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AREA OF CONTRACTION OF NEWTON'S METHOD APPLIED TO 

A PENALTY TECHNIQUE FOR OBSTACLE PROBLEMS 

KLAUS BÓHMER, Marburg CHRISTIAN GROSSMANN, Safat 

1. THE OBSTACLE PROBLÉM AND ITS DISCRETIZATION 

The obstacle problém can be considered as a variational problém with inequal-

ity constraints. The discretization by piecewise linear finite elements leads to large 

scale optimization problems with a speciál structured objective functional and with 

simple bounds for the variable as constraints. In this páper we include the con

straints into an auxiliary objective functional by means of a penalty technique. The 

unconstrained problems obtained are nonlinear variational equations. These can be 

solved by Newton's method. As a well known fact the auxiliary problems generated 

in penalty techniques are ill conditioned in the limit. Thus an important question is 

to est imate the area of contraction of Newton's method in dependence of the penalty 

and of the discretization parameter. 

In the first part we summarize some basic facts on obstacle problems, its dis

cretization and on an adapted penalty technique. 

Let O C R2 be some open polyphedron and we denote U := HQ(Q), V := / /^ ( f i ) . 

Wi th given functions / € í/oo(^), g £ W ^ ( í í ) we investigate the following con-

strained variational problém 

(1) J(v) := - a ( v , v) — ( / , v) —• min ! subject to v £ G 

with G:={veU:v^g}. Here a(-, •) : V x V -+ R and ( / , •) : V - * R are defined by 

(2) a(u,v):= / VuVváx Vu,v€V 
Jíl 

and 

(3) (f,v):= í fvdx Vv£V, 
Jri 
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respectively. The semiordering "^" is given by the natural one almost everywhere 
in O. Additionally we suppose 

on the boundary T of the region fž. Thus, the feasible set G C U is nonempty, 
convex and closed. Furthermore the objective functional «/(•) of (1) is continuous 
and strongly convex. This results in 

Lemma 0.1. ; Problém (1) possesses a unique sólution u G G and an element 
u G G forms a solution of (1) if and only if the vaňational inequality 

(4) a(u, v — u) ^ (f,v — u) for any v G G 

is satisfíed. 

Now, we relate a Lagrange functional L(-, •): V x V* —• R to the originál problém 
(1). Let (•, •) denote the duál pairing between V* = /f_1(Q) and V. With the cone 
K given by 

(5) A' = { g G / / - 1 ( 0 ) : (qtv) ^ 0 for any v G J/á(fi),v ^ 0}. 

we define the Lagrange functional L related to (1) by 

(6) L(v, q) := -a(v, v) - (/, v) + (g, </ - v) for any v G Í7, g G Jí. 

Let us assume throughout the páper the regularity that u G H2(Q.). Furthermore 
we also assume that the following smoothing property holds: / G J/2(^) implies 
u G H2(£t) for the solution of the related elliptic variational equality 

u G U: a(íí, t>) = (/, v) for any v G Í7. 

This can be guaranteed by the convexity of the region Q e.g. Now, we can set 

(7) (p,v) = / p(x)v(x)dx 
Jo, 

with 

/ox / x / - [ A u + /](*), if u(x) = g(x 
( 8 ) p ( x ) = \ 0, if « («)> , (* 

= áf(*) 

)• 

Thus, the pair (w,p) £ U x K satisíies the systém 

a(ti,t;)-(p,v> = (/,v), for any t; G 1/ 

( g - p , t í ) ^{g-P,flf>, for any g G Jí 
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which is jus t a mixed forrnulation related to (1) (compare [4], [9], [8] e.g.) and p is 

the optimal Lagrange multipiier of the problém (1). Condition (9) is necessary and 

sufficient for (tx,p) G U x K to be a saddle point of the Lagrange functional L. 

Denote by (e : R —* R + the following functions 

(10) C * ( 0 : = < + \ / * 2 + *i l £ R 

which approximates uniformly the well known penalty term 2 • max{0,*}- Now, we 

define the auxiliary objective functional Tae: V —» IR by 

(11) T a , ( t ; ) := J (v) + «JCM*) ~ v(x))dx. 

a 

Here a , £ > 0 denote flxed parameters. Because of the continuity and of the growth 

behaviour of Qe the functional Tae is well deíined on V. Furthermore Tae ls contin-

uous and strongly convex on U. Thus, the penalty problems 

(12) Tae(v)-> min ! s.t. v 6 U 

possess unique solutions uaQ € U for any fixed a,Q > 0. The functional TaQ is 

differentiable and an element uae 6 U solves (12) if and only if 

(13) {T'ae(ua(,),v) = 0 íoianyveU 

holds. The supposed smoothing property guarantees the regularity uae € H 2 (Q) . 

