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Summary. For several specific mappings we show their chaotic behaviour by detecting
the existence of their transversal homoclinic points. Our approach has an analytical feature
based on the method of Lyapunov-Schmidt.
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1. INTRODUCTION

Several papers have appeared recently [1-5] in which Smale’s theorem about
transversal homoclinic points is proved by analytical methods. Originally S. Smale
[6] constructed geometrically a certain “horseshoe” region for a diffeomorphism hav-
ing a transversal homoclinic point. He showed that the action of some iterate of
the diffeomorphism on this compact invariant set is equivalent to the action of the
Bernoulli shift. In this way he proved Birkhoff’s result that the diffeomorphism has
infinitely many periodic points.

The purpose of this paper is to proceed in an analytical approach to show chaotic
behaviour of specific examples. K. J. Palmer [3] used the theory of exponential di-
chotomies which was combined with the method of Melnikov for detecting transversal
homoclinic points of ordinary differential equations. The author of this paper devel-
oped in [5] a similar method directly for diffeomorphisms. The basic technique was
the theory of exponential dichotomies for difference equations. K. J. Palmer [2] used
the same technique but the work done in [5] was quite independent of the former.
Palmer’s ideas from [3] were extended by K. R. Meyer and G. R. Sell [1] to skew
product flows. Hence in the largest part of this paper we detect chaotic behaviour of

101



perturbed mappings by showing the existence of their transversal homoclinic points,
provided the unperturbed ones have suitable properties.

Now we summarize the contents of the paper. In Section 2, we briefly recall the
basic results from [2] and [5]. It is shown that the problem of bifurcations of het-
eroclinic points of diffeomorphisms can be reduced to a finite dimensional problem
by the method of Lyapunov-Schmidt. In Section 3, we study specific examples. In
the first part of that section we detect transversal homoclinic points for certain map-
pings: for ordinary differential equations with impulsive effects; for two singularly
perturbed mappings which are discrete versions of singularly perturbed ordinary dif-
ferential equations. We also show a criterion of transversality of homoclinic points
on smooth manifolds. In the second part, we investigate specific mappings possess-
ing invariant compact manifolds which are normally hyperbolic [7], and stable and
unstable manifolds of these invariant manifolds have transversal intersections. We
show the existence of an invariant compact set of such a mapping which consists of
a family of surfaces. This structure of the invariant set is preserved by the action
of the mapping and the mapping transfers these surfaces in the same way as the
Bernoulli shift acts on some set of infinite bisequences. Similar results have been
obtained in [1], [8] and the author of the paper was stimulated by these papers.

2. DIFFERENCE EQUATIONS

In this section we briefly recall interesting results from the papers [2], [5]. An
analytical approach to the study of bifurcations of homoclinic points is a suitable
method as was pointed out in these papers. The main tool is a theory of exponential
dichotomy of linear difference equations. Let Z be the set of integer numbers and N
the set of natural ones.

Definition 2.1 [9]. Let X be a Banach space and {T, }ner C ZL(X). {Tn}ner
has an exponential dichotomy on I = (Z,Z; = NU{0},Z_ = —Z), if there are
positive constants M, 0 < 1 and a family of projections { Py, }ner C -Z(X) such that

(1) ToPp = Poy1Tn (n<O0for I=2Z_)Vn €I,

(2) Tn/Im P, is an isomorphism from Im P, on Im P41 (n < 0 for [ =Z_)

for all n € I;
3) if Tnym = Tn-1-..Tng1 - Ty for n > m,
. Tn,n = Id (the identity)
then
|Tn,m(Id =Pp)z| < M - 0*~™ . |z| for n 2 m,
|TnmPrmz| < M-0m"" . |z| for n < m,
where T, m Pmz = y € Im P, if and only if Pz = Tmny for n <m.
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Remark 2.2. If {T,} is a sequence of isomorphisms, then Definition 2.1 is
equivalent to the property that there exists a projection P € £(X) satisfying

(1) |T(m)-P-T~Y(s)|] < M -6™% for s < m,

(2) |T(m)-(1d=P) -T1(s)| < M -9°~™ for m < s,
where T(n) = Ty—1...To for 1 < n, T(0) = 1d and T(n) = T;7!...T=} for n < 0.
Indeed, we can take P, = T'(n) - (Id = P) - T~ 1(n).

We shall recall the basic theorem from [5], which we use later to solve several
concrete problems.

Theorem 2.3. Let {A, }nez be asequence of invertible matrices A, €. (R™,R™)
with bounded |A,|, |A;!| on Z. Let {An}ner have an exponential dichotomy for
I =174 and I = Z_. Define an operator

(1) L:X — X = {{an}>* |suplas]| < o, a, € R™},
(2) L({an}?_ooo)n = an41 — Anan.
Then L is a Fredholm operator and {f,} € Im L if and only if

(e o]

ZC;'fnZO

— 00

for any bounded solution {c, }ncz of the equation
(2.1) en = (A5) Yeny
(* Is the transposition).

