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FINITE NONDENSE POINT SET ANALYSIS
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Summary. The paper deals with the decomposition and with the boundary and hull
construction of the so-called nondense point set. This problem and its applications have
been frequently studied in computational geometry, raster graphics and, in particular, in
the image processing (see e.g. [3], (6], [7], [8], [9], [10]). We solve a problem of the point set
decomposition by means of certain relations in graph theory.
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1. POINT SET DECOMPOSITION

Let 2 be a set of points in plane, i.e. & = {A; A; € E2,i=1,2,...,n,n > 2}.
Denote d the distance of two points from the set Z and let R = max|A;A;|, where
Ai,Aj € Z. A non-oriented graph G = (V, H, w) is created, where V is the set of
points A (vertices), H is the set of segments A;A; (edges) and w(e) = A;A; = d,
e€ H,e={AiAj}.

Let 2 = {d,0 < d < R; G is a connected graph}, i.e. D is the set of distances of
two points from the set 2. Elements of the set @ are less than or equal to R =
max |A; Aj| such, that G is a connected graph. Denote di,(G) = min 2. Obviously
d(G) is the weight of the longest edge of the graph spanning tree, [4].

The graph G can be defined using an incidence (Boolean) matrix ¢. It is a
syminetric n by n square matrix (n is the number of the graph vertices) in which
the element

1, if |A;Aj| < d vertices are linked up by an edge
9 = 0. otherwise
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Form a matrix

FE=E+9+9"+.. . +9"

where element s;; = s;j; = 1 expressed that there exists a path between the vertices
A;i, Aj whose length (in the sense of graph theory) is equal to or less than k, k > 1,
E is the unit matrix. Recurrently, it is possible to put

Sk =g+ . 9+ E,
where % = E means that each vertex links itself and this way length 0.

Theorem 1. For a finite graph 94 there always exists a number k, 0 < k < u,
v = H is a cardinal number, such that S* = S¥*!' = | The number k is the
diameter of the graph 4.

Addition and multiplication of matrix is boolean.
The matrix S from Theorem 1 will be called the stabilized matrix of graph G, [1].

Theorem 2. If there exists at least one element s;; = 0 in % then #* generates
a decomposition of the graph G into components.

See [1] for details.

Note. If d < dm(GQ) then there exist at least two components.

2. OUTER BOUNDARY CONSTRUCTION: ALGORITHM I

A polygon is said to be the boundary of a set of points ., if each point of .#
either insides with the interior of the boundary or is a vertex of it.

Let A = {Ai, Ai € Z, A; are the vertices of the component H; of the graph G},
t=1,2,...,n, where n is the number of components, n > 2. Denote by £ the length
of the maximal weight of edge of the graph spanning tree of the component Hy, i.e.
£ = dp,(Hy). We construct the outer boundary as a closed polygon Py ... Py,:

1. Choose a point A; € .#; having the smallest z coordinate and denote it by Pp.

2. From the points A; # Py, where PgA; < ¢, we choose the one—denoting it by
Py—which is incident with the arm of the greatest oriented angle (orientation
opposite. to the clockwise direction) the first arm of which is formed by the
z-axis and the other passes through the point P;. If there are more than one
such points we choose one of those with the smallest z.

3. Let P, be a vertex of the boundary for any natural number r > 0. From points
A; # P,, for which P, A; < € we choose that one denoting it Pr4+1 which incides
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with the arm of the greatest oriented angle (in opposite the clockwise direction)
PP Py =, p < 2n (Fig. 1), while
A if there are more such points A; inciding with this arm we choose that with

the smallest distance from vertex P,

B1 ifsegment P, A; intersects a side of the boundary polygon in its inner point,
or

B2 if no poilit A; # Pr_1 in the circle domain with the diameter ¢ exists, we
choose point P,_; to be a boundary polygon vertex, it means P41 = Pr_1.

Fig. 1

It follows from the construction that there always exists such a point Poy1 = P
for which the boundary polygon P ... P, is closed. An example of the boundary of
the set My generated by one graph component H, for given £ is in Fig.2.

Fig.2

Note 1. Obviously, for an arbitrary motion of the set .#, in the plane, point
Py is according to this construction the vertex of the angle P,PoP, = ¢, where
0 < ¢ < 2r. The boundary polygon is one-coirespondent at any motion.
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Note 2. Algorithm I shortly describes a method of boundary construction only.
The complexity of computing does not exceed O(n?) in any case, because the com-
plexicity of the construction algorithm of a vertex P4, using the greatest angle is
linear. Computation of the angle ¢ value is connected either with the elementar
arithmetic operationes or with set operations on a point set. Somne algorithms of
a boundary construction (for convex hull) e.g. Jarvis’s march, Graham’s algorithm,
Quickhull techniques and other are described in [11].

