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ON MESH INDEPENDENCE AND NEWTON-TYPE METHODS

OWE AXELSSON, Nijmegen

Summary. Mesh-independent convergence of Newton-type methods for the solution of
nonlinear partial differential equations is discussed. First, under certain local smoothness
assumptions, it is shown that by properly relating the mesh parameters H and h for a
coarse and a fine discretization mesh, it suffices to compute the solution of the nonlinear
equation on the coarse mesh and subsequently correct it once using the linearized (Newton)
equation on the fine mesh. In this way the iteration error will be of the same order as the
discretization error. The proper relation is found to be H = h'/ where in the ideal case,
a = 4. This means that in practice the coarse mesh is very coarse. To solve the coarse
mesh problem it is shown that under a Holder continuity assumption, a truncated and
approximate generalized conjugate gradient method with search directions updated from an
(inexact) Newton direction vector, converges globally, i.e. independent of the initial vector.
Further, it is shown that the number of steps before the superlinear rate of convergence sets
in is bounded, independent of the mesh parameter.

Keywords: Nonlinear problems, Newton methods, mesh-independent convergence, two-
level mesh method

AMS classification: 65H10, 65L60

1. INTRODUCTION

To solve nonlinear elliptic partial differential equations discretized by finite differ-
ence or finite element methods, for instance, a number of authors, such as [1, 2, 8],
have investigated the question of mesh independent convergence of Newton iteration
methods, i.e., they have considered whether the number of Newton steps, necessary
to solve the problem to a certain accuracy depend on the finiteness of the discretiza-
tion mesh.

In the present paper we consider this question from two different points of view.

In the first part we show that if we use the interpolant of the solution of the
nonlinear problem on the coarse mesh as an initial approximation when solving the
problem on the fine mesh, it suffices with one or two steps of the linearized (Newton)
equation. This assumes that a certain relation, H = h'/ holds between the coarse
and fine mesh parameters for some positive a, a < 1. The so computed solution has
then an error of the same order as the discretization error. Certain local smoothness
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assumptions of the nonlinear function on the finite dimensional space are assumed
to hold in some ball about the solution. In the ideal case, for piecewise linear finite
element approximations, the relation is H = h!/4 which means that, in practice, the
coarse mesh contains very few nodepoints.

The method can be extended to a three-level (or, more generally, to a multilevel)
method where the nonlinear problem is solved on the coarsest mesh, then corrected
once with the linearized equation on the intermediate mesh and finally, the so found
intermediate solution is corrected on the finest mesh. The relations between the
mesh parameters in this case will typically be hy = h}lz = h;“.

In the second part of the paper the solution of the problem on the coarse mesh is
considered. As global convergence result is shown to hold if the nonlinear function F
is differentiable and its derivative F’ is nonsingular (except possibly at the solution)
and Holder continuous. To achieve the global convergence, a truncated generalized
conjugate gradient type method is used to compute the successive approximations
and the search directions which are then used are updated from a vector which is an
approximate solution of the Newton (linearized) equation. The accuracy with which
this latter equation must be solved is automatically monitored by the algorithm. In
particular, at the initial stages the equation can be solved with much less precision
then at the final stages. This can be expected to increase the efficiency of the
method, because solving the Newton equations accurately when the approximate
solution is far from the exact solution, is usually not justified. The computation
of the solution is done by minimizing approximately the norm of the residual in
a plane if two search directions are involved which latter is to be recommended for
practical reasons. This minimization can be done approximately using two successive
approximate line searches, for instance.

Finally, it is shown that the number of steps before the superlinear rate of conver-
gence sets in, is bounded, independent of the mesh parameter.

2. A TWO-LEVEL MESH METHOD FOR NONLINEAR PROBLEMS
To illustrate the two-level mesh method we consider first the semilinear equation
(2.1a) —Au+ f(z,u)=0, z€QCR? d>2

with homogeneous boundary conditions. We assume for simplicity that f is twice
continuously differentiable with respect to the variable u and that %ﬂ-(z, u) > 0. The
variational formulation of (2.1a) is

(9 1h) a(u,v) + (f(-,u),v) =0 forallveV = H'(Q),
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where a(u,v) = fn Vu-Vdz.

