Applications of Mathematics

Jan Lovisek
Optimal design of laminated plate with obstacle
Applications of Mathematics, Vol. 37 (1992), No. 5, 321-342

Persistent URL: http://dml.cz/dmlcz/104514

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104514
http://dml.cz

37 (1992) APPLICATIONS OF MATHEMATICS No. 5, 321-342

OPTIMAL DESIGN OF LAMINATED PLATE WITH OBSTACLE
JAN LoVIiSEK

(Received February 20, 1989)

Summary. The aim of the present paper is to study problems of optimal design in
mechanics, whose variational form is given by inequalities expressing the principle of virtual
power in its inequality form. The elliptic, linear symmetric operators as well as convex sets
of possible states depend on the control parameter. The existence theorem for the optimal
control will be applied to the design problems for an elastic laminate plate where a variable
thickness appears as a control variable.
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INTRODUCTION

In this work we introduce an abstract framework for the theoretical study of
the thickness optimization in the variational inequality context. As already the
name implies 1t is devoted to the problem of finding the optimal thickness of a
laminate plate. The omnipresence of plates and plate-like structures in modern
technology is well known and needs no particular elaboration. Whether the concern
is with aircraft and missile surface (skin) components, reinforced concrete floor slabs,
glass-window panes, electric circuit boards, or certain layered geological formations,
engineers and analysts are frequently called upon to predict deformations. stresses
of elastic plates. We introduce an abstract framework for the theoretical study of
the thickness optimization in the variational iequality context. Thus, we consider
an optimal control problem in which the state variable of the system (which includes

an elliptic, linear, symmetric operator, the coefficients of which are chosen as the
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design-control variables) is defined as the (unique) solution of a variational inequality.
We give sufficient conditions for the existence of an optimal control. The most
characteristic property of the variational inequalities is that their solution does not
depend smoothly on the control, i.e. one cannot differentiate the solution of the state
problem with respect to the control. This may lead to complications especially in the
design of the solution procedures since the objective functional will not be smooth.
The existence result proved in Section 1 can be applied to the optimal design of an
elastic laminate plate with a rigid obstacle. The problem is formulated and solved
in terms of the plate displacernent components, an optimal design problem of a
laminate is introduced and investigated. The role of a design variable is played by
the thickness of the faces. The optimal control for a system, governed by an elliptic
variational inequality, was proposed by J. L. Lions [13] and discussed in Mignot [15],
V. Barbu [3], S. Shuzhong [24] and F. Mignot and Puel [16], J. P. Yvon [23].

1. ON THE CONVERGENCE OF SETS
Let V() be as normed linear space. Following Mosco [17] we introduce a conver-
gence of sequences of subsets of V().
Definition 1. A sequence {K,(2),} of the spaces V(2) converges to a set
K(Q) c V(Q)if

1° K(Q) contains all weak limits of sequences {un, }n,, tn, €

K,,(Q), where {K,, (2)} are arbitrary subsequences of

{Kn()};
2° every element v € K(Q) is the strong limit of some sequence
{vn}, vn € Kn(Q).

Notation. K(f2) = Lim K,(Q).
Let #: V() — (—o00, 0] be a functional. The set

epi? = {(v,8) € V() x R: #(v) < 8}
is called the epigraf of #', and the effective domain of #  is a subset of V(2),
D# (or dom#) = {v: #(v) < +o0,v € V(Q)}.

Moreover, the subdifferential 8% is an operator from V() to V*(£2) given by
oW (z) = {z* € V*(Q), (*,v—2)v(q) < #(v) =¥ (z) for all v € V(Q), for z € V(Q)
with #/(z) < co and by 8% (z) = 0 for z € V() with #/(z) = oo}.
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Definition 2. A sequence {#,} of functionals from V() into (—o0, 0] con-
verges to W : V() — (—o0,00] in V(R), if epi® = Limepi#,. We use the
n— 00
notation ¥ = Lim %#,,.

n-—00
Let us recall the following lemma of Mosco on the convergence of functionals in

V(9).

1° For every v € V() there exists a sequence {vn,} C V() such
that l_i_{n sup #,(va) < #(92).

2° For enve:; subsequence {#,,} of {#,} and every sequence
{vr} C V() weakly convergent to v € V(Q2) the inequality
W (v) < nli_‘rglo inf %, (vx) holds.

Lemma 1. Let #,,: V() — (—o0,00], n =1, 2, .... Then # = Lim #;, and

one of the following conditions holds: e
( 1° For every v € V() there exists a sequence {v,} C V() such
that nlixgo vn = v (strongly) in V() and nlir{.lo sup %, (vn) <
w(Q).

< 2° For every subsequence {#,,} of {#,.} and every sequence
{vk} C V() weakly convergent to v € V(Q) the inequality
#(v) < nlixlgo inf #,,, (vi) holds.

