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Summary. Special exact curved finite elements useful for solving contact problems of the second
order in domains boundaries of which consist of a finite number of circular arcs and a finite
number of line segments are introduced and the interpolation estimates are proved.
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1. INTRODUCTION

Curved triangle elements were introduced by Zlamal in [8]. The present paper
describes an other type of curved elements suitable for solving contact problems of
the second order in domains 2 whose boundaries I' consist of a finite number of
circular arcs and a finite number of line segments — the case very frequent in electrical
engineering and mechanical engineering. The suggested curved elements in this
paper — so called special exact curved finite elements — can be used not only along
the boundary I' but also in the interior of Q and are the natural generalization of
linear elements in the case of boundaries I described above. Special exact curved
finite elements were successfully used to solve contact problems of the electro-
magnetic field, see [1].

2. DEFINITION AND BASIC PROPERTIES OF A MAPPING F
Let Py = [x,, ¥o] be in the (x, y)-plane E,, r > 0 a constant, suppose X5 + ya +
+ 7% Let us denote K = {[x,y]€E,, x>+ y> <%}, ro= /(x5 + yo). We
define a mapping F: E, —» E, by

(1) F =

{x = Xo + v(rcosu — x;)
y = yo + v(rsin u — y,).
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Then F is a continuous mapping and its partial derivatives

0 .
() o vrsinu, Q:vrcosu,
ou ou
0x dy .
—— =rcosu —X,, —— =rsinu—y,
ov ov

are finite and continuous in E,. For the Jacobian J of the mapping F we have
J = vrrocos(u — up) —r].

The basic properties of F are given in the two following propositions.
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Fig. 1

Proposition 1. If r > r, then

(1) F maps <0, 21y x <0, 1) on K;

(2) F is a bijective mapping of <0, 2n) x (0, 1) onto K\ {P,};

(3) F is a bijective regular mapping of (0, 2r) x (0, 1) onto K \ PoP, where P,P

is the segment with endpoints Py = [X,, yo], P = [r, 0].

Proof. Let [x, y] € K. If [x, y] = [x, yo] then the corresponding [u, v] is of the

form [u, 0], u € <0, 2m). For [x, y[ #+ [xo, o] we get from (1) an equation for v
v(rg — %) + 20(xox + Yoy — 13) + (x — x0)> + (¥ — y0)> = 0.

Using the inequalities x2 + y2 < r%, x> + y? < r? we can easily prove that the
discriminant D of the equation,

D = 4{(xox + yoy = 15)* = (15 = ) [(x = x0)* + (v = »0)’I}
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is nonnegative. We can also prove that the condition 0 < v < 1 is satisfied only for
one of the roots of the equation. Further, J # 0if and only if v % 0.

If o > rlet t,, t, be the tangents to the circle k = x? + y? = r? passing through
the point Py, Ty = t; nk, T, = t, Nk, let t; be the straight line passing through
Ty, T,. Let S = [0,0], let ¢; = ¢,S, i = 1,2 be the half-plane defined by ¢, and S,
03 = t3P,. Let us denote G = ¢ N 0, N 03 N (E;NK), uy = ug-arccos rfry, u, =
= u, + arccos r[r, (see Figure 1). '

Proposition 2. If r, > r then

(1) F maps <uy, u,> x <0, 1) onto G;

(2) F is a bijective mapping of {uy, u,» % (0, 1) onto G\ Py;

(3) F is a bijective regular mapping of (uy, u,) x (0, 1) onto the interior of G.

Proof. Let [x, y] € G. If [x, y] = [Xo, yo], then the corresponding [u, v] is of

the form [u, 0], u € Cuy, u,>. If [x, y] * [xo, yo] We get again a quadratic equation
for v with the discriminant

D = 4[x*(r* — y5) + y*(r* — x5) +
+ 2X0Yo Xy — 212 xox — 212 yoy + 1’r3] .

Using the equation of the tangents t;, = R, = 0 and t, = P, = 0 we can see that
R.R, = (r* — x3) D[4 for |x,| =+ r,

= D for xq= r,

= —-D for xo = —r.

Therefore D > 0 for [x, y] € G\ P,.

From the properties of the tangents it follows that

XoX + yoy —rg <0 for [x,y]eG\P,,
XoX + Yoy = 12 for [x,y]eG.