Assume for simplicity that € is piecewise polygonial and let Qg C Q, C Q, where
Qy, Qp are two quasiregular finite element meshes. Let Vg C V4 C V, where Vg,
Vi are two finite element subspaces spanned by piecewise continuous polynomial
basis-functions of degree r on Qg and Q, respectively.

The two-level mesh algorithm takes the following form:

Compute the Galerkin finite element solution on Vy, i.e. solve

(2.2) a(ug,vy) + (f(~,uH)vH) =0 forallvg e Vg CV,

to accuracy O(h™t1).
Solve the Newton (linearized) equation on V4,

(2.3) a(ul),vy) + (fC unm),vm) + (Z—{l(~,u”)(u2 - u;{),vh) =0,

for all vy € V}, and let u) be the approximate solution of u.
We want to compare the accuracy of u) with the accuracy of us, where uy is the
Galerkin finite element solution on V}, that is,

(2.4) a(un,vn) + (f(-,un),vn) =0 for all vy € Vi.
The aim is to derive a relation H = h!/*, for which it holds that
llu = upllh = O(llu — uall), h—0,

where u is the solution of (2.1b). To this end, we subtract (2.3) from (2.4), which
shows that

a(un — up, vn) + (F(,un), va) — (f( um), va) — (g%(nuu)(U?. - uu),vh) =0,

for all vy, € V, or

(2.5) a(uh - ug, u;.) + (g—i(-,uy)(uh - ug),vh)

=~ (1Co) = £Cum) = i u), )

_ _(l(’)"’f

55?(',17;.)(% - uH)z»vh)

for some function 4, between u, and ugy. Taking vy, = up — ug, using standard
inequalities, (2.5) implies

(2.6) llun — whll3r ) < Cllun — unllfayllun — uhllLoe)
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where C' is a bound of %[ﬂl

du?
Here we use the finite element inverse estimate,

(2.7) loallzes(ay < Coh' ™5~ |onllai(ay-

Here ¢ is an arbitrarily small but fixed positive number (Alternatively, we can let € =
0 and Cy = O(logh)). In the following, C' denotes a generic constant, independent
of h. (2.6) and (2.7) show now

—4_
llun = uhlli = llun — ujllar @) < CR'727%lun — ugllz(q
or, using the triangle inequality,
—d_
llu = uills < llu = wnlls + CR' =27 [|lu — un||® + flu — wg]|?].

Here || -|| = || - ||2(q)- It remains to derive discretization error estimates in the || - ||,
and || - || norms. This is done using standard finite element analysis and shows that
for a sufficiently regular solution,

llu — unlly = CA"[lullr41 and  |lu—unll = CR™+|lullr4a,
where ||u||,41 is the (r + 1)st Sobolev norm. Hence
llu = wflly < CI™ +h'= 57 HX+ D] Juf| 4,
and to balance the two terms in the bracket we let
B = hl—%—sHZ(r+1)’

that is,
H = h3(r=1+5+6)/(r+1)

In this case
llu—uilli = O(llu — ualh).
This shows that

h3(r+e)/(r+1) d=2
H = h}i(r+s+%)/(r+l), d=3

so, for piecewise linear basis functions (where r = 1), we find approximately,

H hl/4, d=2
T a8, d=3
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and for any r and 2 < d < 3 we have

Clad

H > hz.
Finally, using duality arguments, it can be shown that also
llu = will = O(llu — unll).

It is readily seen that similar results can be derived when we use three levels of
meshes, Qp, C Qp, C Nh,, in which case we solve in order:
(i) a(¥ho, vho) + (F(:) %ho), vho) = 0, for all vy, € Vi,
(i) a(ud,, vn,)+ (£ ung)vn,) +(3L(, ung)(ud, —uny), vn,) = 0, for all vs, € Vi,
(iii) a(u?lz’ Uh2)+(f(', ug,)v Uh2)+(g£('v u?ll)(ugg_ugl)’ Uh,) =0, for all va, € Vh,-
It can then be shown for any r that

llu — k|l = O(llu = un, |I),
llu = up, | = O(llu — un, ),
provided hy = h}/% = h}/*.
It can also be seen that similar results can be derived when the mesh Q5, is a local
refinement of Qp, .
We consider now the same method in a more general setting, namely for strongly
monotone operator problems. This part is based on the presentation in [6].

