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ON AN INEQUALITY AND THE RELATED CHARACTERIZATION
OF THE GAMMA DISTRIBUTION
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Summary. In this paper we derive conditions upon the nonnegative random variable &
under which the inequality Dg(£) < cE[g'(£)]%¢ holds for a fixed nonnegative constant c
and for any absolutely continuous function g. Taking into account the characterization of a

Gamma distribution we consider the functional Uf =sup g lg),g(ff) 3 and establishing some
g

of its properties we show that Ug > 1 and that U§ = 1 iff the random variable { has a
Gamma distribution.
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1. INTRODUCTION

If £ is N(0,1) and g is an absolutely continuous realvalued function with finite
variance, then Chernoff in [1] proved

(1.1) Dy(€) < E[g' ()%

Considering this inequality, Borovkov and Utev in [2] characterized the normal
distribution by the functional

(1.2) sup __Do® =1

s DE-E[g'(§))?

Using the multivariate analogue of (1.1) derived by Chen in [5], Prakasa Rao and
Sreehari in [6] characterized the multivariate normality. Cacoullos in [3] gave lower
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and upper bound inequalities for the variance of g(£), even for the discrete random
variable £. The upper bound inequalities in [3] and those obtained by Papathanasiou
and Cacoullos in [4] were used by Prakasa Rao and Sreehari in [6, 7] to characterize
the Poisson and multivariate normal distributions. T. Cacoullos and V. Papathana-
siou in [8] used the functional

(1.3) inf ———L =

9 D - E?[w(§)g’(€)]
to characterize the distribution of ¢ through the function w(z) with E[w(§)] =
The special case of w(z) = 1 gives the normal and Poisson distributions, as well as
the characterizations in [2, 7]. In [8], it is also noted that both the upper bound
inequalities with the sup functional as in (1.2) and the lower bound inequalities with
the inf functional as in (1.3) lead to the same characterizing results.

In this paper, we obtain that in a certain sense the equality w(z) =  characterizes
the Gamrna distribution. We also show conditions under which, for a nonnegative
random variable £, the inequality Dg(£) < cE[¢'(€)]?¢ holds, where ¢ is a fixed
nonnegative constant and g is any absolutely continuous function.

2. MAIN RESULTS
Let Hy be the set of all absolutely continuous functions on [0, ¢] for each ¢ > 0.

Theorem 1. Let £ be a nonnegative random variable with distribution function
F(z) and density function f(z). Suppose that for some fixed nonnegative constants
zg and c the following inequalities hold:

/ (y—z0)dF(y) < cxf(z) forz > xo,

(2.1) "

—/ (y—z0)dF(y) < cxf(z) forz < xy.
0

Then for any g € H,

(2.2) Dy(€) < cEly'(€)]*¢

Proof. From the Cauchy-Schwartz inequality we have

Dy(6) < Blo(©) =gtz = [ ([ 70 ) aree)

/ / ¢’ (O))? dt(z — zo) dF () / / ¢/ ()] dt(zp — ) dF ().
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Changing the order of integration we get

/m/w[y'(t)]2 di(z — zo)dF(z) = /m[g'(t)]2 /too(:c —zo)dF(z)dt
<o [Cigorso .

o

]n the salne way,
/() /I ‘II(t)]Z (“( )dr([) S /0 [‘(‘ ( )] f(t) [“'

Consequently, Dg(§) < cfooo g (O f(t) dt = cE[¢'(€)]%€. O

Remark. If E€ = zo, then [; (y — o) dF(y) = 0 and condition (2.1) can be
represented as an inequality

(2.3) /oo(y —x0)dF(y) <czf(z), 0<z< o0

In the following, we assert that the random variable £ has a Gamma distribu-
tion with parameters (o, 8) (and will be denoted by ¢ ~ [(a,B3)) if P{€ < 2z} =
I(z > 0) - [[(a)]7! [y Boy*"le P¥ dy.

Corollary 1. If £ is a Gamma distributed random variable with parameters
(xo/c,1/c) where zo and c are fixed positive constants, then the assertion of Theo-
rem 1 holds, i.e. '

Dy(€) < cEly'(§))%¢.

This inequality cannot be improved as for linear functions, it becomes the equality.

Proof. In our case the density function is

-z Zo_
1

f(x):w, z2>0.