Lemma 2.4. Let {A;}ogn have an exponential dichotomy on Z, where A, €
Z(R™) are invertible bounded on Z . and |Bp| — 0 ifn — oo, B,, € Z(R™). Further
we assume that A, + Bp are invertible. Then {A, + B, }ogn has an exponential
dichotomy on Z 4 and, moreover, if P, P’ are projections of dichotomies (see Remark
2.2) for {A,},{An + By}, then dimIm P = dimIm P’.

Proof. See[5, Lemma 3.4]. O

Now consider a C!'-mapping G: U — R™, U being an open subset of R™. Assume
that G has two fixed points y1, y2 which are hyperbolic. Let there exist a sequence
{2n}% C U such that

lim zn =y, limz,=y2, 2n41=G(zn),
n—— 00 n—00

det DG(Z‘n) # 01 Zo # Y1, <o # Y2.
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We put G into a smooth family G.: R™ — R™, Gy = G. We want to find heteroclinic
orbits of G, for e small near {z,}*° . We know by [5, p. 361] that using the two
above results we can reduce this problem by applying the Lyapunov-Schmidt method
to a finite dimensional one. We follow this line in the next section for special cases
of G.

Now let us consider a diffeomorphism f.: R™ — R™ e € R and f, has a one-
parametric family T' = {{zn(c)}*, ¢ € R} of homoclinic orbits tending to a hyper-
bolic fixed point. Then using the above notation we put

Fe({yn}iooo)n =Yn+1 — fe(yn)-

Since Fy({zn(c)}®,) = 0, differentiating we have
Ker DFy({za(c)}*,,) D span{z),(c)}*.

Let us assume dim Ker DFy({z.(c)}) = 1 for any ¢ small. Then by Theorem 2.3 and
the Lyapunov-Schmidt reduction (see [5, p. 358]) we obtain uniformly for e small a
bifurcation equation of the equation F,({y,}*°,) = 0 of the form

Q(c,e) =0, Q(,.) ER,

where c¢ is inherited from I'. Hence Q(c,0) = 0. Generally @ is smooth, thus
Q(c,e) = e - M(c,e) and this implies that M(c,0) is the Melnikov function for this
problem, i.e., if 3¢o, M(co,0) = 0 and %M(Co, 0) # 0, then by the implicit function
theorem Q(c, e) = 0 has a solution ¢ = ¢(e), ¢(0) = ¢o for e small. But then Fe(z) =0
has a solution z = z(e) satisfying 2(0) = {x,(c0)}>°,, and thus f. has a homoclinic
orbit near I for any e small. If m = 2 then a rather tedious computation shows that
the adjoint equation

en = (Dfo(zn(c)*) " a1

has a bounded solution ¢, = (27,41 5(c), —2}, 4 1(c)) - det Dfy" Y(zp41(c)). Here
Zn = (2n,1, 2n,2). Indeed, by using

2n1(c) = Dfo(zn(c))zn(c)

and the identities

(2n,2:=2n1) = £ (20,1, %n,2)
A g A=detd: g,
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0 1 . . .
where ¢ = ( i 0) and A is any 2 x 2 matrix, we obtain

Dfo(zn(c))*en = Dfo(2n(c))"- F 2 (c) - det Dfg" " (zn41(c))
= Dfo(en(c))" - 7 -Dfoln(c))2) (¢) - det D™ (zny1(c))
=det Dfy " N(zny1(c)) - det Dfo(zn(c)) - £ .2h(c)
=det Dfy " (zn(c)) - F.zn(c) = cn-1

since Dfy " (zn(c)) = Dy (fo(zn(c))) = D" Hzn41(c)) - Dfol(an(c)).
Applying Theorem 2.3 we see that in this case (see [11])

0o 9 -
(2:2) M(c,0) =3 5= fo(en(©)) A 241(c) - det DFT™ ! (2n41(e)),
where A is the “wedge” product.

3. APPLICATIONS

In this section we will demonstrate chaotic behaviour for several specific problems
applying the above results. -

Application I. Let M be an m-dimensional smooth manifold and f: M — M
a C'*°-diffeororphism with a hyperbolic fixed point z € M possessing a homoclinic
orbit {z,}®, , 2z, — z if n — Zoo. In this section we apply the above theory to
derive a criterion for transversality of the homoclinic orbit {z,}>, (see [3, p. 229]).
For this purpose we study the set of homoclinic orbits in its neighbourhood. By
using local coordinates in a neigbourhood of z; we reduce this problem as follows:
we have diffeomorphisms f_g_1, ..., fk+1 defined on a neighbourhood of the point
0 € R™ such that

F(0)=0 for —K <i<K—1,
Fr(0) = 2k 41, f-k-1(2-k-1) =0,
fr+1(zi) = 2ip1 for K4+1<i or i< —-K-2,

where the orbit {xz,}°°_ is transformed to the sequence
0 q

z = {..,,Z_K_l,O}O,...,O,ZK+1,ZK+2,...}.
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Indeed, for a suitable natural number K and an open neighbourhood U of the point
0 € R™ we can assume the existence of C®-diffeomorphisms ®_x_1, ..., ®x from
U to M such that

(I)'K"l(o) = -’E,(I)_.K(O) =T_K,... ,(I)K(O) =g,
@ _(z;) €U forallj>Korj<-K.