ABSTRACT BOUNDARY VALUE PROBLEM

Let V be a Hilbert space with dual V' and consider a two-level solution procedure
for nonlinear strongly monotone operator equations of the form:
Seek u € V satisfying

(2.8) (F(u),v) = (g,v), forallveV.

Here F: V — V'’ and ¢ € V' is given. F is assumed to be strongly monotone,
locally Lipschitz and its Frechet derivative satisfies some additional smoothness to
be specified later, around the solution.
A typical example is the quasilinear equation V - a(|Vu|?)Vu + f(u) = 0 in Q
where either
0<co<a()<Cy, |a'()| <C,
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for some constants ¢y, Cy, Cy, which do not depend on the solution u, or
ao(|Vul?) = |Vulf~2

Here WI'P(Q), and p = 2 in the first case. Such equations occur in the mathematical
modeling of torsion of a bar, electromagnetic field equations etc.

Letting Vi C Vi, C V be given finite dimensional subspaces as before, the two-level
solution method takes the form

(a) Solve (2.8) on Vy,
(F(ug),ve) = (g,vg) for all vy € Vy.
(b) Correct once in V3 with the linearized (Newton) equation:

(F'(UH)("?. —ug),vn) = (g,va) — (F(un),va),

for all vy, € V.
The mapping F: V — V' is assumed to satisfy the following three properties:

(i) F is strongly monotone on V,, in a ball about the solution u, i.e., there exists a
function ((t) such that for all u,v € Vj:

(F(u) = F(v),u=v) 2 ((llu = vllv)llu—ollv,

where (: [0,00) — R is an increasing function and ¢(0) = 0, tlir& ¢(t) = oo.
(i1) F is locally Lipschitz continuous if there is a bounded function I'(r) such that,
for all » > 0 and for all u,v € S(0,7) := {v € V;||lv-0|lv < r},

17 (w) = F()llv: < T(r)llu = vllv.

(iii)" F satisfies the following smoothness assumption:
SU'!) l (Q(U}., u”)) Xh) | < Suhp I((Ha h) I<(U}| - uﬂ)z» Xh)l )
X X
where

(Q(uh, uH), XH) = (F(uh) — (F(UH) + F’(UH)(U}I — U»H))»Xh) for any xn € Vj,
(F(un),vn) =(g,vn) forallvs €V
(F(ug),va) = (g,vy) forall vy € Vy
and K(H,h) is a problem dependent positive function (possibly constant).
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If V= WhP(Q), a(|Vul?) = [Vul[f~2, p > 2 then it can be seen that ((s) =
C(3)P~%sP~! and for later use, we note that its inverse function is ¢Ys) =

C“’?’Fz—?s"“, where % + % = 1. Further, in this case, it can be seen that
I(r)=(2p-3)r*~2

If F is twice continuously differentiable then (iii) holds with K (H,h) a constant.
In some applications however, this may not hold and then K(H,h) — oo as H,
h — 0.

In some problems the strong monotonicity assumption may not hold for the varia-
tional formulation of the problem in the whole space but only in the finite dimensional
subspace. This occurs for instance for the convection diffusion problem

(2.9) ~Y(eVu)+ V- (v(u)u) + f(u) =0

where v(u) is vectorial function of u. It is well known that the standard Galerkin
method applied on the original problem (2.9) is not stable uniformly in the parame-
ter . When the problem is embedded in a certain third order differential equation
problem it turns out that the Galerkin formulation of it becomes coercive (and hence
the operator strongly monotone) in the finite element space, uniformly in the param-
eter ¢ for certain choices of the parameter involved in the embedding. For details in
the linear operator case, see [5].

To find a ball about the origin in which the finite element solutions u, uy can be
found we consider first boundedness of the solution.

Lemma 2.1. Suppose F(-): V — V'’ is strongly monotone on V, and locally
Lipschitz. Then

Nunllv < o := ¢ (llgllve + IF(O)llv+)-
Proof. See [10]. O

This holds for any h. Assuming that ||up — u|ly — 0, it therefore also holds for
the solution u. Next we derive a discretization error estimate.