Using these inequalities we can conclude that for both roots of the quadratic equation
in question we have 0 < v < 1. However only for one of them the corresponding u
lies in the closed interval {u, — arccos rfry, uy + arccos r[roy. For u e (uy, u,)
we have cos (u — ug) > r[ry, therefore J = vr[rqcos(u — up) — r] #+ 0 in
(uy, uy) x (0, 1).

3. TRIANGULATION OF A DOMAIN &
Let Q be a nonempty bounded domain in the plane with a lipschitzian boundary I’

consisting of a finite number of circular arcs and of a finite number of line segments.
We divide Q into a finite number of triangles T which are either curved or straight
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sided triangles. Curved triangles have two straight sides, the third side is a circular
arc. As usual we shall suppose that any two triangles are either disjoint or have
a common vertex or a common side. Such a division will be called a triangulation
of Q.

For a curved triangle T we denote by P,, P,, P, its vertices supposing that P,, P,
lie on the circular arc. By the angle of sides of a curved triangle we understand
the angle of the tangent lines constructed at the common vertex to these sides. With
every curved triangle T we associate the straight sided triangle T” which has the same
vertices Py, Py, P,. We shall deal with curved triangles of two types, namely

a) convex triangles, and

b) nonconvex triangles, see Figure 2.

Fig. 2

With every triangulation of Q we associate two positive constants a, R so that:
(1) All angles of straight sided triangles are greater than or equal to o.
(2) For every convex curved triangle:
(a) the vertex P, is inside the circle whose part is the curved side;
(b) all angles of the associated triangle T” are greater than or equal to a;
() Bo+Bi =1, o+ B, =
(3) All angles of a nonconvex curved triangle T are greater than or equal to «.
(4) The radii of the curved sides of all triangles are greater than or equal to R.

Under these conditions 1—4, we can prove by means of elementary geometry the
following properties of curved triangles:

Proposition 3. Suppose that a curved triangle T fulfils conditions 1 —4, let | be the
length of its curved side, d the maximal distance of vertices of T, and p the dia-
meter of T. Then ’

(a) dsina < I < Hd, where H = 21,/(3)/9;
(b) p < 2d/./3.
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Proposition 4. Let T be a curved triangle fulfilling conditions 1—4, let P, P, P,
be the vertices of T, r the radius of the curved side, d the greatest distance of vertices
of T. Suppose that Py = [ug, o], Py = [uy, r], P, = [us, r] are the polar coordi-
nates of the vertices, u; < u,. Then

|r = rocos (u — uo)| = (df2)sina forall ue {uy,u,).

4. CONSTRUCTION OF INTERPOLATION FUNCTIONS

Let Q2 be a domain as in Sec. 3. We triangulate it supposing that conditions 1 —4,
are fulfilled. Let us denote by P,,, m = 1, 2, ..., q the vertices of triangles of the given
triangulation. For each m we shall construct a function ¢,, defined in Q,

(pm(Pm) =0 fOI' n=+m ’ (prrl(Ptrl) =1.

Let T be an arbitrary triangle from the triangulation of Q. If T'is a curved triangle,
let r be the radius of its curved side, P;, P;, P, its vertices, P;, P; are on the curved
side, P; = [X,, yo] being the intersection of the straight line sides. We suppose that
the mapping
F= {x = Xo + v(rcosu — x,)
y = yo + v(rsin u — y,)

maps {uy, u,y x <0,1) onto T, F(u,,1) = P;, F(u,,1) = P,. Now we define
functions &;, ¢@;:

O(u,v) =1—v, ueluy,uy, vel0,1),

goi(x’ y)= (pi(F—l(x’ y))a [xr Y:IET, [X, Y] :}: Pi’

oi(P;) =1.
Since ®,(u, 0) = 1 for all u € (uy, u,) the function ¢, is well defined and continuous
in T.