\

We shall denote by &(V(2)) the family of all lower semicontinuous convex func-
tionals # : V() — (—o0, 00], not identically equal to +co. Moreover, & (V(R)) is
a subset of the family &(V(R)) of all Is.c. functionals, # : V() — [—00, +00].

Remark 1. Due to the previous lemma the condition # = L1m #; implies
that for every v € V() there exists a sequence {v,} C V() such Lhat lim v, = v
n—oo
(strongly) in V(Q) and lim %, (vn) = #(v).

Let U(Q) be a reflexive Banach space of controls with a norm ||.[lun)- Let
Uad(Q) C U(R) be a set of admissible controls compact in U(Q). Further. denote by
V() a real Hilbert space with an inner product (.,.)v(q) and a norm ||.|lv(a). by
V*(Q) its dual space with a norm ||.||v+(q) and with the duality pairing (.. .)v(q)-

Let constants go, 01 (0 < go < 1) be given. We denote by E(go,¢:1) the class
of the linear, continuous and symmetric operators &: V(Q) — V*(Q2) such that
eollol ) < (970, 0)v ) < e1llollE oy for all v € V().

We introduce the systems {# (e, )}, {A(e)} of convex closed subsets ¥ (e, ) C
V(Q) and linear bounded operators A(e) € L(V(Q). V*(Q)), e € Uaa, satisfying the
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following assumptions:

(1° [ X (e,Q)#0;
e€U,a(2) .

2° e, — e (strongly) in U(Q) = (€0, ) = nL_i.To X (en,Q);

3° [JA(elL(v(ayv-(a) < M for all e € Uag();

(H1) 4° (A(e)v,v)v(q) = a[|v”%,(n), a > 0, forall e € Uaq(R) and
v € V(Q) (a real number o not depending on e and v, A(e) is
said to be uniformly coercive with respect to U(2));

5° e, — e (strongly) in U(R2) = A(e,) — A(eo)

| in L(V(), V(D)) en € Uaa(9).

Thus, by virtue of ((H1), 3°, 4°), A(en), n =1, 2, ... and A(eg) are elements of the
class E(a, M) for each sequence {e, }n, where e, — eg (strongly) in U(Q).

Moreover, we suppose:

(

1° There is a system of functionals {®(e,,.)}, on V(2) with val-
ues in (—o0, 00] (not identically equal to +00) semicontinuous
and convex on V(R2), {v e V(Q): ®(en,v) < 00} C ¥ (en,RR),
®(e,.) = Lim ®(en, .) as e,, — e (strongly) in U(Q).

2° {L(en)}"nisoz sequence in V*(Q) such thast L(e,) — L(e)
(strongly) in V*(Q2) as e, — e (strongly) in U(Q).

Further we assume that for each sequence {e,}, e, — e (strongly) in U(Q) there
is a bounded sequence {a,}, with a, € #(en,Q) and ®(e,,a,) < oo for all n,
en € Uad(Q2) such that

(1.1) lim sup ®(e,, a,) < co.

n— 00

There exist two possible constants ¢y, ¢ such that for each sequence {en}, €n — €
(strongly) in U(S2),

(1.2) ®(en,vn) 2 —cillvnllvig) —c2 forn=1,2,... (see [18]).

Then, since A(e,) € E(a, M) for any sequence of pairs {[en,vn]}n, en € Uad(f2),

n=1,2 ... with|lva|]lv(n) — oo and e, — e (strongly) in U(2) we have

(13) &A(en)vn,vn — an)v(q) + P(en, vn)] e
”vn”V(n)
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Moreover, for each n

[(A(ea)v,v — an)va) + B(en, )] |

1.4
(14) llvllv(a)

as ||v|lv(q) — o0, v € X (en,2) where e, € Uaq() is arbitrary but fixed in U,y4(Q),
en € Uad(R),n=1,2, ... and A(es) € E(a, M).

Remark 2. By virtue of ((H1), 3°, 4°) and (1.1) we can write
[(A(en)vn, vn — an)v(a) + ®(en, va)] > ellvn — anll} () = callvn = anllv(a) = ca

where a, is bounded in ¥ (en, ) (n = 1,2, ...) and when |Jva]lv () — oo then also
llvn — anl|lv(@) — co. In a similar way (for each n) we obtain relation (1.4).
Let B € L(U(Q),V*(R)), f € V*(R). It is well known [3] that for every e € U,4(R2)

there exists a unique solution

{ u(e) € ¥ (e, Q)
(1.5)
(A(e)u(e), v — u(e))v () + (e, v) — B(e, u(e)) > (L(e),v — u(e))v(a)

for all v € ¥ (e, ), where L(e) = f + Be.
Further, consider a functional &: U(Q2) x V() — R for which the following
condition holds:

- en — € (strongly) in U(R), va — v in V() (weakly) =
(E2) = Z(e,v) < lim inf Z(en,vn).

We shall formulate the optimal control in the following way:

Problem (%)). Find a control g € Uaq(f2) such that

(1.6) (A(eo)u(eo), v — u(eo))v(n) + ®(eo, v) — ®(eo, u(eo))
2 (L(eo), v — u(eo))v(qy for all v € X (e, ),

(1.7 % (eo, u(eo)) = eEr[}l‘idlzm.i"(e,u(e)).