Define

‘1’:}(_1(331') =z forj<-—-Korj>K,
fi=®7} - f-® for —K<j<K,
Gpp1=Pok-1, f-k-1=P - f P_g_1,
Sk =@y f Pk

Further we put

gi=f; for —K-1<i<K,
9i = fk+1 for K <iori<-—-KN -1,

C;({yn})n = Yn+1 — gn(yn)yc;i U C X — ,\’,

where X = {{yn}®x | yu € R™, sup |ya| < oo} and U is a neighbourhood of the
point z. From the definition of the quuence z it follows that G(z) = 0 and DG(z) is
a Fredholm operator with index 0 by Theorem 2.3. Hence if Ker DG(z) = {0}, then
it is possible to apply the implicit function theorem from which it follows that any
small perturbation of the map f has a unique homoclinic orbit near {z,}%, . Thus
{zn}>, is transversal. On the other hand, if Ker DG(z) # {0} then for a suitable
perturbation of the map f we have bifurcation of homoclinic orbits. Then the orbit
{xn}%°,, is not transversal. Summing up we obtain the following theorem

Theorem 1.1. A homoclinic orbit {z,,}*° Is transversal if and only if
sup || Df™ (zo)v]| < oo
n
implies v = 0 for any v € Ty M, where Df"(zo): TopoM — T, M, TyM is the

tangent space to M at the point y € M and ||-|| is the norm derived from a Riemann
metric on M. :
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Application II. We present a generalization of the Melnikov method for ordinary
differential equations with impulsive effects. Consider the equation

(11.1) ' = f(z) + e h(z,t)
with impulsive effects
z(i40) = z(i — 0) + € - a(e, z(i = 0)), i=1,2,...,

where z(i £ 0) = t!lrllet z(t) and f: R™ — R™ is a smooth map, a: R x R™ — R™ is
a smooth map, h: R™ x R — R™ is smooth and 1-periodic in ¢. Let (II.1) for e = 0
have a hyperbolic fixed point 0 € R™ possessing a homoclinic orbit b(t). Let b(t, z, €)
be the solution of the equation (11.1) satisfying b(0,z,e) = z.

We put

F.:R™ — R™, Fe(z) = b(1,z,¢),
G.: R™ - R™, Ge(z) =z 4 €2 -a(e, ).

We see that (7, is a local diffeomorphism on an arbitrary bounded subset of R™ for
e small. Now we apply the results of Section 2 for the map H, = F, - GG.. Consider
the Banach space X from Section 2 and the mapping

Re: X — X, R({yn}Z)n = ynt1 — He(yn).
We note that Ro({b(t + n)}*,.) = 0,t € R. Hence Ry = 0 on the set
M= {{b{t+ 1)} [t E (Lo —Lito+ 1)} C X

for ty € R fixed. The set . is a 1-dimensional submanifold of X containing the point
{b(to + n)}>,, at which the tangent space to .# is a vector subspace generated by

{(0)(to + n)} 2.

Theorem IL.1. Let A(t) be the Melnikov function from [3, p. 2562] for the ordinary
differential equation (I11.1) without the impulsive effects (i.e. a = 0). If there exists a
number ty € R such that A(tg) =0, A'(to) # 0, then H. has a transversal homoclinic
point for e # 0 small.

By the Smale theorem [6] mentioned in Introduction and by Theorem II.1 we
obtain that the impulsive equation (II.1) has infinitely many periodic solutions whose
periods tend to infinity for e # 0 small.
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Proof. We apply Theorem 4.1 from [3] for the map R. and the manifold ..
The assumptions of this theorem, which ensure bifurcation of homoclinic points near
B(to), involve at most the first derivatives by the parameter e of R, at the point

e = 0. Since
DeRO({yn Sooo) - _{De}IO(yn) o_ooo = _{DeFO(yn)}ioooy

we see that these assumptions do not include any assumptions for a. Hence we can
assume that ¢ = 0. But then we obtain the well-known classical bifurcation problem

[3], for which these assumptions have the form of our statement (see [3]). O
Corollary I1.2. Consider the equation

o' = f(z)+e-h(z,t) on (2i+1,2i+2), i=1,2,...
' =e?-g(z,t) on (2i,2i+1),

where f, h satisfy the above mentioned assumptions, g € C* is I-periodic in t. If
there exists tg € R such that A(tg) = 0, A’(to) # 0, then this equation has an
infinite sequence of periodic solutions, whose periods tend to infinity.

Proof. We apply the above theorem, regarding the second equation as an
impulsive effect. Thus we derive the mapping a. Let ¢(t,z,e) be the solution of
the equation z’ = e? - g(x,t) such that ¢(0,z,e) = z. Then ¢(t,z,0) = z and
Dec(t,2,0) = 0 for any t € R,z € R™ and thus

c(l,z,e) =z +e* - a(z,e).