3. DETERMINATION OF TWO COMPONENTS INCIDENCE

Let Hy, H2 be two components of graph G and .4, .#; sets of these components
vertices. Let ¥ = {v; v = A;Aj; A; € .# and A; € A} and let vy = minY (v4
defines the deviation of the .#; and .45).

Theorem 3. Let .#, and .#> be two point sets (in plane) generated by the
decomposition of a component graph into components and let [A,, Ao}, A; € ),
Aj € M3 is such a pair of points that A; Aj = vq. Let further p; be the boundary of
set ;. Then if A; & py and

1. if segment A; Aj does not incide with a point of boundary p1, according to the
algorithms in part 2, .#+ incides with the interior of set .#\, which boundary
is the outline P1-

2. if segment A; Aj intersects boundary py, o does not incident with ..

Note. The theorem can be rewritten for the priority of My to ;.

Proof. Assertion 1 is trivial. Let now m = [¢, A;] be a semiplane (see Fig.3)
and circle domains ky = (A;,vq), k2 = (Aj,vq). Form a region 0 = m Nk, — ky
(hatching part). If A; is not a vertex of polygon p;, there exists, obviously, exactly
one point of the neighbouring vertices P;, Pit1 € @ such that P;Piy1 < vq and
segment P;P;y; incides with the interior point of segment A;A;. If there existed
another pair of points P/ and P{,, having the same property, according to the
boundary construction 1, points P; and P/ would either vertices of side of polygon
1, or one of them lies in region 0. The same is valid for Pi41 and P/ ;. O
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Fig.3

4. BOUNDARY CONSTRUCTION: ALGORITHMS II

Let .#; and .#5 be two sets of points in the distance of vq4. Let A; € .#; and
Aj € 3 be two points such that A; A; < vy. Let us choose in .#) two points K and
L for which A; K < va, AiL < vq and angle ¢ = AjA; K, %Tt < ¢ < 7 opposite in
clockwise direction is the smallest one, the angle ¢y = A; A; L, %n < ¥ < nin clockwise
direction is the smallest one respectively (Fig.4). It follows from the Theorem 3 that
next point of the boundary lies either in the region & or in the opposite semiplane
to [a, A;] (see Fig.3). Therefore the lower bound of the intervals for angles ¢ and ¢
is :’,;1:. If some more points satisfying given conditions incide with the arms k or £,
we choose those K resp. L, which are closest distance from point A;. If at least one
of angles ¢ or 1) respectively is equal or greater than %n (see part 3), it is possible to
regard point A; as a vertex of the boundary polygon; then K = P, and L = P; are
boundary vertices and other vertices are constructed using the algorithm in part 2.

If both arms make angles %rc <e < -;-n, %rc <Y< -12-1t and KL < vg we choose
K = P, and L = Py, and other vertices according the algorithm in part 2.

Consequence. If points Py, ..., P, obtained using this algorithms are the same,
designation excluding, the boundary is concerned. If it is not true, the boundary
obtained using this construction is inner boundary (Fig.5).
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Fig.4

Fig.5

5. BOOLEAN MATRICES APPLICATION TO GRAPH DECOMPOSITION
AND APPLICATION

Neighbourhood matrix defining the graph is a Boolean matrix which consists of
elements 0 and 1. The occupation of the operation memory of this matrix is not
much economizing. For this reason we transformed the Boolean matrix through the
binary number system, to reduced matrix, consisting of elements in decadic number
system. [9]

Matrix 9% = %1 . ¢ 4+ E we formed multiplying competent reduced matrices.
Problem of the reduced matrices multiplication has been solved and competent al-
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gorithm as well as the program realizing graph component aided decomposition of
point sets into groups is detail described in [2].

We multiply matrices as long as the stabilized matrix is obtained, i.e. while % =
FEHL = k2 =

At last, we find out which rows of the stabilized matrix S* are equal. These equal
rows represent single-components of the given graph.

In Fig.6 is the boundary of convex hull (6a), hull for d,,(G) (6b), the case of
boundary for dy < d;,(G) (6¢) and the hull for da < d;.

Fig. 6¢ , Fig. 6d
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Stihrn
ANALYZA KONECNYCH RIEDKYCH BODOVYCH MNOZIN
JOzEF ZAMOZIK, MARIA MISUTOVA
V prispevku sa pojedndva o rozklade tzv. riedkej bodovej mnoziny spolu s kongtrukciou

obrysu a obalu. Tento problém a jeho aplikicie si frekventovanon problematikou v poéita-
tovej geometrii a Specidlne v rastrovej grafike, najma v oblasti spracovania obrazov. (Pozri

napr. [3]» [6]7 [7]» [8]’ [9], [10]-)

Problém rozkladu bodovej mnoziny je rieseny pomocou istych vz€ahov teérie grafov.
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