Theorem 1. Let the assumptions (H0), (E1), (E2), (1.1), (1.2), (1.3) be satisfied.

Then there exists at least one solution eq of the optimal control problem (o).
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Proof. As the soluticu u(e) of the variational inequality (1.5) is uniquely
determined for every e € Uaq(§2), we can introduce the functional J(e) as

(1.8) J(e) = L (e,u(e)) e € Uaa().

Due to the compactness of U3q(€2) in U(S2), there exists a sequence {e,} C Uaq(R)

such that

(1.9) nl-ll]c}o J(en) = eellll.)j(ﬂ)J(c)'
(1.10) lim e, = ¢ inU(R), e € Uag(Q).
n—00

Denoting u(e,) := u, € #(e,,,2) we obtain the inequality

(L.11)  (A(en)un, un — v)via) — (L(fn), un — v)v(a) < (en, v) — ®(cn, uy)
for all v € ' (en, ).

In particular, taking a, for v in (1.11) we obtain

(]12) (A(’n)“u - L(f?,, )v Uy — an)V(ﬂ) + (I’(c,,, un) < ¢((Tn . ‘ln)

for exery n

Hence the relations (1.1), (1.3) and ((£1).2°) imply that {u,}, is a bounded se-
quence. This tmplies the existence of a subsequence {uy,, }x of {u,}, and an element

ug € V(§2) such that

(1.13) Uy, — g (weakly) in V(Q).

As u,, € H(ey, . $2). the assumption ((H1), 2°) nmplies

(1.14) ug € .¥ (0. 92).

Then we observe from Lemuna 1, ((E1), 1°), (1.1) and (1.2) that

(1.15) ®(eq, up) < Llim inf ®(en,, un,)
< L““] Sllp{d)(enk‘unk) - (A(enk)unk - L(enk)‘ Upy - ”nk)V(L }
F— 00

<
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si*. by virtue of the monotonicity of A(e,, ) onc has

[("(ﬂnk JUn,, @n, — unk)V(n)i

< (A(”nk)“nw“nk)V(n) + I(A(f’nk)“nwunk)V(ﬂ)l
< 2Mc?,  where |

tnllviay, llandlv@) < e

On the other hand, by virtue of Lemma 1, ((E1), 1°) and Remark 1 there exists a
seqience {hn, }p C V() such that h,, — ug (strongly) in V(£2) and

i1 16) klim D(en,, hn,) = ®(eg, up).

Ilere, note that h,, € X (en,, ) for all k, which follows from the assumption ((E1),
1°) and (1.15), (1.16), so that

(117) <A(€nk)unk - L(enk)Y Un, — hnk)V(ﬂ) < (I)(C',,,k, hnk) - (l)(fr’n* y uru)
for all &

Moreover, from ((H1), 3°) and (1.13) we obtain
(1.18) [[A(en, ) tnyllven) <C  fork=1,2,....

Then there exists an element x € V*(Q) and a subsequence {A(enk])u,“ }; of
2

{A(en, )un, }& such that
(1.19) A((:nk] )u,,kj —x  (weakly) m V7(Q).
Thus, by passing to the limit in (1.17) we have

lim sup (A(en, ttn, ,Un,. — Uo)
J]—0 J J 7

(1.20) < jl_i‘lgjsup(A(enkJ)unk] - L(enkl), Uny, = hvuj)v(ﬂ)

< lim sup ®(en, , hn, ) — lim inf (e, ,un, ) <0 for all j.
j—o00 7 7 j—o00 j b

However, combining the relation (1.19) with the inequality (1.20) we arrive at

(1.21) lim sup(A(enkj)unkJ,unk,)vm) < (X wo)v(a)-

J—00

Moreover, the monotonicity of A(en, ) on V() (A(e”k]) € E(a, M), j=1,2 ...)
implies (in view of (1.21))

(122) (X, uo)v(n) ? ]h—fxclo SUp[(A(an] )‘U, unk’ - ’U)v(n)

+<A(enk]-)unkjav)V(ﬂ)]y ]: 1,2,....
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Relations (1.10), (1.13), (1.19) and ((H1), 5°), (1.22) enable us to write
(x — A(eo)v,uo —v)v(q) 2 0 forall v e V(Q).

Let v = ug + t(w — up), t € R* and w € V(). Then we get
(1.23) {x — A(eo)[uo + t(w — uo)], uo — w)y(n) > 0 for any w € V(Q).
For v = ug — t(w — ug) we can analogously write
(1.24) (x — A(eo)[uo — t(w — uo)], w — uo)v(a) 2 0.
Then combining (1.23) with (1.24) for t — 0 we see that

(x — A(eo)uo, uo — w)v(q)y =0 for any w € V(Q).
This means that

(125) X = A(eo)uo.