The assertion of Corollary I1.2 we obtain from Theorem II.1. O

For the sake of simplicity, until now we have considered ordinary differential equa-
tions with impulsive effects of the second order: z — z + €% - a(e, z). Now using the
results of Section 2 for two-dimensional mappings we consider the problem

(I11.2) z(i+0)=2(i—0)+e-a(e,z(i - 0)),

where e € R, a, f are smooth, two-dimensional and f is Hamiltonian possessing a
homoclinic orbit B(t) to a hyperbolic singular point 0. We use the notation before
Theorem II.1 and instead of the mapping H, we study H, = G, -F,. Then a%f{o(m) =
a(0,b(1,2,0)) and Hy is area preserving possessing the family of homoclinic orbits

108



{zn(c)} = {b(c+n)}. Finally, using the formula (2.2) for H, we obtain the Melnikov
function for (11.2)

c— Za(O, b(c+n)) A f(b(c +n)),
since z,(c) = b(c +n).

Application III. The next applications deal with two types of degenerate per-
turbations of diffeomorphisms. The first of them is the case when an unperturbed
diffeomorphism has a nonhyperbolic fixed point while the other is a singular pertur-
bation. As a matter of fact, some of these perturbations are Poincaré mappings of
ordinary differential equations partly studied in the averaging theory and partly in
the theory of singular perturbations.

Consider the mapping g.: R¥ x R¥ — R x R*,

(1L.1) ge(2,9) = (z + - Av + ¢ [(2,9),9(4) + ¢ - h(z,)),

where f, g, h € C*, A has only eigenvalues with positive real parts, g has a hyperbolic
fixed point 0 with a transversal homoclinic orbit {§,}* and h(0,0) = 0, f(0,0) = 0,
Df(0,0) = 0.

Theorem II1.1. The mapping (111.1) has a transversal homoclinic orbit near to
{(0,9n)}>,, for any e # 0 small.

Proof. We shall study the case e > 0. The map (I11.1) has a fixed point (0, 0)

for any e, and

I+e- A 0 )

Dg.(0,0) = (e - D.h(0,0) Dg(0) + e - Dyh(0,0)

It is clear that Dg.(0,0) has no eigenvalue on the unit circle for e # 0 small, since A

has only eigenvalues with positive real parts. We solve the equations

Tpit = 2o +e-Azn + €2 f(zn,Yn),
(111.2) Yn+1 = 9(Yn) + € h(zn, yn)

in X; x X9, where
X1 = {{z2)%% | 2n € R, sup|za| < 00},
n
/\’2 = {{yn}iooo ’ Yn € Rk; SuPlynl < OO}
n
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Lemma 1. The linear mapping L.: X, — X},

Le({xn})n = ZTp41 —Lp — € Az,

is invertible for e > 0 small and |L7'| < &.

Proof of Lemma 1.

(111.3)

Let us solve Lexz = h in X4, i.e.

Zpy1 =T +e-A)zy + hy.

According to [10, p. 145] we have

l+e-e<|I+e- Al

Indeed, by [10] we can assume that (Az,z) > c.|z|?, ¢ > 0. Thus (z +e- Az, z) >
(I+e-c)-|z)?and [[+e-Al>1+4e-c.
Hence (I111.3) has a unique bounded solution

(111.4)

£n = —(A7 hn 4 A7 hpyr +...) for 0 < n,
on = Ao — AT Ry — = ATy for n <0,

where A; = I 4+ e- A. Since |A]'| < 1=, then

14e-c?

lznl < (JAT 4 AT’ + .. ) -sup [hj], n 20

1 1

< (

1
< P -sup |hy].

Analogously we have for n < 0, e > 0 small

Thus |L71] €

Now we rewrite the equation (I111.2) in the form

(111.5)

<
e

11311‘ <

o | o

for e > 0 small.

1+e~c+(1—{-e~c)2

+...) - sup |hj|

-sup |h;].

r=L7'-e? F(z,y),
0=G(y) +e- H(z,y),

where z = {xn}ioomy = {yn}iooolF(xvy)n =
H(x,y)n = h(zn,yn). We know that |L71]| <
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equation in (I11.5) by the implicit function theorem and obtain its solution z(e,y)
such that |z(e, y)| = O(e) - O(|y|). Let us solve the second equation

0==G(y) +e-H(z(e,y),y).

We have G({#.}%,) = 0, and the operator D,G({§n}>,) is invertible, since
{gn} is transversal (see [2, p. 292] or the argument before Theorem 1.1). We
obtain that the system (I11.2) has a unique solution {(z,(e),yn(€))}*°, near to
{(0,n)}=,, for e > 0 small.

Now we show that n_l_%l;loo |zn(€)| + |ya(e)| = 0.