Similarly we define

U — U,

Oi(u,v) =0 2, uelu,uyy, ve0,1),
Uy — U

0i(x,y) = &(F ' (x. ), [x.y]eT, [xy]+ P,

¢j(Pi) =0,

¢k(uav)=v_u—:}il" ue<u15u2>9 UE(O, 1>’
Uy — Uy

(f)k(x5 y) = (pk(F—l(xa y))~ [x: ;V] € T, [xa J’] :'i: Pi >

<Pk(Pi) =0.
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The functions ¢;, ¢, are again well defined and continuous in T. The partial derivatives
of the functions ¢;, ¢;, ¢, are

0p; _ cos u 99; _ sin u
ox  rocos(u —ug) —r 3y rocos(u — up) —r

dp; _ rsinu — yo — (u — uy)reosu

ox  r(uy — up) [rocos (u — ug) — r]’
dp; _ rcosu — xo + r(u — uy)sinu
oy r(u, —uz)[rocos(u—uo)——r]’
dg, _ rsinu — y, — (u — uy) rcosu
ox r(uy — uy) [rocos (u — up) — 1]’
dp _ reosu — xo + r(u — uy)sinu
ay Fuy — uy) [rocos(u — uy) — r] )

They are continuous and bounded (by Proposition 4) inside each triangle of the
triangulation.

Let P,, be an arbitrary vertex in the triangulation. Let us consider all triangles T
with the common vertex P,. If T'is a straight sided triangle then ¢, is a linear poly-
nomial such that ¢,(P,) = 1, and ¢, vanishes at the other two vertices of T. If T
is a curved triangle then ¢,, is one of the functions ¢;, ¢;, ¢, defined above depending
on the position of P, (i.e., relative to whether P, lies on a curved side or not). We
define ¢, = 0 on each triangle T, P, € T. From the definition of ¢, we see that
Ou(Pp) = 1, ¢,(P,) =0 for n + m, n =1,2,...,q. It is easy to verify that ¢, is
continuous in Q and ¢,, € W;"(Q).

Definition 1. Let f be a function defined in Q. The function ¢ € Wi"(Q), ¢ =

q
=Y f(Pn) @nwill be called the interpolation function associated with the function f.
m=1

Another type of the interpolation function is useful in applications, especially in
solving contact problems of the electromagnetic field. For details, see [1]
Again we suppose that the given triangulation of @ fulfils conditions

(1)—(4), but we add one more condition:
(5) in each curved triangle u, — u; < /2 is valid, u,, u, being defined by the
mapping F.
For a curved triangle T we define similarly as before
P, 0)=1—0v, uelu,u), vel0,1),
l//i(x’ y) = Ti(F_l(x1 y)) > [x, J’] € T7 [xa ,V] 7& Pi ’
l//i(f)i) = 1 ’
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qu(u’ U) = DSI_H(L‘:J;‘})’ » UE <ll1, u2> > VE <0’ 1> )
sin (uy — u,)

Vi(x.y) = ¥(F'(x.»), [xy]eT, [xy]+ P,
‘/’j(Pi) =0,

Y’k(u,v}=vﬂlu—l) uedu,u,y, vel0, 1>,

sin (uy — u;)’
‘pk(x5 y) = Ylk(F—'l(xs y))a [:xs y]ETa [x’ y] 4: Pi’
w(P) =0.
The functions v, ¥;, Y, are obviously continuous in T, their partial derivatives are
continuous and bounded in the interior of T, (we use Proposition 4).
Let P,, be an arbitrary vertex in the given triangulation. Using the same procedure
as above we define a function y,, with the help of functions y;, ¥, ¥, and linear

polynomials so that y,,(P,) = 1, ¥,,(P,) = 0 for n % m. It is easy to verify that ,,
is continuous in Q, ¥,, € W5(Q).

Definition 2. Let f be a function defined in Q. The function y € W"(Q), ¢ =

q
=Y f(P,) ¥, will be called the sine-interpolation function associated with f.

m=1
5. INTERPOLATION ESTIMATES

Throughout this section we suppose that Q is a bounded domain in the plane
with a lipschitzian boundary I’ consisting of a finite number of circular arcs and a finite
number of line segments. For functions defined in Q we shall use the usual notation
for partial derivatives

ollh
ox' oy™2
First we shall prove some auxiliary lemmas. Lemma 2 (b) is a special case of Theorem
2 in [10], but the proof presented in this paper gives better estimates, 2 (a) is proved

in [7].

Lemma 1. Let g be a function defined and continuous in {a, by, |g'(s)| < ki,
s €(a, b). Let g(e) = ko, c€(a, b). Then |g(s)| < |ko| + k(b — a).

D'h(x, y) =

s i=(in i), || =i +1i,.

Lemma 2. Let g be a function continuous in {a, b, g(a) = &, g(b) = &,, |9"(s)| <
< k, in (a, b).