(1.26) : A(enkj )u,,,cJ — A(eo)uo (weakly) in V*(Q)
Using again the monotonicity of A(en, ) we have
(A(enkj )unkj ] unk’. - uO)V(ﬂ) S <A(enp.j )u01 unkj - uO)V(ﬂ) J = 1: 2) )

Next, by the convergences (1.10) and (1.13), by assumption ((H1), 5°) and by the
last inequality we obtain

Jlirgo inf(A(en,, )n,,, Un,, — uo)v(a) 2 0,
which compared with (1.20) leads to
(1.27) jl_i’r{.lo(A(e,,,‘j )u,,,‘j Un, = uo)v(a) = 0.
Clearly (by virtue of (1.26) and (1.27))
(1.28) jﬁlg(A(enk,)“nkj yny Jv () = (A(eo)uo, uo)v(q)-
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We shall show that

(1.29) (A(eo)to ~ L(eo), ug — v)v (q) < ®(eo, v) — B(eo, uo)
for all v € ¥ '(eo, Q).

Let v be any element of ¥ '(eo, ). If ®(ey,v) = +00, then (1.29) is trivial. Thus,
assume ®(eo,v) < oco. According to Lemma 1 and ((E1), 1°) again, there is a
sequence {wn, }; with wn, € X (enx; ) for all j strongly convergent to v such
that E

(1.30) ,ll.To <I>(e,,,‘j ,w,,kj) = ®(eo, v).
Since L(e,,,‘,_) — L(eg) (strongly) in V*(f2) as j — oo and

(A(em,j )“nkj - L(enkj )» “ﬂkj = “’ﬂ»j)V(n) < q’(enk_'- ’w"k") - (I)(enkj ’ uﬂn,-)

for all j, we obtain (1.29) by letting j — co and using (1.15), (1.28) and (1.30). As
the element v € ¥ (eo, ) is chosen arbitrary we get ug = u(eo) and

u(en)(= un) — u(eo)(= uo) (weakly) in V(Q).
Then (E2), (1.9) yield

2 (eo,u(eo)) < nl_i_.r{.lo inf £ (en, u(e,.)) = eeti/?df(n)'?(e’ u(e)),

hence
#eose) = i #60)
which completes the proof. a
Due to A(eo), A(en) € E(a,M) for n = 1, 2, ..., the strong convergence will
follow from the relation
o lim sup [[u(en) - u(eo)[f} )
< "lirgo (A(en)(u(en) — u(eo))s u(en) — "(‘30))V(n)
= lim {(A(en)u(en), u(en))v () + (Alen)u(e0), u(eo)lv ()
~ 2{Aen)ulen), wlen)vi) =0

(by virtue of ((H1), 4°, 5°) and (1.13), (1.28))-
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2. APPLICATION: PLATE PROBLEMS WITH BENDING EXTENSION COUPLING

In the case of conventional materials (as e.g. isotropic metals) linear-elastic Kirch-
hoff plate problems usually split into two different topics, the one of pure inplane
(extensional) deformations and the other of transversal (bending) deformations. In
the case of new materials as laminated fiber-reinforced composites, however, coupling
between bending and extension is possible and requires an appropriate theoretical

consideration for engineering purposes.

Fig. 1

The laminate plate considered is supposed to be thin enough so that deformations
are in accordance with the familiar Kirchhoff hypothesis. Thus, a line, originally
straight and perpendicular to the middle surface of the plate (XY -plane), remains
straight and perpendicular to the middle surface when the plate is stretched and bent.
In addition, the normals are presumed to have constant length. This implies that the
inplane deflections u, and v, and the transversal deflection w. can be represented

by the midplane deflections u, v, w in the following way:

20w(z,y)
oz '
z0w(x,y)

%y

u.(2,y,2) = u(z,y) -

v(z,y,2) = v(z,y)
u’*(xayaz) = w(-’f;y)
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Then the non-vanishing (infinitesimal) strain components are

v _ Ouu(z,y,2) . _ Ov(z,y,2)
5::(1"’.'/’ z) - o ’ ey(:r,y,z) = ay ,

au* z,y,z av.. z,y,z
7;y(zvyrz): (ayy )’+' (azy )

The strain-displacement relations take the form

(2.2)  er(z,y,2) = ex(@,y) + 2ke(2,y), €y(2,y,2) = gy(2,y) + 2ky(2, y),
e (z,y,2) =0, 7,(z,92) =0, 7.,.(zy2) =0,
Yoy (2,9, 2) = Yoy (2, Y) + 2kzy(2,y),
where the quantities €z, €y, 7zy represent midsurface strains while k;, ky, ks are

simple curvatures.
We shall need the following system of strain operators:

— 9 _ on _ o Oy
23 AHz(v) = oz’ Ay(v) = 8—1/’ Mey(V) = 5?7 + é—:l:—’
(2.3) . . z

N (v) = 527’ v (V) = a2’ ey(V) = 920y

where v = (€,7,0).
(¥ have the system of six deformation operators—the strain-displacement rela-

tions {or the small strains theory of a plate.) The stress tensor have the form
(2.4) o; = Cijej, 4,j=1,2,....6

where 0, = 01, 0y = 09,0, = 03, Ty, = 04, Te, = 05. Ty = 0Og, and €z = €1, €y = €2,
€. = €3, 2Vy: = €4, 2%z = €35, 27y = €6, Cjj Is a symmetric matrix, confirming that
there are at most 21 independent elastic constants.