Let limiup |z.(e)| + |yn(e)] = d > 0. If n is large then according to (I11.4-5) we

have for |z, (e)| + |yn(€)| small

2 AT f(2n(e), un(€) + AT S (ngr(€), Ynar (€)) + .|

lan(e)| = e
SUATH+ AT +..) - € sup |f(z;(e), v (©))]
nYy

Il

<= osup |f(j(e), gy ()
n<Jj
= O(e) -sup | f(z;(e), yj (e))]
ngJy
= O(e) -sup(lz;(e)| + lyj (e)])?
ngJ
= 0O(e) - 2d.
Further,
(111.6) Yn+1(€) = Dg(0)yn(e) = O(lyn(e)]*) + O(e) - O(lya(e)] + lzn(e)]),

Ynt1(e) — Dg(O)yn(e) = hy,

where sup |h;| = O(d?) + O(e) - O(d).
n<i
We show that the equality (111.6) implies

limsup |yn(e)| = O(limsup |h,|).
n—00 n-—oo

First of all, we assume that Dg(0) has only eigenvalues inside the unit circle. Then
we solve (I11.6) as in (111.4) and have

yn(e) = Dg(0)"yo + Dg(0)* tho+ ...+ hp_y.

If limsup |h,| = b, then |h,| < b+ 6 for n > ng large and § small.

n—00
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We can assume that |Dg(0)| < 1 {12, 3.126 Lemma] and thus

limsup |y, (e)| = limsup |Dg(0)*yo + Dg(0)" " ho + ...
n—o00 n—oo

+ Dg(0)*~"°h, 1 + Dg(0)" ™ hpy + ...+ hp_1|
< (L4 |Dg(0)| + | Dg(0)]> +...) - (b + 6)
<e-(b+96)

for 6 > 0 arbitrary small. Hence limsup |y,(e)| < ¢-b. Similarly we solve the case
n—00
when Dg(0) has eigenvalues outside the unit circle.

Summing up we obtain that for e > 0, d small

d = limsup |z, (e)] + |yn(e)] € O(e) - d + O(d?) < %l-—}- g = 23(—1
n—oo . .

and thus d = 0. Similarly we show limsup |z, (e)| + |yn(e)| = 0.
n——o00

Since Dg.(0,0) is a hyperbolic matrix for e > 0 small and the system of variational
equations

Unt1 = Un + € - Avy + €% - Df(zn(e), Yn(€))(Vn, 2n) + fa,
Zn41 = Dg(yn(e))zn + € Dh(zn(e), yn(€))(vn, zn) + hn

has a unique bounded solution for any {(fn, hn)}%,, € X1 x X (this assertion follows
in the same way as in (111.2)), we obtain that {(zn(e), yn(€))}% Is a transversal
homoclinic orbit of the mapping g. for e > 0 small (see [2, p. 292] or the argument
before Theorem 1.1). O

The second degenerate case is the following mapping

he(l',y) = ((I - g(y))e—l +.’E,$ +e 'f(xay)))e 75 01
where z,y € R™, f,g € C*, £(0,0) =0, Df(0,0) = 0.

Theorem IIL.2. Let g have a hyperbolic fixed point 0 possessing a transversal
homoclinic orbit {§n}%,. Then the mapping h. has a transversal homoclinic orbit
to the fixed point (0,0) near to the orbit {(g(gn), Jn)}Zs, for e # 0 small.

Proof. The linearization of the map h at (0,0) has the form

-1 -1
Dhe(0,0)z(e I4+1 —e A)’

I - 0
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where A = Dg(0) and [ is the identity matrix. Let us compute the eigenvalues d of
the matrix Dh.(0,0).
The equation

eV 41—d -1 —e A
d‘t, =
¢ ( i -d-I) 0

0 E
det =
¢ (1 —d~1) 0

where E = —e~'A+ (e-'I+1—d-1I)-d, and thus

yields the equation

det E=dete }((14+e-(1=d))d-I—A)=0.

It follows from this equation that d(1 + e(1 — d)) = d; € o(A) and

1+e++/(1+e)?—4ded
2e

oo, ife—0

14+e— /(1 +e€)?—4ed
2e

—dy, ife—0.

We see that the fixed point (0,0) of the mapping h. is hyperbolic for e # 0 small.
Let us solve the system

In41 = e—l(l'n - .‘/(yn)) + zn,
(“17) yn-H = Tn + e - f(xn»yn)

in X, x Xy, where X; = {{1’,,'}‘:"00 | z, € R™, sup |z,| < co} I'rom (I11.7) we have
n
€ - (1‘,1+1 - In) = Tn — g(yn),
Yngl = Tp + €+ f(l'n,yn)

and

€- (zn-}—l - l'n) = Yn41 — y(yn) —€- f(rmyn)y
Yntl1 = Zn te€- f(znyyn)-
Define the map F: X'y x X; — X7 x X,
Fe({en} e, {un}Zeo)n
= (—6(;L’n+1 - xn) + Ynt1 — g(yn) - 6f(fcn; yn), Yn41 — Tn — ef(l'ny yn))-
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Then

F‘O({g(gn)}ioooi {gn}iooo) = 07
DFo({9(9n)} Zee s {Tn } 20 ) {un}, {vn}) = {un+1 — Dg(Fn)un, vat1 — un}.

o0

Since {§n}*°,, is a transversal homoclinic orbit of the map g we obtain that the linear

map
DFo({9(7n)} o0, {7} 70)

is invertible (see [2, p. 292] or the argument before Theorem I.1). Using the implicit
function theorem we obtain that (1I1.7) has a bounded orbit

[e= {(x"(e)a yn(e))}iooo

near to the orbit {(¢(gn), ¥n)} - Further, we have

Un+1(€) = Dg(0)yn(e) = O(lyn(e)|*) + e(zn41(e) — zn(e))
+e- f(zn(e), ynle)),
zn(e) = yny1(e) — e f(zn(e), yn(e)).

