Applications of Mathematics

Vladimir B. Kameni
Wave equation with a concentrated moving source

Applications of Mathematics, Vol. 36 (1991), No. 3, 181-186

Persistent URL: http://dml.cz/dmlcz/104458

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104458
http://dml.cz

36 (1991) APPLICATIONS OF MATHEMATICS No. 3, 181186

WAVE EQUATION WITH A CONCENTRATED MOVING SOURCE

VLADIMIR B. KAMEN

(Received January 10, 1989)

Summary. A tempered distribution which is an exact solution of the wave equation with
a concentrated moving source on the right-hand side, is obtained in the paper by means of the
Cagniard - de Hoop method.

Let x = (x, y, z) be a point in the Euclidean space R*, 7€ R', let #*(R® x R')
be the tempered distributions space, §(+) and H(-) the Dirac function and the
Heaviside function, respectively.

We also use the notation R = /(x* + y* + z?), r = /(x> + y?), and fix the
radical branch by the condition /1 = 1.

The purpose of this paper is to obtain the solution u(x, t) e #*(R* x R') of the
following Cauchy problem

(1) I:A - 56:—2] u(x, 1) = —(x) 8(y) 8(nt — z) H(z) H(x) ,

(2) u(x,0) = uyx,0) = 0.

Physically the right-hand side of (1) describes the concentrated moving source,
which at the moment © = 0 ,,switches on” and starts to move with the speed n + 1
from the origin of coordinate to + co along the positive z-axis.

The Heaviside functions in (1) distinguish the problem, considered here, from
similar problems, described in [1, 2], where concentrated source 3(x) §(y) d(nt — z)
moves along the z-axis from — oo to + (conditions (2) are of course not satisﬁed).

Applying the usual integral Laplace transform with respect to 7 in (1) and denoting
U(x; p) = L[u(x, t)], then applying the integral Fourier transforms with respect
to x and y with the kernels ¢'?**, e'””” respectively (according to [3]) and denoting
U(z; o, B, p) = F,,[U(x; p)], we obtain (taking (2) into account):

(3) CO oo - _"HE)
dz? n

~

where
Y= +a®>+p* (Rey=20).
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It is easy to find the solution of (3) which is continuous at z = 0:
~pz/n = pylz| = pylzl(gi
@  Omapp--T G, TR e PG D),
P(L=n*%)  2p%(1 = %) 2p%(1 — n%y?)
For brevity we denote the terms in (4) by U, U,, U,, respectively.
The inverse Fourier transform of U, is applied in the usual way:

~py ©  qip(ax+py) 2
(5) Ue;p)= =1 2H(Z)_U e p?dudp
it J) a1 — (L + o2 + B2)

Substituting x = rcos ¢, y = rsin ¢, « = gcos 0, B = gsin 6 in (5), using the
well-known representation of the Bessel functions

IAA:tﬁi[Wm%mthOn=QLL“)
T Jo

and the appropriate formulas from [4], we obtain

H___(z) e MK, (pr \/(1 — —1—2)) , n>1,

2nn n

—H———(Z)e—”z/" Y, [ pr i— 1) , O<g<l1,
4n n’

where K, and Y;, are the McDonald and Neumann functions, respectively.

To find the inverse Fourier transform of ¥, and U, we will use the idea of the
Cagniard - de Hoop method [3]. We will show this technique only for U, (the term U,
is treated in the same way). So,

o = pL(1 +a2+p2)112|z] +i(ax+By)]
(7) Us(x; p) = — 1 e dt;cdﬂ .
sn2 )], (L+ a2 + B)2[L — (1 + @ + )]

Substituting « = (wx — gy)[r, B = (wy + gx)[r, s = iw in (7) we obtain

(6) Uy(x; p) =

i kS i e~ Plsrtlzl(1+a2=s2)1/2] 4.
8 Uy(x;p) = — —— d )
(8) 2(x; p) anin? f_w q.[-m 1+ q>=sH)"2[* =1+ ¢* = 1/n%)]

It is obvious that the interand in (8) (denoted by &(s)) on the complex plane S
has algebraic branching points

sy = x>+ 1),
and the first-order poles

9) s, = /(1 +q*—1/n*) when #>1,

or

(10) S+={ii\/(1/n2——1—-q2), 0<gqg<.(n*-1), 0<n<1,
Tl VU + @ =), g> YU - 1), 0<n<l.
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Now, to determine the unique radical branch let us make cuts (s, , — o), (s5, + )
along the real axis, and then, following [3], find the contour I' in the S-plane,
described as follows (Fig. 1):

-~ ®
\\
0.
G
-
N SB
M
/
//// Fig. 1.
_ 1 2 RZ__ 2
Tr |Z|\/((R‘z‘1) T), IZI\/(1+£12)<T<R\/(1+(12),
11 S =
(1) wr % ilz] /(x> — (1 + ¢%) R?)

e >R,/ + ¢%),

along which the expression
(12) t=sr+ |z| J1 + ¢* = 5?)
should be real.
The general idea of the Cagniard - de Hoop method is to replace in (8), by means

of the well-known Cauchy theorem and the Jordan lemma, the integral along the
imaginary axis by an integral along I" (more precisely, along the curve MN Q) with

respect to the variable 7, of the following kind
A(t; q) e P dr
RY(22+1) B(t; q)
in order to represent it as a Laplace transform of the function
A(z; q) H(t — R /(g% + 1))
B(z; q)

The main difference between the “classical” treatment [3] and ours is that in the
problem considered both in the supersonic (n > 1) and subsonic (0 < < 1) cases
the integrand possesses poles, the positions of which depend on ¢ (i.e., on the variable
of the external integration in (8)), so that according to (9)—(11) the integrand &(s)
may have two, one or no pole inside the region G (Fig. 1).

