex — x|

(21) ] <

If £ > x > 0, we may use inequality (17) for the estimate of y, and y,. If x > £
we may use (20) and (21), Since xy(xy+1 — Zy) is large, |yo| may be large if and only
if |tg x| is small. (It means that y, may be large if and only if i, = sin x is small.)
But in this case Iyll is small. This shows why no multiplication is necessary.

For the absolute error of ¥, we have the estimate

lcos x| < 1

- XN(XN+1 - XN) - XN(XN+1 - XN).

A

(22) Vo — ¥l

Remark. The estimates (17), (19), (20), (21) and (22) are based on neglecting the
rounding error. They consider only the error which is caused by approximations (13)
and (14).
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The method presented here was tested on EC 1033 by the authors. No rounding
error was observed. The equalities

lj’an-Fl - l//n+ 1Xn = 1 and lpO = Sil'l X

were satisfied up to 12 significant digits.
Partial results are summarized in the table. For given x, n, denotes the minimal
n for which y, > 10'2. N is chosen so that |y, | < 107'3.

Table

x ng N
0.001 4 6
0.01 6 8
0.1 8 11
1 14 18
10 33 41
100 147 162
1000 1100 1131
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Suhrn

VYPOCET RICCATIHO-BESSELOVYCH FUNKCI{
PETER MALICKY, MARIANNA MALICKA
Clanok sa zaobera vypo&tom Riccatiho-Besselovych funkeii spitnou rekurziou. Su v fiom

odvodené niektoré nerovnosti pre Riccatiho-Besselove funkcie a odhady chyb pri numerickych
vypo¢toch.
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