Applying the same procedure as in the proof of Theorem I1I.1 we obtain

limsup |z, (e)| + |yn(e)] = 0.

n—ztoo
Finally, the variational equation along the orbit I, has the form

Unt1 = (Un — Dg(yn(e))vn) - e+ up + hy,
Ungl = Up +€- Df(l'n(e)ayn(e))(uﬂ»vﬂ) + gn.

This implies

€ Unt1 = Uny1 — Dg(yn(e))vn +e - hy
—e-Df(zn(e),yn(€))(un,vn) — gn + € - Un,
Un41 = Up +€- Df(zn(e)v yn(e))(u") vn) + 9n-

It is clear that this equation has a unique bounded solution for any {(hn, gn)}% €
X1 x X1. Hence T, is a transversal homoclinic orbit of the mapping h. to the point
(0,0) for e # 0 small (see [2, p. 292] or the argument before Theorem 1.1). O
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Application IV. Finally, we shall investigate problems which were stimulated by
the papers due to G. R. Sell and K. R. Meyer [1] and S. Wiggins [8]. Let us consider

ge: R x M - R™ x M,
(%) ge(x’y) :(f(z)+e~h(:r:,y),r(y)),

where M is a compact C®-manifold, h € C*® and r: M — M is a diffeomorphism.
Assume that 0 € R™ is a hyperbolic fixed point of a diffecomorphism f, possessing a
transversal homoclinic orbit {z,}%,, i.e., z, — 0 if n — too. We see that go has
an invariant set

(J{zn} x MU {0} x M.

n

We shall show that the perturbed mapping g. for e small has a similar property. For
this purpose we introduce the Banach space

X ={z: M = R™ | z is continuous}

with the norm ||z|| = sup |2(-)|. Define a mapping F,: X — X,
M

Fe(z())(W) = f(r7 W))) + e - h(2(r™ (v)), 7~ (1)

The map F, is well defined and
Fo(2)(y) = f(2(r~1(9)))-

Theorem IV.1. F, has a unique small fixed point z.

Proof. Fy(0)=0and F. is Cl-smooth and thus we have
DFy(0)v = Df(0)v(r~ 1), wveX.

By the assumption the matrix Df(0) is hyperbolic, i.e., Df(0) has no eigenvalues
on the unit circle. We can assume Df(0) = (A, B) with |A| < 1, |[B™!| < 1. Then
DFy(0)v = (Au(r~1), Bw(r~!)), where v = (u, w) is the natural decomposition of v.
We have ||Au(r=1)|| < |A] - ||u||. Further, let us solve H(w) = Bw(r~!) = @. Then
w(r') = B~ '@ and w = B~'@(r). Hence ||H Y(@)|| = |lw|| < |B7Y-||@|]. We
see that DFy(0) is a hyperbolic linear operator on X, and in particular, I — DFy(0)
is invertible. Thus the assertion of the theorem follows from the implicit function
theorem. a
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Remark IV.2. (1) The fixed point z of the map F, satisfies the equality

z= fz(r™ ) + e h(z(r™), 7).

Hence the graph M, of the map z. is an invariant set of the diffeomorphism g..
(2) Theorem IV.1 is also a consequence of the well-known results of the theory of

invariant sets of diffeomorphisms [7].

By Remark 1V.2 and Theorem 1V.1, g, has an invariant set M, near to {0} x M.

We see that Fy has an orbit {a,}*,, where a,(y) = =, for any y € M, and

—00)
ant+1 = Fo(ay) and @, — 0 if n — Foo. Hence {a,}*,, is a homoclinic orbit of
Fy. Further we shall investigate the mapping F, in the same way as for ordinary

diffeomorphisms [2]. Let
= {{@) % [z € X}

be a Banach space with a norm
{2n} | = sup [|znll-
n
The map F. generates a map H.: X — X defined by

({Zn}_m)n = ZIn41 — F, (~n)

Hence we obtain

Ho({an}Zs) = 0

and
DHo({an}e ) {vn } 20 = {Vn41 — DFo(an) - v},
Vg1 — DFo(an)vn = vat1 — Df(zn)va(r 1).
By the proof of Theorem 1V.1 the set {A,}%,, A, = DFy(0) has an exponential

dichotomy on Z, since DF(0) is a hyperbolic linear operator on X. Since 2, — 0
if n — %00, thus by Lemma 2.4 we have an exponential dichotomy of the sequences
{DFo(an)}2 oo, {DFo(an)}s. On the other hand, the sequence {Df(z, )}, has an
exponential dichotomy on Z, since {z,}%, is a transversal orbit of f (see [2, p. 292]
or the argument before Theorem 1.1). Hence the equation v,4) = DFy(an)vy, which

is equivalent to the equation

Un41 = Df(zn)bn(;'_l)y
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has only the trivial, zero, bounded solution on Z. This implies that { DFy(a,)}*,, has
an exponential dichotomy and thus DHo({a,}*,) is invertible. Using the implicit
function theorem we obtain the following theorem.