Moreover, we apply the constitutive equations in the form

Oz Ex
Ty €y
Tye | = [Q) | 1y:
Trz Yez
Try Yry

(the stress-strain relations are valid for an arbitrary coordinate system (X,Y,Z)
whiili s rotated by an angle ® (in the XY -plane) from the (X*,Y*, Z) coordinate

systerg —-the principal material directions), where @7 = 1, 2, 4, 5, 6,
Qij = Cij — (C13Cj3/Cs3) (o5 - 9), Qi; =Ci; (03#0)
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H(e)

[C11 Ci2 Cis 0 0 Cie]
Ci2 C22 Caz O 0 Cau
[Cis] = Cis Cas Cs3 0 0 Cse
gl 0 0 0 Cy4 Css O
0 0 0 Cs Css 0
[Ci6 C26 C3s6 0 0 Cgel
The angle definition for the transformed stiffness QS;) for the lamina k is as shown
in Fig. 2.

1 Layer N

1 Layer N — 1

A
ZN ZN-1|2N-2
Y Y Y . fz
A A A A
20 2 Z2
¢ H(e)

Y Layer 2
Y Layer 1 ¥
Y

Y‘
X
X'
Fig. 2

We assume that Cj;([z, y],t) is defined on @ x [min H(e), max H(e)] (H(e) is the
total laminate thickness) and satisfies the following conditions:

@5 |

dory-conditions);

(Cij(.,t) is a measurable function on Q for every t € [min H(e),
max H(e)] and Cj;([z,y],.) is a continuous function on [min H (e),
max H(e)] (e € Uaa(R)) for almost every (z,y) € Q (Caratheo-

there exists a real positive constant M, with |C;;([z,y],t)] < M.
\for any ¢ € [min H(e), max H(e)), a.e. (z,y) € Q

where Uad(R) is the set of admissible control functions (thickness functions and their
properties will be specified below).
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Of course, we have also to assume the ellipticity condition

(2.6) (Cij([2, 9], )€, €) go > acllie

for any £ € R®, for any ¢t € [min H(e), max H(e)] (e € Uad()), a. = const. > 0,

where
6

6 1/2
(a,b)gs = Y a;b; for any a,b € R®, |a|gs = (Z a?) .

i=1 =1
Next we will consider a laminate plate constructed of a finite number of nonhomo-
geneous layers of an orthotropic material. It is assumed that all the layers in the
plate remain elastic during the deformation and that no slip occurs between any two
layers.
The strains and curvatures (the deformation operators (2.3)) give rise to the re-
sultant forces Ny, Ny, Ngy and moments M, My, M,. The constitutive relations

can be given by the matrix equation

[ Nz 71 [Au(e) Aiz(e) Ais(e) Bu(e) Biz(e) Bis(e)] [ Az ]
Ny Arx(e) Azf(e) Az(e) Bia(e) Baa(e) Bas(e) [ | A
2.7) Ngy _ Aig(e) Aze(e) Aes(e) Bis(e) Bag(e) Bgele) Ny
' M, Bii(e) Bia(e) Bis(e) Dii(e) Diz(e) Disle) | | A
M, Bia(e) Baa(e) Bas(e) Dia(e) Daa(e) Das(e) | | A

| Mey ] LBis(e) Bas(e) Bss(e) Dis(e) Dae(e) Desle)] LAy,

The matrix in (2.7) is the [ABD(e)] matrix known from the classical lamination
theory [20]. It consists of the extensional stiffnesses A;j(e), the coupling stiffnesses
B;j(e) and the bending stiffnesses D;;(e), and which are defined by the elements of
the matrix [Q]. Here A;;(e) = Aij(.,e(.)), Bij (- e(.)), Dij(.,e(.)) and

H(e)/2 H(e)/2
Aij(e) = / Qij(z,y,2)dz, Bij(e) = / Qij(z,y,2)zdz,
—H(e)/2 —H(e)/2
H(e)/2
D;j(e) = / Qij(z,y, 2)z%dz, i,j=1,2,6.
—H(e)/2

Although our terminology is taken from laminate analysis, in principle, the under-
lying plate does not necessarily have to be a laminate. For the present purpose, the
only important feature is that the constitutive behavior is given in the form of the
relationship (2.7).
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z ‘Qtz Myz
Y > M,
z
M.,
Fig. 3

We consider a laminate plate constructed of a finite number (N —2) of nonhomoge-
neous uniform thickness layers of an orthotropic material and two (external) variable
thickness layers, where the variable thickness is equal to e(z,y) (for k = 1, N). Thus

N-1
we have: H(e) (total thickness of plate) = 2¢e + Y~ hi (hx = uniform thickness of
k=2

k-layers).