Thus, by the continuous embedding H2(Q) c-> Loo(^) we also háve w«^ € Loo(O). 

Due to (11) the Fréchet derivative of T a í is given by 

( 1 4 ) (TLe(
u)>v) =<*(Urv)-(f,v)~-a Ce(9(x)-u(x))v(x)dx for any u, v £ U. 

n 

Now, we use a piecewise linear finite element discretization on a quasi-uniforrn 

triangulation Th of ÍŽ, i.e. a circle with the rádius 8ji can be inscribed into each of 

the triangles T2- G T^ and each Ti can be inscribed into a circle with the rádius bh) 

where 6 > 6_ > 0 denote some given constants. Furthermore we assume that the 

triangulation is of the weakly acute type, i.e. no angle of the triangles contained in 

the triangulation exeeds K / 2 . 

Let Xj, i — l ( l) iV denote the inner grid points and let xz-, i — l(l)yV denote all grid 

points of the discretization. We use the usual Lagrange base {ifi}^ of piecewise 

linear functions which satisfy 

cpi(xj) = bij ij = 1(1)AT, 
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with Kronecker's 5{j. Instead of the spaces í/, V the íinite element discretization 

uses the subspaces 

Uh := span{v?t}ÍIi, ^4 := s p a n ^ i } ^ . 

The discrete feasible set is defined by 

(15) G k : = { w f c € ^ : i > f t ( « i ) > f f ( « í ) . * ' = l ( l ) ^ > -

This leads to the finite dimensional variational problém 

(16) J(vh)-> min! s.t. vheGh 

Problém (16) forms a quadratic finite dimensional optimization problém with lower 

bounds as constraints. We relate to (16) the discrete Lagrange function 

N 

(17) Lh(vh)qh) := J(vh) + ^rme3s(Di)qi(gi - v i) 

where D{ denote a set of the duál division of Q where X{ £ D{. The duál division of Q 

can be generated by the orthogonals to the middle of the edges of the triangulation. 

We abbreviate gi := g(xi),Vi := Vh(xi). Let tyj G Loo(^),* = l(l)N denote the 

functions 

*<(*) = í 1' ' ! r G A a n d l e t Wh : = s p a n í ^ } ^ ! . 
[ 0, otherwise 

Thus, Wh forms a subspace of / / _ 1 ( Q ) where the related functionals are defined via 

(7). Thus, the discrete Lagrange function (17) can be considered as the discretization 

of the continuous one (6) where a mass lumping technique is ušed to approximate 

(7) by 
N 

{qhy vh)h := y^mess(Di)qiVi for any qh G Wh, vh G Vh 

This leads to the natural weighting of the Lagrange multipliers with the areas 

meas(Di) of the sets D t . Using the piecewise linear interpolant 

N 

9h(x) = Y^9HPi{x) 
i = l 

of g, now, the discrete Lagrange function Lh can be represented by 

(18) Lh(vh,qh) = J(vh) + {qh,9h ~ vh)h, vh G Uh,qk € Kh 
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where the discrete cone Kh related to K is defined similarly to (5) by 

(19) Kh := {qh £ Wh: (qh,Vh)h > 0 for any vh £ Uh,vh ^ 0} 

N 

With the representation qh = Yl ?**i w e n a v e 

i = l 

qheKh <=>qiž0, » = 1 ( 1 ) ^ . 

Now, we summarize some important properties of the discretization 

L e m m a 0.2 . The discrete problém (16) possesses a unique solution Uh £ Gh 

and the estimation 

\\u-uh\\^Ch 

to the solution u £ G of (1) holds with some constant C > 0. 

The norm ušed in the error estimation of Lemma 2 is the Sobolev-norm of the 

underlying space U = HQ(Q). Baiocchi [3] derived a higher order estimation in the 

Loo-norm, námely 

L e m m a 0 .3 . Let e £ (0,1]. Then some C > 0 exists with 

\\u- ti/tllo.oo.n ^ Ch2~£. 