Theorem IV.3. Let g, have the form (x) and let a,, n € Z be maps defined by
an(y) = x, Yy € M. Then for any n € Z, e small, there exists a C°-mapping Znet
M -= R™ such that g.(M?) = M, My = grapha, and M} — M, if n — oo,
where M is the graph of the map zy ., and M. is the invariant set from Theorem
IV.1.

Remark IV.4. The property M} — M, if n — %00 is proved in the same way
as for ordinary diffeomorphisms [2, pp. 295-297], since

Zntle = Fe(zn,e)s Ze = Fe(ze)y
and thus
Zn4le — Ze = Fe(zn,e) = Fe(ze).

Let w, = zp e — ze, then

Wn41 = DFe(Ze)wn + Fe(ze + wn) - Fe(ze) - DFe(ze)wn,
Wny1 = DFo(2e)wn + O(Jwa]?).

Using an exponential dichotomy of { DFy(0)}°°, and the fact that z. is near to 0 we
have an exponential dichotomy of {DFe(z.)}%,,. Now we proceed as in Theorem
I11.1 (see the proof of the assertion for (II1.6)).

From Theorem IV.3 and from the openness property of transversality it follows
that for e sufficiently small the homoclinic orbit {z, .}%,, is transversal for F, and
thus the set {z;, .}%,, U{z.} is hyperbolic for F, [2, p. 279]. Now we can repeat the
proof of the shadowing lemma (see [2, p. 282]) to obtain

Theorem IV.5. The assertion of the shadowing lemma [2, p. 282] holds for F,
on the hyperbolic set {zn .} U {z.}.

Using Theorem IV.5 we can repeat the proof of Theorem 5 of [1] obtaining

Theorem IV.6. There exist e > 0 and a natural number ng > 0 such that for
any e, le| < eg and all ng < n there exists a compact invariant set Q, C X of F,
such that the restriction F/S, is equivalent to the Bernoulli shift on B,(K) (see
[1, p. 76]).

Remark IV.7. Proofs of Theorems 1V.5-6 are straightforward extensions of
the proofs of [1, Theorem 5] and [2, Theorem 4.8] and thus we have not presented
them. Also the space B, (K) and the Bernoulli shift is described in [1, p. 76].
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Theorem 1V.6 has a consequence for the mapping ge which we formulate in the
next theorem.

Theorem IV.8. For any e small and ng < n (no from Theorem 1V.6) the mapping
ge has a compact invariant set A, in the form

D(B,(K) x M),

and

(1) D(a,b) = (C(a,b),bd) for any a € Bo(K), be M,

(2) C: By(K) x M — R™ is continuous,
(3) D({al} X M) ;é D({ag} X M) ifa1 # as,
(4) for any = € B, (K) there exists a unique y = y(z) € B, (K)

such that g.(D({z} x M)) = D({y} x M).

In this way we define a map B,(K) — Bn(K), * — y(z), which is precisely the
Bernoulli shift. Hence g. has a chaotic dynamics on A,,.

Remark IV.9. We note that these results hold if M is only a compact topolog-
ical space, r is a homeomorphism and h is continuous and continuously differentiable
in z. If moreover M is a C°-manifold and h, r are smooth, and

(a) sup [Dr(-)| - [|B7Y| < 1, sup [Dr='()]-[|4]] < 1,
M M

where Df(0) = (A, B) and A, B have eigenvalues inside and outside the unit cir-
cle, respectively, then the maps z,z, . and C(a,-) are C'-smooth. Hence the set
A, consists of C'-smooth manifolds. Indeed, introducing X = {z: M — R™ |
z is C'-smooth} we are able to repeat the proofs of the above theorems. We see
that the condition (a) expresses the 1-normal hyperbolicity of the map go on {0} x M
in the sense of [7].

Similar results we obtain also for the general skew product mapping studied in
[1, 8]. Let us consider a diffeomorphism

(Iv.2) g:R"xM —-R"x M

where g(z,y) = (f(z,y),r(y)), f,r € C°. Note that r: M — M is a diffeomorphism.
Let f(0,-) = 0, i.e. g has an invariant manifold {0} x M. On the space X with the
norm ||z|| = sup |z(-)| we define the map F: X — X,

M

F)() = f(z-r71()r71 ()
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We see that F(0) = 0 and DF(0)v = D f(0, 7~ (-)u(r~1(")).
Further, for F we define F: X — X,

F({zn) % )n = 2041 = F(zn).