Lemma 2.2. Let F(-): V — V' be strongly monotone on Vj, and locally Lipschitz
continuous and let

(F(un),vn) = (9,va) for all vy € V3.

Then, for all x5 : |Ju — xa|| < 7o, we have
(2.10) llu — unllv € _inf |lu—xallv +¢7(F(2r0) inf [lu— xallv)
XAEVa XnEVa
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where 7 is defined in Lemma 2.1.

Proof. This follows readily from the variational formulations

(F(u),v) =(g,v), forallvel,
(F(un),vn) = (g,vn), forallvy €W,

and the orthogonality property,
(F(u) — F(up),vs) =0, forall vy € Vj.

a

In general, the second term converges slower, or, at best, with the same rate as
the first term in (2.10).

Lemma 2.3. Let F(-): V — V' be strongly monotone on V), and differentiable in
a ball about the solution u. Assume that lirg] 1¢(rllwallv) = al(|lwallv) for some
r—04

positive a, where wy, € Vi,. Then, for all &, € V), sufficiently close to u,
1
(F'(&n)wn, wn) > §0C(|IwhHV)llwhHV-

Proof. This follows readily from the definition of strong monotonicity. O

The following theorem gives now the basis for deriving the relation between H
and h.

Theorem 2.4. Suppose F(-): V — V' satisfies the assumptions (i), (ii) and (iii).
Then, for h(H) sufficiently small for Lemma 2.3 to hold,

211)  flu=w}llv < inf [lu—xallv + ¢ (F(2ro) inf flu—xallv)
XhEVa XhEVa
8
-1(9% . _ 2.,
+¢7 (2K, H)llu = unY?llv-),

where v is defined in Lemma 2.1.

Proof. By definition, u) satisfies
(F'(un)(ud = um), 0n) = (g, n) — (Flum), va)
Let u; be the Galerkin finite element approximation, defined by
(F(un),vn) = (g,vn), forallvy € V.
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Then

(F'(up)(uh = un),vn) = (F(un),va) — (F(un), va)
= (F'(un)(un — ug), vn)

= (Q(un, un),va) -

Taking v, = ug — up and using Lemma 2.3 shows now that

1 .
agC(lluh = unllv)lluh = unllv < K(h, H)li(un = ua)?llv-llup = unllv.
Hence
0 -1 4. 2 2
[l = wp|l < llu—unllv +¢ (;I‘(h, H)(I(w = un)®|lve + [|(u = un) ”V'))

and Lemma 2.2 completes the proof. 0O

Remark. The proper relation between H and h to balance the (last two) terms
in (2.11) depends on the particular problem considered. 1t is seen that we want

K(h, H)|l(u = ug)?|lv: < inf |lu— xallv
Xh€Vh

to hold. For the semilinear problem (2.1), we have K(h, H) = 1 and the above
relation takes the form

N(u = ur)®llv: < ChTlfullrga,
which holds, in particular, if
N(u = un)®ll < Ch"|full 41

This requires an estimate of ||u — ug||L+(q), and such an estimate can be derived
using inverse norm finite element estimates, in a similar way as was done above,
which also leads to similar relations between H and h.
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3. A GLOBALLY CONVERGENT APPROXIMATE NEWTON METHOD

Consider now the solution of the nonlinear problem on mesh Qg. In fact, the
following presentation is more general, i.e., it is not restricted to problems with
nonlinear strongly monotone operators arising from partial differential equations.

Let F be a differentiable mapping R® — R™. The classical Newton method to
solve F(z) = 0 has the form:

Given z° € R”, for k =0, 1, .. ., solve for z*+!:
(3.1) F'(z*)(e**! = 2¥) = —F(zF),
where z¥*! approximates a solution to the nonlinear equation.

The advantage with the method is that it converges fast, namely superlinearly in
general (with a quadratic rate, if F’(-) is Lipschitz continuous), near the solution.
However, except for special cases where F is globally convex for instance, the method
may not converge unless the initial vector is sufficiently close to the solution. Hence
the method must be modified to make it globally convergent.