We assume that the laminate plate is clamped at a part 9Q, of the boundary 9Q
and free at the remaining part 3Qp. Thus one has Q2 = 6Q, UdQF, meas 9, > 0,
N, NN =0.

We define the space W(Q2) = [H}(Q)]2 x H%(Q). Let dQ, be an open part of 99
and let the length of 9Q, be positive. We define

Vo() ={ve H'(Q):v=0 on 0},
Wo(Q) ={z€ C°(Q): 2=0z/0n=0 on 0Q,};
H}q.(Q) s the closure of Wo(Q) in H%(Q),
V(Q) = [Vo(Q))? x H3q.(R) C W(Q).
We denote by L2(Q2) the space of all measurable square integrable functions with

respect to the Lebesgue measure dQ = dzdy. H*(Q) is a Hilbert space with the

scalar product

olel

D= 32 [ D™0D"2dR ol =+ o, D = o

lel<k

and the norm‘(v,v)}ﬁm) = ”v[]mm), k=12
Further we denote

HEQ)={ve H¥Q): v=D% =0 on 3Q for |a| < k—1}.
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It is well known that H¥(Q) is the Hilbert space with the scalar product

(v, 2)gr() = Z /D“vDade.

lal=k q

Moreover, we write 2(Q) = {v € &(Q) (the space of functions having derivatives
of all orders continuous on € and continuously extentable to Q): supp v C Q} (the
space of functions with compact supports). We denote by Lo, (2) the vector space

consisting of all functions that are essentially bounded on 2, with the norm
lvllLw(n) = ess_sup|v(z,y)l.
(=.9)eN

Moreover, we note that the system of the deformation operators from the system
(2-3) belong to L(V(R2), L2(S2))-the space of linear continuous operators from V(1)
to L2(R2).

Let © C R? be a bounded domain with Lipschitz boundary. We set U(Q) =
H?(Q)—a reflexive Banach space with the norm [|.|lu¢) = ||-||#2(q)- Let us introduce
the set of admissible control thickness functions

Uad(Q2) = {e € H3(Q): 0 < emin < e(z,y) < emax for all (z,y) € Q,

0H (e)
”C”H3(ﬂ) <, /edQ = C2, H(e)lan‘ = o, on |aﬂ, = ‘Pl}

a

where @g and ¢; are given functions, ¢, € C(0Q4), p1 € C(0,), and positive
constants €1, €2, €min, €max are chosen in such a way that Uaq(€2) # 0.

It results from the compact imbedding H3(Q2) C, H?(f) that the set U.qa() is
_compact in U(2).

Y O] N i —— et et aie

Fig. 4

We further suppose the laminate plate to be forced to lie over a “shallow” obstacle
represented by a function & (z,y):  — R. Hence the function 6(z, y) describing the
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deflection of the plate satisfies (we will consider physical situation such as those in
Fig. 4, in which the transverse displacement of a thin anisotropic laminate plate is
constrained by the presence of the foundation—a rigid frictionless surface located
at a distance F(z,y) under the middle plane of the plate) 0(z,y) > Z(e(z,y))
(admissible transverse displacement) where

(Z(e(z,y) = Z(2,9) + H(e(z,y)) /2 (< 0),

N-1
H(e) =2e+ Y hs,

k=2
the function & : Q — R (representing the obstacle lying under the
plate) has to satisfy the conditions
F € C*(Q), F(s) = —po(s)/2, 0F(s)/0n = —p1(s)/2 for all s €
O, Z(e) <0 (for all e € Upg(R)) on Q & H(e)max < —2F(z,y)
| for any (z,y) € Q.

(2.8)

Physically, if 8(z, y) > 2 (e(z, y)), then the laminate plate does not come in contact
with the rigid frictionless surface (shallow obstacle) and no reactive force is developed
on the rigid surface. On the other hand, if 8(z,y) = Z(e(z,y)) at a point (z,y) € Q,
then the laminated plate is in contact with the rigid surface and a transverse reactive
force r¢(e) is developed on the plate. Further, we introduce the set of kinematically
admissible displacements by

(2.9) H(e,Q)={veV(Q):0—-Z()>20 on Q}
and v =({7,0).

Lemma 2. The set ¥ (e, ) is nonempty, convex and closed in V(§2). Moreover,
the system { ¢ (e,Q)} (for any e € U,q(R2)) fulfils the condition ((H1), 1°).