Definition IV.10 ([7, p.5]). The mapping ¢ is 0-normally hyperbolic on {0} x M
if there exist a smooth mapping P: M — Z(R™) and a number b, 0 < b < 1 such
that

(1) P(y)- P(y) = P(y), Dz f(0,y) Im P(y) = Im P(r(y))

D, f(0,y) Im(I = P(y)) = Im(I — P(r(y))) for all y € M,
(2) |Df(0,y) - P(y)| < b, |D=f~1(0,9) - (I = P(r(y)))| < bforallye M,
(3) dimIm P(y) does not depend on y € M

(- is the composition of matrices).

Let g be O-normally hyperbolic on {0} x M, then by using the projections P(-)
we obtain that the set {Im P(y),Im(/ — P(¥))}yem gives an invariant hyperbolic
splitting of R™ x M for D, f(0,y). Since

DF(0)v = D f(0,r7 ' ()o(r=1(-)),
we put

X1 ={veX|u(y) €lmP(y)},
Xz ={veX|v(y) €lm(l - P(y)))}.

Then clearly (X1, X3) is an invariant hyperbolic splitting of X for the map DF(0).
Thus {D,,}*,,, Dn = DF(0) has an exponential dichotomy on Z. Hence the existence
of local stable and unstable manifolds W?$,_, WY _ of the point can be shown in the
standard way as is used for instance in [2, p. 295]. Let us assume that the sequence
{un}=, C X is such that F(un) = Un41,Un — 0 if n — £oo and the sequence
{DF(u,)}*, has an exponential dichotomy on Z. Now we proceed as in the proof
of Theorem 1V.6 to prove the existence of an invariant set A, of the map ¢ for n
natural large, which has the properties from Theorem IV.8.

Further we investigate the case when there exist smooth mappings v;: M — R™,

i=1, ..., msuch that

span{vy, ..., vs }(y) = Im P(y),
span{vs41, ..., vm}(y) = Im(I — P(y)).
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Then we can assume that the decomposition of R™ x M given by the projection P(-)
is constant, i.e. we have

(IV.3) Dz £(0,y) = (A(y), B()),

where |A(:)| < b,|B71())] < b < 1,A(-) € Z(R*),B(-) € L(R™~*). Further we
assume that g is normally hyperbolic on {0} x M, i.e. ({7, p. 5])

A - IDr= () < 1 |BTIO)L- [Dr()] < 1.

Then according to [7] g has local stable and unstable C! -manifolds for {0} x M,
which can be expressed as graphs of functions

(zlyy) - (zl)Gl(zlay)vy)y
(1‘-21y) - (GZ(zz)y))JTny)v

respectively, where 2y € U*, 2, € U™™*, G1: U xM — R™™* G2: UM Sx M — R?,
U*, U™~* are open neighbourhoods of the points 0 € R* and 0 € R™~*, Since g is a
diffeomorphism it is possible to define global stable and unstable manifolds W*, W*
for {0} x M as the sets of all graphs of 2 € X satisfying

9" (G)—= {0} x M ifn— too, G = graphz.

Theorem IV.11. The sequence { DF(u,)}®,, has an exponential dichotomy pro-
vided that the manifolds W* and W*" have a transversal intersection in the graph of

a mapping ug.

Proof. Since g is a diffeomorphism, F is a diffeomorphism as well. Then F
has global stable and unstable manifolds W*, W, respectively. Since g has a special
form, the sequence {DF (u,)}*,, has an exponential dichotomy provided W*, W
have a transversal intersection in ug (see [2, p. 287 and 300]), i.e.

T, W* & Ty, W* = X.

On the other hand, the set W* consists of such z € X for which graph z C W?*. The
same holds for W*. Hence

‘=z € X | z(y) € Tuu(y)l/V’/M(y)},
= {ze X |z2(y) € Tuy)W"/M(y)},

s =

Ty
T
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where M (y) = Tuo(y)(graph ug) and by “/” the factor space is denoted. This implies
TuoW* & T, W
= {Z € )? I Z(y) € Tuu(y)Ws/M(y) b Tuu(y)Wu/M(y)}'

According to the assumptions of the theorem, W* and W* have a transversal inter-
section in the graphug, i.e. we have

Tuu(y)W’/M(y) &) Tun(y)Wu/l\l(y) ~R™

for y € M. The proof is complete. a

As a consequence of Theorem IV.11 we obtain

Theorem IV. 12. Let the invariant set {0} x M of the map g be both trivially
normally hyperbolic (i.e. g has the property (IV.3)) and normally hyperbolic ([7]).
If the global stable and unstable manifolds of this set have a transversal intersection
in S, where S = graph z for a C'-mapping z: M — R™. Then g has an invariant set
A, for any large natural number n possessing the properties from Theorem IV .8.

We note that the trivial hyperbolicity of {0} x M is not essential. We have
considered it only for the sake of simplicity. By [7] the usual normal hyperbolicity
ensures the existence of the local stable and unstable manifolds of {0} x M.
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