There is another disadvantage of the classical method which can be improved. In
practice, the “exact” solution of the linear equation (3.1) can be expensive and is
also not justified when z* is far from the solution. Therefore, it is efficient to solve
the equation to some relative precision related to the present size of the norm of the
residual. That is, one computes a vector p¥*! such that

(3-2) IF'(=*)p* ! + F )| < erllF ()]

and lets
gkl = gk +pk+1.

This method is called inezact Newlon method. Here {0k} is a sequence of real num-
bers, 0 < gx < 1, called forcing sequence. For convenience, in the following we let
ok < % In general, when one approaches a solution, gx should decrease. As we shall
see, for the eventual superlinear convergence, g must converge to zero sufficiently
fast (a proper choice is g = O(“F(x")”"), for some 7, 0 < 4 < 1). Such a vector
p*+1, which is not uniquely defined, can be computed by some inner (linear) itera-
tive method, for instance. In fact, the framework offered by inexact Newton method
can be helpful even when solving linear equations F(z) = Az — b, using variable
preconditioners. In this case one lets p*+! = —M; F(z*), where M} is a sequence
of increasingly more accurate approximations of A~!. One can also use some inner
iteration steps with this preconditioner. Note that a variable preconditioner corre-
sponds to a nonlinear operator. For a nonlinear problem, M; is an approximate
inverse of F'(z%).
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Local convergence results (for the exact Newton method) i.e., results giving a ball
around the solution in which the initial vector can be taken for convergence, can be
found in [9], in [12] and in the references therein, for instance.

Several attempts have been made to make the method globally convergent, i.e., to
make it converge for any choice of the initial vector. In [7] and in [3] it was shown
that such global convergence could be achieved by using a damped (stepsize) version
of the method, i.e., by letting

zlc-}-l - .’l:k +Tkpk+l,

where the stepsize 7, was properly monitored (using back-tracking in [7] and based
on the estimation of certain constants associated with F' in [3]). However, as it
turned out in practice, the stepsizes 7, were often unnecessarily small at the initial
stages and the method converged therefore frequently too slowly.

In the present paper, the method will be coupled with an approximate minimiza-
tion step over a low-dimensional subspace and it will be seen that it then converges
globally, for any initial vector, even when the Jacobian matrix is singular at the
limit point. Furthermore, in this method there is no need to eslimaile any parameters
because the stepsizes will be computed automatically by the algorithm.

For the proof of the above result we shall assume that F’ is Holder continuous
and F’(z*) is nonsingular. In a previous presentation of the above method by the
author [4] it was assumed that the minimization problem on the subspace was solved
exactly. This is relaxed here. Further, we clarify the situation when F'(z) is singular
at the solution.

Because the search direction vectors can be made orthogonal with respect to some
inner product, or conjugate orthogonal with respect to some matrix, we call the
combined method the approximate Newton direction nonlinear generalized conjugate
gradient iteration method.

We give first a description of the algorithm and some recommendations for its
implementation. The final section contains the proof of global convergence and a

result on mesh independent convergence.

The approximate Newton direction nonlinear generalized conjugate gra-
dient method. Given a non-increasing sequence {¢x}, 0 < ex < %, consider the
iteration method:

Given z°, for k= 0,1, ... compute p**! such that

(33) IF () + F'(=*)p*+ ) < erll P
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Let

LD
(34) dlc+1 — Pk-{—l +Zﬂ§k)dk~j’ 0< sk < re—1
i=1

where ﬂ}k) are computed to make

(dk+l,dk_j)l - 0’ 0 < ] < sk

x

Let
ry X
(3.5) bl = gk 4 Zagk)dk“"’, 0 < re < min(r, k + 1),
: i=0
where agk), 0 £ j < ri are determined in such a way that

k41 H k k41
IF@EHI < min IF( +7p")].

Repeat until convergence.