Then

(a) |g(s)| £ max &) + $ka(b — a)?;

(®) |g'(s)| £ 2/(b — a) max |e;| + 1 k,(b — a).
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Proof. (b) Let us choose s, € (a, b). Then for any s ¢ (a, b) we have
g'(s) = g'(s0) + [5, 9"(&) d&,
g(b) = g(a) + [5g'(s)ds = g(a) + {5 g'(so) ds + & (f3, 9"(¢) d&) ds .

Therefore
l9'(s0)| < 1/(b = a) [|g(b) — g(a)| + |fa(F3, 97(¢) d&) ds[]

I[a([5, 97(¢) d&) ds| = [i° |13, 97(¢) gl ds + 5, |[3, 97(€) d¢fds <
< ky [R(fe dE) ds + ky 2[5, d&) ds = 1ky[(so — a)* +
+ (so — b)*] £ 1ky(b — a)*.

Combining these inequalities we have
2

g'(so0)| =
o0l 552

Remark 1. Let @ be a bounded domain with a lipschitzian boundary, f{(x, y)
a function defined in Q. Suppose that fe C(Q), |Df| £ M,, |i| = 2. Then there
exists a constant M > 0 such that |[D'f| £ M, in @, ]i| = 1.

and

max (g, &) + ks (b —a).
a 2

Lemma 3. Let T be a curved triangle, r the radius of the curved side. Suppose
that T fulfils conditions 1—4. Let f be a continuous function in T, |Df| £ M,
in T, H = 2. Suppose that the mapping

_ fx = x4+ v(rcos u — xg)
Ty =yo +v(rsinu — y,)

maps {uy, u,» x <0,1> onto T.
Let us denote by d the greatest distance of vertices of T. Then
f| azf

P < o(4Myr? + 2M 1),

? 8 Mya2,

where M, is the constant from Remark 1.

Proof. Let us denote by p the diameter of T. Using Proposition 3 we have

(26- =]—vrsinu|§ru, 6_y <rv,

du du

O0x 2 dy 2d
—|=lrcosu — x| Eps—d, | -|SEp=—,
w ~| o 37 Jow J3
2 2

Z_); = |-vrcosu| £ rv, %—{- <,

u u

2x 2] _ '

| |ov? '

An easy computation gives the estimates in Lemma 3.
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Lemma 4. Let g(u,v) be a continuous function in {u, u,» x <0, 1), suppose
that there exist constants N,, Q, > 0 such that

d%g

ov?

9 <N, , 20, in (uy,uy) x(0,1).

Further we suppose that g(u,0) = 0 for all
ue<u]9 U2>, g(ul’ 1) = g<u2> ]) = 0

Then
(a) ig(u V)| £ $N5(uy — uy)? + 30,5, uelu,uyy, ved0,1>;

(b) |- S[L+&(u2—ul):|v, ue(up,uy), ve(0,1);
T Lur —uy 2

%

(c)

§Nf(uz—tt1)2+%’ ue(uy, uy), ve(0,1).

Proof. (a) Let us choose ¢ > 0. There exists 6~ > 0 such that |g(u;, 1 — 8)| < ¢,
lg(uy 1 = 8)| S & for all >0, 6§ <5 . Let [ug,vo] € uy,uyy x 0,1 be
arbitrary, § < 6. The function h(u) = g(u, 1 — 6) fulfils |"(u)| £ vN, and using
Lemma 2 we get the inequality

[h(u)] < & + $uNy(uy — ug)®, uweug,uyy.
In particular

lg(ug, 1 — 8)| < & + FuNy(uy — uy)?.
For 6 — 0 we have

|g(uo, )] = 40No(uy — uy)?.

For the function k(v) = g(uo, v) we use Lemma 2 obtaining

|k(v)] < 40No(uy — u,)> + 405, vel0,1).
Finally,

910, 20)] = N3z = 1,)* + 405

(b) Let us choose [uo, vo] € (uy, uy) % (0,1), & > 0. There exists 6~ > 0 such
that |g(u, + 6, 1)| <&, |g(u, — 8, 1)| < & for arbitrary § < . Let § < 6. For
the function k(v) = g(u; + 6, v), ve <0, 1) we have

k) = a0+ |28 Gy + 0,90
¢ e (0, 1) if we use a Lagrange interpolation polynomial of the first degree.
Therefore |g(u; + 8, v)| < ev + (Q2/2) vand for § — 0, |g(uy, v)| < (Q2[2) vforall
ve 0,1). In particular, |g(uy, vo)| £ (Q2/2) vo. Similarly we get |g(u,, )| < (Q2/2) vo.
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Using Lemma 2 for the function h(u) = g(u, v,), u € {uy, u,) we obtain an estimate