Here u and Uh denote the solution of (1) and of (16) respectively. 

By the samé arguments as ušed in [7] we obtain 

L e m m a 0.4. There exists a unique ph £ Kh such that (uh,Ph) £ Uh x Kh forms 

a saddle point of the Lagrange function L / l ( , •), i.e. 

(20) Lh(uh,qh) ^ Lh(uh)Ph) ^ Lh(vh,Ph) for any vh £ UhAh £ Kh. 

Furthermore there exists some constant C > 0 being independent ofthe discretization 

parameter h > 0 such that 

(21) ||Pfc||o,oo,n ^ C. 

R e m a r k . The following condition 

(22) a(uh,vh)-(ph,Vh)h =(f>vh), for any vh £ Uh 

(qh-Ph,uh)h ^(qh-Ph,9h)h, for any qh E Kh 

forms a necessary and sufficient criterion for (uh,Ph) G Uh x f ú to be a saddle point 

of the discrete Lagrangean Lh('i •)• System (22) is a discrete version of the mixed 

formulation (9). 
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A direct discretization of the penalty problém (12) according to 

TaQ(vh) —• min! s.t. vh E Uh 

leads to a reduction of the order of convergence as a consequence of the ill-posedness 

of the problém for large a and for g —+ 0. A proper modification is to apply the 

penalty technique to the discrete problém (16). This is equivalent to 

(23) ThaQ(vh) -> min! s.t. vh £ Uh 

where the function Thag is defined by 

N 

(24) ThaQ(yh) := Jh{vh) + a^meas(D,-)C ř ( f l f i - v i) 
i = l 

with the penalty parameters a > 0, g > 0. Here <//>(•) denotes the functional given 

by 

Jh(vh) := ^ a ( ^ > ^ ) ~ (/'?;/>H f o r a n ^ ^ G ^ 

with 
N 

(f>Vh)h '- ^ m e a s ( A ) / ( ^ i ) ^ ( ^ i ) -

We remark that the discrete auxiliary function Thag can be obtained by mass lumping 
from the continuous one TaQ also. This guarantees that the Jacobians of Thag háve 
the samé structure as the related stiffness matrix Ah = {a(<Pj, ^ i )) ť ,- = 1 which arises 
in the samé way in variational equation. Thus, efficient solvers for discrete elliptic 
equations can be applied if Newton's rnethod is ušed. Furthermore, the auxiliary 
function Thag is related to the reduced integration as for improving penalty methods. 

In [7] optimal parameter selection rules a = a(h) and g = g(h) háve been pro-
posed to adjust the error caused by the penalty terms to the samé magnitude as the 
discretization error of the finite element approximation. 

As an immediate consequence of the diíferentiability and strong convexity of the 
auxiliary objective function T/ i a ^() we háve 

L e m m a 0.5. For amy conform discretization Uh C U and for any parameters 
a > 0; g > 0 the discrete penalty problém (23) possesses a unique solution Ufiag G Uh • 
The condition 

(25) {Thag(uhag), Vh) = 0 for any vh G Uh 

is necessary and sufficient for Uhag G Uh to solve (23). 
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2 . NEWTON'S METHOD APPLIED TO THE CONTINUOUS PENALTY PROBLÉM 

In this part we investigate the convergence behaviour of Newton's method applied 
to the variational equality (13). To obtain sharper bounds we do not estimate the 
inverse of F' and the Lipschitz-constant of F" separately as often ušed in the conver
gence analysis of Newton's method for an operátor equation Fy — 0. We také care of 
the asymptotic ill-conditioness by a combined estimation similar to [6]. In the čase 
of penalyzed obstacle problerns we are interested in the following weak comparison 
theorem for weakly nonlinear elliptic boundary problerns forms a useful tool for the 
investigation. 

L e m m a 0.6 . Let r : Q x R —+ R be a mapping which is monotone w.r.t. the 
second variable, i.e. 

r (x , s) ^ r (x , t) for any x E Q, s ^ s. 

Furthermore, we suppose that the related Nemyckij operátor R defined by 

[Rv](x) := r(x,v(x)), x E fi 

maps from L2(Q) into /^(ÍŽ). Then for any u,w E V satisfying 

a(ií, v)+ I r{x) u(x)) v(x) dx ^ ci(w, v)+ / r(x) w(x)) v(x) dx for any v E (7, v ^ 0 
n n 

and u\r ^ w\r the estimation u(x) ^ w(x) for almost every x E O holds. 