Here r > 0. If r = 0 then we let d¥+! = p**+1.||.||is in general based on a different
inner product than (-, -);. Making the search direction vectors (conjugate) orthogonal
is not required for convergence but only a matter of convenience. In practice it can be
most efficient to make just (d¥+!, d*); = 0. Further, a practical choice of ris 7 = 1, in
which case only two search directions are involved in the approximate minimization.
In general, one can expect to get || F(z¥+1)|| < 0r<nril<11 [|F(z*+7p**!)|| by first making

some approximate line search for the minimum along the direction p*+!. Starting
from the point so found, this is followed by an approximate line search along the

k

direction d*. This gives a vector z¥*! which can be expected to be a reasonable

approximation of the exact minimization vector £+ = arg min ||F(z* + a{"d*+1 +
Qag,0)

a{¥)d)||. Note that since pt+! = dé+1 — g gk (if r = 1), then

~k+1 R k k+1
IFEOI < min |F( +rp -

Clearly, there are other methods to compute z*+!, repeatedly minimizing an inter-
polation function of r+ 1 variables, for instance, which is similar to popular methods
used for line searches.

The vector p*+! can be computed using an (innel‘) iteration method to approx-
imately solve the linear problem F'(z*)pk+! = —F(z*). As we shall see, we shall
let

o1 = min {||F(z*)|[¢, const kp'}
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for some number £, 0 < € < 1, where kx = ||F'(z%)||[|F'(z*)~"||, i-e. k¢ is the
condition number of F’(z*). If one uses a (generalized) conjugate gradient method

to compute pFt!

, information gathered from the so computed coefficients in the
conjugate gradient method can be used to estimate &, and hence ;.

Furthermore, it can be efficient to “precondition” F(z), i.e. letting F(z¥) :=
My F(z*), F'(z¥) = MF'(z*), where M} is an approximation of the inverse of
F'(z*), or My = C;! where Cy is an approximation of F'(z*). If we let My = M
be fixed, for k = 0,1,...,ko — 1 then this corresponds to working with the function
F(z) := MF(z). After every ko steps for some ko > 1, we can update M. The
matrix M should be chosen so that the condition number & of F'(z*) gets small.
This helps in general in speeding up the inner iterations but also in speeding up the
outer iteration method (3.3)~(3.5), as we shall see.

We present now the global convergence result.

4. GLOBAL CONVERGENCE OF THE APPROXIMATE NEWTON DIRECTION
ITERATION METHOD

Let F be a mapping R® — R" and let the vector sequence {z*} be computed by
the algorithm in Section 3. Assume that F’(z*) is nonsingular (but F'(z) may be
singular at the limit point) and that

(4.1) § = sup IF' ()" FEOINFEI

exists for some v, 0 < v < 1. In particular, this can be seen to hold if F is a
strongly monotone operator. Assume in addition that F' is Holder continuous, i.e.
there exists a v, 0 < 7 < 1 such that

(42) Ky,=(1+4+7) sup
k,c#zk

/01 [F'(z* + t(z — 2*)) - F'(*)] d,”/”x M

exists. Note that in practice it suffices to take the supremum in some balls about
the points z¥. Note also that such a § exists (with v = 1) if F'(z*)~! is uniformly
bounded and also if F' has a multiple zero.

Theorem 4.1. Under the above assumptions the sequence {z*} defined in the
algorithm (3.3)—(3.5) where g < min(%conzl), and cq Is a constant, converges for
any z° and there exists an € independent on k, 0 < € < 1, such that

IFEHIAFE < (1-e).
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Proof. Note first that by the assumption made in the algorithm,
(4.3) IFE I < min||F@I, 2=z +np**,
for any 7, 0 < 7 < 1. Next
(4.4) F(&) = F(z*) + F'(z*)(z - z*)
+ / l [F'(z* + t(z — z*)) - F'(z)](z - =*)dt
=(1 ~0Tk)F(r") + 7 (F(2*) + F'(z*)p**)

1
+ 7 / [F'(z* + (2 — 2¥)) — F'(z*)]p**de.
0
In order to estimate the norm of p*+!, we use (3.3), to find

IF' ()7 F (") + p U S IF' ) THHIFG®) + )1t

<
< alIF' (") IHIFE) < el F'(z*) 7 F()I,
where
wk = (|F' () THHIF' )]
Using the triangle inequality, this shows
(4.5) P+ < NF(2*) T R+ I1F (%) F(=F) + 54|
< (L+ eere)|F'(2%) 7 F(2) | (L + oera)S||F()]|”-