Easy calculations yield that E€ = x¢ and if (2.3) holds then applying Theorem 1
we obtain Dg(¢) < cE[¢'(€)]%¢. Consequently, the corollary will be proved if we
show that if & ~ (=2, %) then(2.1) is fulfilled. Indeed, the following equality can be
obtained:

(2.4) /oo(y—a:g)(ll'“(y) =czf(z) 0 <oo.
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To verify this it is sufficient to differentiate (2.4) and to compare the values of
both sides in (2.4) for some z (we may choose for example = 0).
Let us return to the inequality (2.2) and consider the following classes of real-
valued functions:
Ly(€) = {9: Eg*(€) < o0},
Q(&) = {g: Dy(¢) > 0},
Hi(€) = {H1N Lo(§) N Q(E)}-

For a nondegenerate random variable &, let us define the functional

- . D9
(2.5) Re=RID= s Bw©re

Now the. assertion of Theorem 1 and of Corollary 1 can be stated in terms of the
functional Rg¢ as follows: R¢ = R(F') < ¢ and R[['(zo/c, 1/¢)] = c.

In (2.5) we use the class of functions H(£) to avoid indefiniteness of the types 0/0
and oo/ co. a

Theorem 2. Let £ be a nonnegative, nondegenerate random variable. The func-
tional R¢ has the following properties:

(i) If g € Hy, Re < oo and E[¢'(£)]*¢€ < oo then g € La(€) and Dg(€) <
ReEly'(©))%€.

(ii) The equality Rq¢ = aR¢ holds for any constant a # 0.

(iii) If E§ < oo then D€ < R¢EE.

(iv) If R < oo then

Eg”gEg(Ef+R5)(Ee+(g) ) - (Eg+(") Re), n=12,...

The proof of (i) is based on an auxiliary assertion which we state in the form of a
lemma.
Let us denote T(g,c) = Dg(€) — cE[¢'(£)]%¢.

Lemma. Assume that for g € Hy, go € Hi N Lao(§), n = 1,2,... the following
conditions are fulfilled:

(1) 'IILI& gn(z) = g(z) for any =,

(i) T(gn, ¢) = Dgn(€) — cE[g, ()€ <0, n=1.2,..,

(iii) limsup Efg;,(€))*¢ < Ely’ ('5)]2 <

Then g € Ly(€) and T(_],C) <
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Proof. From the conditions of the lemma it can be easily obtained that

(2.6) limsup Dy,,(f) < ¢ limsup E[¢/, (€)]%¢ < cE[g’(€))%¢€ < oo.

Now choosing a sequence {n'} such that lim Eg,/(£{) = a we obtain from (2.6)
n'—00

according to the Fatou theorem

E[g(§) — a]* = E lim [gn/(€) — Egn(§))® < lim junf D (€)
< limsup Dy, (€) < cE[¢'(€))%€ < oo.

Consequéntly la] < oo and g € L2(€). Moreover, we know that Dg(§) < E[g(¢) —
a)? < cE[g'(€)]%€ < oo for any . In our terms, this means that T'(g,c) < 0.
The lemma is proved. O

Proof of Theorem 2.
(i) We define a sequence of functions

gn(z) = 9(0) + /Ox VYa(y)g'(y)dy, n=1,2,...

where {V¥,,}5%; are infinitely differentiable functions satisfying 0 < ¥,, < 1, ¥,, = 1
for |z| < n, ¥p(z) =0 for || > n+1 and sup sup |W! (z)] = ¢ < oo.

Now we shall show that the conditions of the lemma are fulfilled for {gn(2)}5%,.
Since clearly

n+1
sup lom(@)] < 19(0)] + / ')l dy < oo

z€[0,00)

then g, € Hy N Ly(§). As g, (z) = W, (x)g'(x), it is clear that |g/(z)| < |¢'(z)] for
all £ > 0, too. From the definition, it is obvious that gn(2) = g(z) if |z] < n and
T(gn, Re) < 0. This means that the conditions (i), (ii) and (iii) of the lemma are
fulfilled. We conclude that g € Ly(€) and T'(g, R¢) < 0.

(ii) If we denote ¥(z) = g(ax) where g € Hy(£), we easily get

Dy(af) = D¥(€) < ReE[W'(€))%¢
= a’ R¢E[g'(a€)]*€ = aR¢E[g'(ad)]?a€,

that is Rae < aRe. However, since § = ﬁ - a€ we have R¢ < % - Rag. Consequently,
(IRE = Raf.
(iii) As for R¢ = oo the inequality is obvious, let R¢ < co. Now setting g(z) = x
we derive the equality E[g’(€))%¢ = E€ and applying the property (i) we get
D¢ = Dy(€) < Re - Elg' (6)1%¢ = Re - E€.
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(iv) The case of E€ = oo is trivial. Assume that E€ < oo.