Proof. (e,f) is nonempty (for any e € U,q(f2)). We have H(€)max <
—2%(z,y) for any (z,y) € Q. Hence one has Z(e) < 0. This implies that (0,0,0) €
X (e,Q) for any e € U,y(Q2). Hence ¥ '(e,2) is nonempty. This means that the
condition ((H1),1°) holds. ¥ (e, ) is closed (for any e € Ua,q(f2)). Let v, — v
(strongly) in V(Q), where v, € ¥ (¢,Q) and v € V() (e € U,q(2)). Hence due to
the imbedding theorem for the space H2(Q) we get 0,(z,y) — 6(z,y) (strongly) in
C(Q). Thus, as 0,(z,y) — Z(e(z,y)) = 0 on Q, we obtain 8(z,y) — Z(e(z,y)) on
Q and hence v € ¥ (e, Q) as claimed.

The convexity of (e, ) is trivial. ]

Lemma 3. The system of convex closed sets { ¥ (e,Q)} defined by (2.9) fulfils
the condition ((H1), 1°).
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Proof. Lete, — e (strongly)in U(Q)( = H2(Q)), en, € € Uad(Q). Then there
exists a subsequence {en, }r of {€n}n weakly convergent in H3(Q) to the element
e € Ua(Q). Let {(Enr s Oa)bn — (€1, 8) ((En, e, 0n) € K (en, ), (€,1,0) € V()
be weakly converegent in V(). We then have 0,(z,y) — f(fn(m,y)) > 0 for all
(z,y) € Q, which by virtue of the compact imbedding H?(£2) C, C(Q) implies that
0(z,y) — 2 (e(x,y)) > 0 for all (z,y) € Q and hence (¢,7,0) € ¥ (¢,Q). This means
that the condition ((1°) in Definition 1) holds. Next, let (£,7,8) € S (e, ), then
we put (&n,Mn, 0n) = (€,7,0) + (0,0, (en —€)). The elements {{€n,7n, 0n)}n satisfy
the conditions (£, 7n, On) € S (€n,§2) and nlim (€n, M, 0n) = (€, 1, 0) (strongly) in
V(). Thus the condition ((2°) in Definition 1())oholds. a

On the open set Q we now define a bilinear form a(e, .,..): V() x V(Q) — R (for
all e € U,4(2)) (introducing the energy bilinear form-virtual work equation) by

ale,v,0) = [ (A0, Aoy (9), A5 (0). A (), A5 )
N
(2.10) [ABD(e)] (Ae (), 5 (2), Ny (2), A (2), A, (2), A2 ()T } 02
forall v,ze V().

Moreover, we define a linear functional L(e) € (V(Q))” (the load space) by

N-1
2.11) (L) Vv = [ [p= (ke + 3 b+ kve) o do,
Q c=2

where ki(z,y) € L2(Q) (. >0),:=1,2,..., N, p€ Ly(R) (of external loads).
The formula (2.11) defines the virtual work of external loads. (The operator B
is continuous and corresponds to the loading caused e.g. by the own weight of the

laminated anisotropic plate.) On the other hand, we set
(2.12) (A(e), V)yq) = ale,v,2z) forany v,z € V(Q), e € Vaa(Q);

then A(e) € L(V(2),V*(Q)) (the operator for the anisotropic elastic laminated
plate), a(e,.,.): V() x V() — R is the Dirichlet form associated with A(e),
A(e)v € V*(Q) is the canonical isometric operator (by a(e.,.,)).

The subspace R(2) C V() is the set of the rigid body motion (representing

virtual displacements of a rigid laminate plate) given by

R(2) = {v € V(Q): (14T, ) + 140N, + 142y (DN 50
“*/VI*(V)“?,,(Q) + ||~/‘§*(V)||22(n) + ”%;(V)”i,(n)) =0}
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where the system of six deformation operators is defined in (2.3).

Lemma 4. We have R(Q) = {0}.
Proof. Parallel to that of Lemma 2.1 [10]. O

Moreover, in our case we have ®(e,v) = 0.

The desired thickness of the laminate plate is given by the distribution z4(z,y)
of the deflection, and we look for a control parameter subject to constrainst, i.e.,
€ € U,q(R2) such that the system response w(e) has a minimum deviation of z4(z,¥)
in any definite sense. This means, that the cost functional is given by the formula

(2.13) ZL(e,v) = [ [6(e) — 24)dQ.
/

Lemma 5. The family {A(e)}, e € Uaa(Q) of operators defined by (2.10) and
(2.12) satisfies the assumptions ((H1), 3°, 4°, 5°).