First, we investigate the continuous problém (12) which is equivalent to (13). Let 
us denně S: U x U - * R and D: U x U x U -» R by 

(26) 

S(u, v) := -a / CeÍ9 -u)vdx j 
n 

D(u) u>, v) := a / £"(g — u) w v dx 

> for any u, w} v E U. 

Let y E U O Loo(Q) denote some approximation of the wanted solution uaQ of (13). 

One step of Newton's method to improve y for a new approximation z E U can be 

described by 

(27) a(z, v) - ( / , v) + 5(y, v) + D(y, * -- y, t>) = 0 for any v EU. 
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With the properties of 5(-, •) and D(-, •, •) Lax-Milgranťs lemma (compare [5], [8] 
e.g.) guarantees that (27) has a unique solution z £ U for any given y £ U. With 

(13) we obtain 

(28) 
a{z-uQe,v) + D(yyz-uae,v) = S(uaQ,v)-S(y,v) + D(y,y-uaQyv) for any v £ U. 

Next, we estimate the right hand side of (28) using the fact T/, uaQ £ Loo(Q). Let 

g £ Loo(^) be defined by 

(29) q := Ci(y - 2/) ~ C(fif - tiaff) + Ci'(áf " 2/) (V ~ *ae) a.e. in í l . 

For almost every # £ Q we can apply Taylor's formula and we obtain 

1 2 (30) q(x) = - - C';'(g(x) - y{x) + i{y{x) - uae(x)) (y(x) - uae(x)) 

with some £ = £(x) £ (0,1) , The defiriition (10) of the function (e results in 

<31» ^ ' ^ " ( i n f e S c ^ i , ) - *-««.«.'€«. 
Now, for fixed a? £ íl we set 

(32) < : = ( < / - »)(*), d := (y - ««,,)(*) 

and we distinguish two diíferent cases. 

i) |£| ^ 2|cř| Then (31) trivially leads to the estirnation 

(33) | C ( * + í < 0 | ^ - for any í € (0,1) . 

i i) |<| > 2\d\ In this čase we obtain 

3 " , 2 

|ť+íd|<|í | + |d|<2l*l a n d (t+Zd)2 ž (\t\-Z\d\)2 ž for any £ € (0,1) . 

Thus, (31) results in 

(34) l C ( « + frO|š(|í|2
9+g)2 for any í G (0,1). 

On the base on these estimations we can prove the following 
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T h e o r e m 0 . 1 . Let the penalty pararneters a > 0, g > 0 be fixed. If the initial 
guess u° G U fl LOQ(Q) satisfies the condition 

(35) ||ti° - t i^lU < 1 í>1/2 

fcnen Newton's method applied to (13) generates a sequence {u1} C (U H Loo(fi) 
which converges Q-quadratically in the Loo-norm to the solution uag of (13). 

P r o o f . As remarked earlier Newtoiťs method is well defined if applied to (13). 
Thus it suffices to show the contraction of Newton's iteration to the solution U^Q-
The quadratic rate of convergence follows by standard arguments using the Taylor 
expansion as shown in (28)-(30). 

Wi th y := ul G {Uf\LOQ{Q) the generál step of Newton's method is given by ul+l :— 
z where z is determined by (27). The assumed smoothing property guarantees ul+l G 
/ / 2 ( Q ) which leads to ul+l G Loo(^)- We construct upper and lower bounds via 
the comparison estirnation stated in lemma 6 which can be applied because of the 
structure of problém (27) and because of the properties of the function C#(")- Using 
these bounds we will show that 

(36) \\y - UagWoo ^ pgl/2 implies \\z - tiae | |oo ^ 6\\u - uae\\oo 

with 8 = 36/i holds. If we select p G (0, ^ ) then 8 G (0,1) and by mathematical 
induction the convergence of Newton's method follows from (36). 

We select 

(37) w(x) := uaQ(x) + 8\\y - uaQ\\oo. 