To prove this property we use induction and Liapunov’s inequality. By virtue of
the property R.¢ = aR¢, we may assume that E§ = 1.

Now let go(z) = 2™ n=1,2,...

For n = 2 we have g»(x) = € H,, R¢ < oo and since E[g}(£)]%¢ = E€ < oo the
property (i) implies g, € L2(€), Dy2(€) < ReE[gh(€)]%€.

Hence E€? < oo, E€? < (E€)? + Re - E€ = EE(EE + Re) <

Assuming that the inequality

E€* < Ef(EE+Rg)(E£+( ) Re) .. (B¢ + (g)zRE) < oo

holds for k = 2, 3, ..., n we will prove now that it is also true for k = n + 1, i.e.

BE™+! < BE(EE + Re) (BE + (%)ZRf) o (Be+ ("; l)21%5) < 0o

Let us consider g,41(z) = «+1/2 € H;. Then, as R¢ < co and Elg, ()% =
(—+—) E(® < oo, using again the property (i) we obtain that g,41 € L2(€),
Dgn+1(€) I RfE[yn+l(£ ]2£

After some computations we derive that E€"*! < 0o and

n+1

(27) E£n+1 < [E£(71+1)/2]2+( ) RE EEn

Applying Liapunov’s inequality (E|y[*2)*s=%1 L (E|y|*r)ks—*2(E|s|*s)k=—*1 0 < ky <

ko < k3 with || = €12 ky =2, ks = n+ 1, k3 = 2n we get [E€(*+1)/2]2 L E¢EE™.
Substituting the last inequality into (2.7) we obtain E¢"t! g EEEE™ +

(%)2[{,&3{" E¢” (EE + ( ) RE) which proves the property (iv). a

Let us consider the functional

Uf — U(F) — Rf i EE E¢ - Dg(E)

DE gere) DE-Ely'(6)]%

Theorem 2 gives that Ug > 1 for any distribution function F' and Uge = Ug, a # 0.
In the following theorem we characterize the Gamma distribution in terms of the
functional Ug.

Theorem 3. Let § be a nonnegative, nondegenerate random variable such that
R¢ < co. Then the functional Ug assumes its minimal value equal to 1 iff € is a
Gamma distibuted random variable.

16



Proof. To verify sufficiency we have only to note that for the random variable
¢ having a Gamma distribution with parameters («, 1), Corollary 1 implies that the
equality Ug = 1 holds.

To prove necessity we first note that the equality U = 1 implies R¢ = DE/E¢
B = const. Now let us denote 7 = £/8.
- As Ry = Rejp = % Re = 1 and Uy = Ugyp = Ug = 1 we have 1 = U, = 521 =
%:IL. Consequently,

(2.8) En = Dy.

Let us consider h,(z) = z™ € H;. Applying the properties (i), (iv) from Theorem
2 for hy,(x) with n = 1,2,... we obtain Dh,,(1) < E[l},(9)]?n < oo, i.e.

(2.9) En*™ < (En")2 +2’Ep™™ ! n=12,...

Now, setting g¢,(z,A) =  + Az € Hy, n = 1,2,... and using Theorem 2 and
the properties (i), (iv) for n = 1, 2, ... in the same way we get the inequality
Dgn(n,A) < Elgy.(1, ))]*n < oco.

Some calculations yield E(y+ Ay™)? — [E(n + An™)]2 < E(1 4+ nAn®~1)2y, that is

{En®" — (Eg™)? = n2En® =12 4 2{Ey" ! — EgEn™ — nEy™}A 4+ Dy — E < 0.

To complete the proof we have to note that aA®> 4+ bXA < 0 for all X iff b=
a < 0. Then from (2.8) and (2.9) we derive Eg**! = (En+n)En*, n=1,2,.... By
induction, we finally get

Eg"t = En(Ey+1)...(En+n).

If we denote En = « then obviously all moments of 7 coincide with the corre-
sponding moments of a Gamma distributed random variable with parameters (o, 1).

In accordance with the theory (the problem of moments), if luusup 1: < oo then
— 00

the moments v, determine the prol)ablhty distribution umquely In our case it is

easy to calculate that limsup @ ! < co.
n— oo
This proves that the moments of 7 determine its distribution uniquely, namely
7 ~ ['(a, 1) and consequently £ ~ I'(a, §). a
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