Remark that it turns out that these are the poles which give us most of the in-
formation about the solution’s front.

w(q) =
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It is easy to see that

1) if {either [(n > 1) and (R/n|z| > 1) and (0 < q < \/((R/nz)* = 1)) or
[(0 <y < 1)and (/(1/n* = 1) < q < /((R[nz)* — 1))]} then (0 < s} <'s,),
i.e., the integrand’s pole s, € G;

2) if {either [(n > 1) and (R[n|z| < 1)] or [(n > 1) and (R/n|z| > 1) and
(g > J((Rnz)> = 1))] or [(0<n<1) and g > /((R/nz)> = 1)]} then
(s, >s,), i.e., the integrand’s pole s, ¢ G.

Besides, from (10) we see that when 0 < 7 < 1 and 0 < g < /(1/n* — 1) both
of the integrand’s poles are imaginary, so in this case the internal integral in (8)
should be considered in the sense of the principal value.

Taking all this information into account and doing all the necessary procedures

accompanying the usage of Cauchy theorem, we transform (8) to one of the following
forms:

1 [ R
(13) - — W(q)dg, n>1, 0<-—— <1;
2n°n” Jo |z
1 V((R/nz)2=1)
(14) - {t  Res  &(s)+ W(q)} dg —
21-; n Jo s=(q>+1-1/n?)
1 (* o0

R
55 W(g)dg, n>1, — >1;
21°n° ) yrimaz-1y n|z]

1 vam-n

(13) T 22 {n Res O(s) + Res ?(s) +
A Jo s= =iVt =1-¢%) s=iv(/n2=1-g2)
+W@)da - o | W(a) da -
20707 ) ywime- 1
1 V((R/nz)? = 1)
= {r Res a(s) + W)} da.
S VICVILERY s=V(@2+1-1/n2)
where
W) = [ A, g)e " de
rv@+y Bt q)
and
(16) A(‘r, Q) = I%IZT {nzrz[rz —-(¢* + 1) R2] + n2z4? — R“} )
2 2 2
B(r, q) = /e (‘;6+ LR {(R* — nlz| )* + n*r*[z* — (¢* + ) R*]} x
x {(R* + n]z] ) + n2?[c? — (¢* + 1) R*]} .
Since

e Plizi/ntry(1+q> = 1/n%)]

n
Res P(s) =
s=v(g2+1-1/r) ) 2./ + q* = 1[p?)
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then applying the substitution t = |z|/n + r \/(1 + ¢* — 1/4?) to the corresponding
integrals in (14), (15) we obtain for (14):

1 V((R/nz)>=1)
(17) ST ZJ T Res o(s)dg =
2nn* Jo s=V(Q2+1-1/n2)

N DN B B
0 2w /((nr = |2])* = r*(n* — 1))
and similarly for (15):

1 (Y(Rm2=1)
(18) T o2 2‘[ T Res ¢(s) dg =
2n*n V(1/n2-1) s=J(g2+1-1/92)

_ *[H(r — |zl/t1) — H(t — R2/11|z|)] e P dr
o an J((nt — lzl)2 + r*(1 = »?)
(the Heaviside functions in (17), (18) are used for chaning the original integration

bounds to (0, )).
Then, since

Res o(s) + Res o(s) =
s=-iv(1/m2=1-g?) =iVl =1-g2)
__ne P Wnsin (pr J(1/n* — 1 = ¢?)
Vit =1-q°)
we obtain in the subsonic case (using [5]):
J"/W"z"l) sin (pr /(1/n* — 1 — ¢?)) dq _
0 V(= 1-q%
where H,, is the Strouve function.
Before we deal with the iterated integrals in (13)—(15), let us notice the following:

i) to simplify all the subsequent procedures we may consider the Laplace transform
parameter p real and positive (cf. [6]);

B

g H, (pr/(1[n* - 1)),

ii) the similar iterated integrals in (14), (15) cannot be united into one integral
with respect to g, since (as is easy to see) in the cases

0<qg<J((Rnz)* = 1) and /((Rnz)* —1)<g< o

the radicals contained in the integrand have opposite signs;

iii) the possibility of changing the order of integration in (14), (15) is almost
obvious;

iv) the integral [[A(r, q)/B(t, q)] dg with the functions (16) may be found
analytically.

So, taking into account i)—iii), calculating the integral in iv), applying [7] to the
inverse Laplace transform of (6), (19), and noticing that

1 + signz = 2H(+2z)
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we obtain for u(x, v) = u,(x, t) + u,(x, ) + us(x, 7) after elementary but tedious
calculations:

in the supersonic case (n > 1)
H(z) H(x — zn = r /(1 = 1/n*)) _ H(z — R) [H(z) - H(-2)]
2w (e = 2)* = r’6r* = 1)) Anf(Gre—2)P = = 1)
H(t — R)
an /(e = 2)* = r*(n* 1)’

2) in the subsonic case (0 < 7 < 1):

H(z — R)
21 i(x, 1) = .
) (v.7) an /(e — 2)* + r*(1 — n?))
It is obvious that
supp i(x, 7) = {(x, 1) e R* x R": 0 < R < 1},
supp #(x,7) = {(x,7) e R* x R': t > R > n|z|} U
u{(x,7)eR x R': 220, 7> zln+r /(1 —1/n*), 0 <R < nz} v
U{(x,7)eR* x R': 2 <0, 0 <R <z} .
Remark that the solution (20) is discontinuous at the points {(x, 7)€ R* x R':
t=R,z>0,0<R<nz}
Using the well-known technique of differentiation of homogeneous distributions

and distributions supported by a cone [8] one can check that the functions (20)
and (21) satisfy (1) and (2).

(20) d(x,7) = 0<R<nlz|,

R>11|z|;
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