0g
—= (ug, v
]auu )

, 2
= !h (“O)I = -‘Q“z Vo + %Uon(uz - u1)-
U, —u; 2

(c) Again let [ug, vo] be in (uy, u,) x (0, 1). From the proof of part (a) we know
that |g(uo, 1)| < (N2/8) v(u, — u,)2
Applying Lemma 2 to the function k(v) = g(uo, v), v € <0, 1) we have

og
— \Up, U
6v(° 0)

N 1 N 1
<2200(uy —u)? +-0, £ 2 (uy —u)* +-0Q,.
8 0(2 1) 2Q2 4(2 1) 2Q2

Theorem 1. Let T be a curved triangle satisfying conditions 1—4, Sec. 3, let f be
continuous in T, |D'f| £ M, in the interior of T, |i| = 2. Let ¢ be an interpolation
function associated with the function f (see Definition 1). Then there exist constants
¢y, ¢ > 0 independent of T such that

(1) If —¢|Scd® in T,
(2 |DI(f — @)| < (cofsine)d in the interior of T,
where o is the smallest angle of T and

d the greatest distance of vertices of T.

Proof. Let r be the radius of the curved side of T, Py[x,, yo], Py, P, vertices of T.
Let

Fo X=X+ v(r cosu — x,)
y = Yo + v(rsin u — y,)

maps {uy, u,> x <0,1> onto T.
Let M, > 0 be a constant, [D'f| < My, |i| = 1in T(see Remark 1). We have

p; _ 0%p;

o = g =0 i () x (0.1, j=1,23

and using Lemma 3 for the function g(u, v) = f(x(u, v), y(u,v)) — @(u, v) we
conclude

2 2
B 92 < o(4Myr? + 2My7), IZ_% < 1_6M242 .
v

ou

Further, g(u,0) =0 for all ue {uy, u,), g(uy, 1) = g(u,, 1) = 0. Therefore the
function g satisfies conditions of Lemma 6 with constants

N, = 4Myr* + 2Myr, Q, = M,d*
and this lemma implies

lg(u, v)| < #(uy — uy)? (4M,r* + 2M7) + 3M,d* .
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Proposition 3 and the equality I = r(u, — u,)* give

2 2
lg(u, v)| = %I:M2(6H2 + 1) + M H ] , where H = 2n'—\—/9§ .
Since max [g(x, y)| = max |g(u, v)|, (1) of Theorem 1 is proved with
[x,y)eT [u,v]euy,uz2)x<0,1%
a constant

2
c1=i M2(6H2+1)+3M—‘}—{— .
12 R

To prove (2) we use again Lemma 6 and Proposition 3 obtaining estimates for D'g,
li| = Lin (uy, uy) x (0, 1):

59 <o [ 2, +&(u2——u1):|§

ou U, — Uyq 2

Svd|2M,r H + 8 + MH |,
3sina

2
% N2 (uy —uy)® + QZ <d*|M,(H?* + 8 + M. H .
v 3 2r

If J denotes the Jacobian of a mapping F, then

@ 8g 6‘y 6g _62
0x ou v 60.614

o9 _1(_2g ox o ox
ay J u v dv ou)
Again we use Proposition 5 and the inequality

|rsinu - Yo S—d

<5

£ — d M, J__+H2+g +
sin \/3 3\/(3)sinoc 3
2
(2 I
R/3 2R sin a

and we conclude

9
0x

Analogously

1 l sm o
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Corollary 1. Let Q be a bounded domain in the plane with a lipschitzian boundary
I consisting of a finite number of circular arcs and a finite number of line segments,
let Q.= \J T; be a triangulation of Q satisfying conditions 1—4, Sec. 3. Suppose

that f is a continuous function in Q, |D'f| £ M,, |i| = 2 in Q, ¢ is an interpolation
Junction of f. Then there exist constants kq, k, > 0 such that

I/ = ¢lee < Kkid?,
i k,
“D‘(f - (P)“Lz(!)) £ —=d,
sin o

where o is the smallest angle,
d the greatest distance of vertices in triangles T;.