Proof. We define
[[ABD(e)l(z,y)| = sup |[ABD(e)J¢|/I€]
€eR®—{0}

for all e € U,q(R), (from (2.5) and (2.6) we clearly find that the function (z,y) —
[[ABD(e)](x.y)| belongs to L () by ||[[ABD(e)]||L., () we denote the Lo, (2)-norm
of the above function), and we then have, from the assumption (2.5) and from the
Schwarz inequality
(2.14)

[{A(e)V, 2)y(q | < cllIABD(e))l| Loy (142 (V1L ()

+ ||-/‘§(V)||i,(n) + ||-/sz(")||'f),2(n) + ||-/‘§*(V)”i,(n)
+ 14" (VE ) + 1455 (DN )
x (|42 ()17 50y + 14 (DL, ) + 1424 (2], 0) + 1427 (@12,
+ 14,7 (@)1 0y + 1455 (217 0)) < caspillvliviallzllvia)
for any v,z € V(Q), e € U.4(R)

where the positive constant cjappj is independent of le, v, z]. Relation (2.12) implies
the continuity of (A(e)., .)v(m for all e € U,q(92).
Moreover, due to the assumption (2.6) we have (realizing that either [ABD(e)] is

uniformly positive definite with respect to ¢ € Uad(Q2) of the energy of the laminate
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plate is positive definite)

(2.15) (A, Vv > ¥ano) (lev o)

where the positive constant af‘ABD] is independent of [e, v] and M = A, S = A,
Ny = Ny, Ny = N, AN = .A;", N = Ay~ In our further consideration we shall
use results of [7] about the inequalities of Korn’s type, employing the same notation
as in [7]. The components of a vector displacement v are denoted by £ = vy, n = vy,
0 = v3. The operators A have the form

3
Mo=)" > m, D%, 1=12...6.

We define the components of the matrix [ A/ ((z,y), (51,52))]3)(6
given case ny;o = const. which means that the matrix [./%_, ((:r:, ) ,(fl,fg))] does not

(we see that in the

depend on (z,y) and on the control variable €) in the following way:

‘Ms(fly£2) Z nlsafl a; Ial = a1 + as.
la|<ks

In our case we have

& 0 & 0 0 0
[NIJ ((I)y)7(§]>€2))]’r = 0 62 El 0 0 0
' 0 0 0 5? 6% 2{162 (3x6)

If [61,&2) € C?, [€1,&2] # [0,0] then the rank of this matrix is 3 under the conditions
imposed above. Then by Theorem 3.1 from [7] we obtain that the system {4} is
coercive on V(Q), i.e

6
(2.16) Z 1M ) + IVIIE ) = anlVI )y éasp) > .
i1=1

Then by virtue of (2.15), Theorem 2.3 [7], and Lemma 4 we obtain

(2.17) (A(e)v, v)v(q) 2 Q[ABD]”"“V(Q

for all v € V(Q), ¢ € Uaa(R), with agapp) > 0 independent of [e, v].
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Now ((H1), 3°, 4°) is an immediate consequence of (2.14) and (2.17). Let e, €
Ua.da(€2) be such that e,, — e (strongly) in U(Q2). Then

[{(A(en) — A(e))V, 2)v(a)]

= [ A0, A (0, A2 (), A (), A5 ()
¢
(218)  [ABD(en — O] {A(a), A (0), oy (2), A" (), 157 (0), Aoy () [} 42

< c{app)(llen = ellLo(a) + lleh — € llLo(a) + leh — € llo(a)

[Ivllvyllzllvi) — 0 for every v, z € V(Q), CEABD] > 0.
This means that E
lA(en) — Ale)llLevin)ve() = sup l(A(en) = A(e)) Vliv-(ay
vEV(Q),|Ivilv(e)=1
= sup sup [((A(en) — A(e))v, Z)V(n)| —0

VEV(R), zEV(Q),
Ivilv@)=1 lizllv (@) =1

(due to (2.18)). Consequently, the condition ((H1), 5°) is verified. On the other
hand, by (2.11) for e, — e (strongly) in U(2) we may write

(2.19)  |(L(e) = L(en), V)v(a)y | = [ {(k1 + kn)(en — €),0) y2(q) | < const.
llen — ellc@)lIvllaz(@) — 0. Hence ((EL), 2°) is satisfied.

Let us verify (E2). For e € Uaq(€?) the functional Z(e,.): V() — R is weakly lower

semicontinuous. Consequently, we may immediately write

nango inf Z(en,va) = "li{'{.\o inf |6, — zd“i?(n) >0 - zd”%z(ﬂ) = Z(e,v).
Thus, from Lemma 5 and the above argument we conclude that all the assumptions
of Theorem 1 are satisfied. Hence the existence of a solution of the optimization
problem (%) follows (optimization of the thickness of a laminate plate): The optimal

control problem (%), where the data are defined above, has at least one solution.
O
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OPTIMALNE RIADENIE LAMINATOVEJ DOSKY S PREKAZKOU
JAN LovViSEk

Je studovanad iiloha riadenia systému linedrnych rovnic a nerovnic pro laminatovi dosku.
Funkcie riadenia vystupujui v koeficientoch operdtora nerovnice, v pravej strane a v konvex-
nej mno¥ine pripustkovych stavov. Dokazuje sa existencia optimdlneho riadenia, na drovni
abstrakcie, pre riadenie varia¢nou nerovnicou pre jeden tvar icelového funkciondlu. Hribku
vonkajsej vrstvy lamindtovej dosky berieme za funkciu riadenia.

Author’s address: Dr. Jdn Lovisek, Stavebna fakulta STU, Radlinského 11, 816 38
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