This and (4.4) shows that

[IF@
Trran ST+ e
I CYll

Iy [F'(2* + 4@ — 2*)) — F(a*)]d|

+ 7e(1 + orkr)d T Iz - _—,;k“’v’
so, again using (4.5),

F(z K.
@0 e < 1=t ren 4 7P+ e T I

We now let 7 = min(#, 1), where 7 minimizes the right hand side expression in
(4.6). We find

Qk

- /v
(4.7) fe = [mx;l]' IFEHI,
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and

(4.8)
K:!
IF @I ok + [6(1 + erri))' ; l 7|;F(z*)||vv, if 7 > 1 (ie.m = 1)
T <
|F (=)l

T . .
1 = —%(1 — o), f7 e Tp =7 1).
1+7‘rk( o) iff,<1(ie.n=7<1)

Initially, 7o = [frrrrectyes K7 ' 1/ VIIF(2°)|I=" > 0 50 (4.8) shows that

IF I

PG <t

for some €9, 0 < €0 < 1.

Further, since grki is bounded, k = 0,1, ... all values 7; are bounded from below
and there exists an €, 0 < € < 1, such that

49) IF@I _,

e, k=0,1,...
NF @I~

Further, since # = z¥ 4 7,p¥*!, then by assumption,

IF(*+)I| < min||F(z* + "+ < IF(@)],

so
IF @+
—— g 1l-¢ k=0,1,...
IFEHI
which shows the global convergence. a

Note that as ||F(z*)|| decreases monotonically, at least with the factor 1 — ¢,
eventually for some k = kg, 7 becomes bigger than one and (4.8) shows that

IF )

k
W—m— S or + const ”F(.’L‘ )"u-y.

Hence, if we let g = min{||F(z*)||*?,x; '} then this shows that superlinear rate of
convergence,

IFE* DI < OIFEEN'), k=koko+1,...

In particular, if F’ is Lipschitz-continuous (i.e. ¥ = 1) and ||F’(z*)~!| is uniformly
bounded, (so v = 1), then

NF (=¥ < O(IF(=*)I?), k=koko+1,...
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i.e. it shows the quadratic rate of convergence of the inexact Newton method. If F
has a root of multiplicity m, then it can be seen that v = m—‘— and the superlinear rate
of convergence is correspondingly smaller.

Since the condition number k. increases near the solution, if F’ is singular there,
we must spend an increasing amount of work in solving the inexact Newton equations
~ because gk is bounded. However, it is well known that the number of iterations
typically depends of the iteration error accuracy as log(g,:l). Hence, the dependence
of the amount of work on gy is relatively minor.

Finally we state the following mesh independence result. Let R™ correspond to the
finite dimensional space Vg and assume that upper bounds 6 and I{'., of the constant
6 in (4.1) and of the Holder constant in (4.2), respectively hold independent of the
dimension n. Then it can be seen that 7 in (4.7) is bounded below by a number
which does not depend on the dimension and (4.9) holds with an ¢ independent of
the dimension. Hence (4.7) shows that

1 1

1 — gk ¥ 1k;
1'~,k > [[—_]"—1] "’(1 _ E)—vk > 27

— 2 (1—g) vk,
6(1+ erri))t+r 7 [6(1+60)]‘+’( )

for k > ko, where ko does not depend on n. We collect this result in the final
Theorem.

Theorem 4.2. Consider the finite element approximation of the nonlinear map-
ping F(-): V — V', on Vi, where Vi has dimension n. Assume that the constants §
and K., are bounded above uniformly with respect ton. Then the approximate New-
ton direction iteration method needs a bounded number of steps, where the bound
holds uniformly in n, before the superlinear rate of convergence sets in.

CONCLUSIONS

Under certain assumptions, we have shown two mesh-independence principles of
(approximate) Newton iteration methods when solving strongly monotone opera-
tor problems. The first result shows that for a proper relation between the mesh
parameters it suffices with solving the nonlinear problem on a coarse mesh and sub-
sequently correct it once on the fine mesh, where the solution is wanted, to get the
full discretization order of the error of the computed approximation.

The second result shows that when solving the nonlinear problem on the coarse
mesh there is at most a finite number of steps independent on H, before the super-
linear rate of convergence can be seen. Furthermore, this holds irrespective of the
initial vector.
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