Proof. We use Theorem 1 and the well-known estimates for straight sided
triangles (see [3]). We denote by ¢, the maximum of the constants ¢, from Theorem 1,
similarly for ¢,. Then

”f - (/)“iz(ﬂ) = [o If - (plz dxdy =
= Y ir,|f = o dxdy = 3d* % [, dx dy = (@) cld*

i

2
C; wQ)d*.
o

ID'(f = @)y = Jo [P/ — @) dx dy < sin
Theorem 2. Let T be a curved triangle satisfying conditions 1—5, Sec. 3, let f

be a continuous function in T, |D'f| £ M, |i| = 2 inside T, the sine interpolation

Sfunction of f. Then there exist constants ¢, ¢, > 0 independent of T such that

(1) If —V¥| £ cd® in T;
@) IDI(f — ¥)] £ —2-d inside T,
sin o

o being the smallest angle of T,
d the greatest distance of vertices of T.

Proof. We denote by r the radius of the curved side of T, Po[xo, yo], Py, P> ver-
tices of T.
Let

I

For=x+ v(r cos u — xq)
y = yo + v(rsin u — y,)
be the mapping of {u,, u,» x <0, 1) onto T.

We have
Py _ Py _ vy _ s,
wr ot w* ov? ’
M, wvsin(u—uy) 3%, wvsin(u — uy)
ur sin (uy —uy)” ou? © sin(uy — uy)
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and because |u, — u,| < /2 we get the estimates

2 2
Y, 0%, <
ou? ou?

lIA

v,

Now we use Lemma 5 for the function g(u, v) = f(x(u, v), y(u, v)) — ¥(u, v) and we
get the inequalities

gﬁ < o(4M,r2 + 2M 7 + 231)
u

g
ov?

31—36M2d2,

where B, = 2 max |f(x, »)|, M, is the constant from Remark 1. Further, g(u, 0) = 0

for u e {uy, u2>, gluy, 1) = g(uz, 1) = 0, therefore the function g satisfies con-
ditions of Lemma 6 with constants

N, = 4M,r? + 2M,r + 2B,, Q, = 1M,d>.
Using Lemma 6 we get (with H = (2/(3)/9) ):
lg(u, v)| < 3(4M,r* + 2M 7 + 2By) (u, — uy)® + 3M,d* <

2 2
My g 3B < d—M2(6H2 +1) +
r r? 12

2

d
<< m, 60 + 1) + 221
12[ 2 )

+

3M,H? N 3B,H?
R Rz |’

lIA

31

@' » 16M,d*r
Ou|

+ (2M,r* + M,r + B,) l] <
-

B,
§vd[2M2r< 8 +H>+MH+—I£:|
3sin o r

2
= =< M2r2+Mr+ l—+8M2d2<
2 2/

3

2 2
< d? H2 42 M2+M‘H + B
3 2r r?
Now we use the inequalities [rsin u — y,| < (2/y/(3)) d, |r cos u — xo| = (2/J(3)) d

Propositions 4, 5 and the equality I = r(u, — u,)?, obtaining

9| o C
oyl —

99
0x

c
<24,

= _d’
sin o

sin o
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where

C2=4|:M2( 32 +iH+H2+§>+

ENCITTRING
(S 2) 2 (G )|

Corollary 2. Let Q be a bounded domain in the plane with a lipschitzian boundary
I consisting of a finite number of circular arcs and a finite number of line segments.
Let @ = \J T; be a triangulation of Q satisfying conditions 1—5, Sec. 3. Let f be

i
a continuous function in Q, |D'f| = M,, |l] = 2in Q, let y be the sine-interpolation
function of f. Then there exist constants K, K, > 0 such that

If = ¥llrae < Kid?,
ID'(f = ¥)||Laey £ ﬁ d,
sin o

where o is the smallest angle and
d the greatest distance of vertices in the triangles T;.

Proof. Similar to the proof of Corollary 1.

Theorem 1 and 2 enable us to prove the convergence of the finite elements method
for second order boundary value problems if we use interpolation functions from
Sec. 4 in this method. The proof follows the standard procedure described for
example in [3].
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Souhrn

SPECIALNi EXAKTNI ZAKRIVENE KONECNE PRVKY
JitkA KifZkovA
V &lanku jsou zavedeny specialni exaktni zakfivené elementy, které jsou vhodné pro feSeni

kontaktnich problému druhého ¥adu v oblastech, jejichZ hranice se skladaji z koneéného po&tu
kruhovych oblouku a useéek. Pro tyto elementy jsou dokazany interpola&ni odhady.
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