This leads to w\r ^ Uag\r and to 
(38) 

a(w- uQOt)v) + D(y,w - uae,v) - a8\\y- u^Hoo / CQ(9 ~ V) v dx for any v G U. 
a 

Again we use the abbreviations given in (32). The definition of the function Q leads 
to 

(39) c?(o = *(<2+*r3/a-
As in the investigations earlier we distinguish two cases. 

i) Let be x £ Í2 such that | i (x) | < 2|cř(a;)|. With (33) we obtain 

C(0 ž Ůt2 + er3/2 ICO + Wl > l e1'2 IC« + id)\. 
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i i) Let \t(x)\ > 2\d(x)\ hold. With (34), (39) we háve 

(40) W*^*l,2\<'W+W\-72 

Thus, (40) holds in both cases, i.e. it is valid for almost ever x £ Q. Estimation (40) 

results in 

mWÍ(t)>jž6Ql'3\C(i + id)\ 

> 
36/x 

With (28)-(30) and with (38) this leads to 

a(w - uaQ}v) + D(y,w - uaQlv) £ a{z - uaQ,v) + D(y, z - uae,v) 

for any v G U, v ^ 0. 

Furthermore (w — uae)\r ^ 0 = (z — tí«^)|r holds. Using Lemma 6 this results in 

(41) w ^ z a.e. in fí. 

By the samé arguments we can show 

(42) w ^ z a.e. in Q 

for 

(43) w(x) := Wa^(x) - ó||y - ^ U o o -

Combining (37) and (41)-(43) we obtain 

| | * - Uaé>||oo ^ 6\\y - U a * | | o o . 

Thus, (36) is valid and the sequence {u1} generated by Newton's rnethod converges 

to uaQ provided the initial guess u° was selected such that ||it° — wa^||oo < ÍQ Q1^2 

holds. D 
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3. ITERATIVE SOLUTION OF THE DISCRETE PENALTY PROBLÉM 

Similar to the investigations of the continuous problems we can estirnate the area 
of contraction of Newton's method applied to the discrete penalty problém (23). The 
fundamental Lemma 6 can be modified to 

L e m m a 0.7. Let r,; R —• R, i = l ( l) iV be continuous and monotone nonde-
creasing. Then for any Uh, Wh G Vh satisfying 

N N 

a(u>h,Vh) + y^rj(uh(xj)) Vh(*i) < a(whyVh)'+ ]T^n-(tito(xť))vh(xi) 
t = i ť=i 

for any vh G Uh, vh ž 0 

and Uh(xi) ^ ^^(a: , ) , i = N + 1(1)A^ tiie estimation tí/i ^ Wh holds. 

This lemma can be proven because the stiffness matrix Ah = (a(^»-, ^ i ) ) i j = i ls 

an M-matrix which results frorn the supposed angle condition of the triangulation. 
Finally the monotonicity of the functions r; guarantees the stated comparison result 
(compare [11] e.g.). 

We define the discrete versions Sh'- Uh xUh —• R and Dh : Uh x Uh x (7/! —> R of 5 
and Z), respectively, by the application of the mass luinping idea to (26). This leads 
to 
(44) 

N 
Sh(uh,vh) := - q y ^ m e a s ( A - ) C ( f f » - «ť) VÍ 

i = l 
N 

Dh(uh,wh, vh) := a ] P m e a s ( A ) C '̂(flfi - Wi) u>i !>• 
i = i 

for any uh, wh) vh EUh. 

Here tíj, wř-, v,- denote the components of the related functions Uh, Wh, Vh G ř//i in 
the representation by the piecewise linear base {(pi}^ of Uh. 

One step of Newton's method to improve yh G Uh for a new approximation Zh G Uh 
of the wanted solution UhcxQ of the discrete penalty problém (23) can be described 
similarly to (27) by 

(45) a(zh,vh)-(f,vh)h + Sh(yh,vh) + Dh(yhizh-yh,vh) = 0 for any vh G Uh. 

Because of the pointwise estimations ušed in the proof of theorem 1 and because of 
the mass lumping applied in deíinition (44) we can carry over the results of Theorem 1 
to the discrete čase. With lemma 7 we háve 
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T h e o r e m 0.2. Let the penalty parameters a > 0, Q > 0 be fíxed. If the initial 

guess u®h £ Uh satisfíes the condition 

(46) | K - «ft«ílloo < ^ ř 1 / 2 

then Newtona method applied to (23) generates a sequence {ul
h} C Uh which con-

verges Q-quadratically to the solution Uhae of (23). 

Finally, we remark that comparison theorems for weakly nonlinear elliptic prob-
lems also form a good tool for deriving sharper bounds for the order of convergence of 
penalty methods applied to continuous and discrete variational inequalities as shown 
in [1], [8]. 
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