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ON APPROXIMATION OF THE NEUMANN PROBLEM
BY THE PENALTY METHOD

MicHAL KRiZEK, Praha

Summary. We prove that penalization of constraints occurring in the linear elliptic Neu-
mann problem yields directly the exact solution for an arbitrary set of penalty parameters.
In this case there is a continuum of Lagrange’s multipliers. The proposed penalty method
is applied to calculate the magnetic field in the window of a transformer.

Keywords: Neumann problem, penalty method, finite elements, magnetic field

AMS classification: 65N30, 35J50

1. INTRODUCTION

The necessity of solving a linear elliptic problem with the Neumann boundary
conditions arises in many branches, e.g., in modelling transonic flows [5], in theories
of shells [10] and elasticity [11], in electrical engineering [4]. For simplicity, consider
first the following model Neumann problem:

—Au=f inQQ,
1.1
(.0 % _0 onoq,
ov

where Q@ C R? (d > 1) is a bounded domain with a Lipschitz boundary 9%, v is the
outer unit normal to 8%, and f € L%(Q) is such that fn fdz=0.
The associated bilinear form

(1.2) a(v,w):/Vv-dex, v,w € H'(Q),
Q

is not H!(Q)-elliptic, where H!(f) is the Sobolev space of functions whose gener-
alized derivatives belong to L?(2). The nonellipticity causes the nonuniqueness of
the true solution which often represents some troubles in numerical solution of (1.1).
There are several ways how to handle the Neumann problem:

1. A natural approach is to use a dual variational formulation (see e.g. [11, p. 95]),
since it has a unique solution. However, this formulation does not produce the
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solution u but only its cogradient. Moreover, a particular solution of equilibrium
equations has to be known a priori.

2. The standard variational formulation of (1.1) is usually given (see [3, p. 33])
in the quotient space H!(Q)/Po(2), in which a(.,.) is elliptic. (Here Py(2) stands
for the space of constant functions.) But quotient spaces are unsuitable for finite
element approximations.

3. The bilinear form (1.2) is elliptic also in the space

W:{véH‘(Q)l/ﬂvdz:O}.

However, to construct finite element fields which would belong to W is practically
difficult (especially in problems with more than one constraint [8]).

4. To fix the solution u in one point is also not advisable if d > 1, since u can have
a singularity just at this point. Moreover, in [1, Theorem 4.1], Babuska demonstrates
why we cannot fix functions from the Sobolev space H!({2) in one point. (Note that
H'(R) is not contained in C(Q) for d > 1.) The associated finite element schemes
are then unstable

5. A direct finite element approximation of (1.1) leads to a system of linear
algebraic equations with a singular matrix

A= (a(vi1 vj))?,jzlr

where {v'}2_, C H'(Q) are finite element basis functions such that 3 c¢'v' = 1 in Q
i
for some coefficients ¢!, ..., c". Since A is singular and positive semidefinite, we have

to use some special solvers—see e.g. [12, p. 117] for a modified conjugate gradient
method.

In the next section, we introduce another approach to solving the Neumann prob-
lem which will be based on the penalty method (or Lagrange’s multipliers method).
The associated finite element approximations then yield positive definite stiffness
matrices.

2. PENALTY METHOD FOR A GENERAL NEUMANN PROBLEM

Throughout the paper we shall use the following assumptions:

(A1) Let V be a real or complex Banach space equipped with the norm ||.|| and let
a(.,.) be a sesquilinear Hermitian (i.e., bilinear symmetric in the real case) continuous
formon V x V.
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(A2) Let m be a positive integer, let Fy, ..., Fy, be linear continuous forms over
V and let
W={veV|Fw)=0i=1,..,m}.

(A3) Let a(.,.) be W-elliptic, i.e., there exists a constant C' > 0 such that
a(w, w) > C||lw||* Vw € W.
(A4) Let dim P = m, where
P={peV|a(p,v) =0VveV}
(A5) Let b(.) be a linear continuous form over V' such that
b(p)=0 VpeP

We shall deal with the problem: Find a function u satisfying

(2.1) ueW, a(w,u)=>bw) YweW.

By the Riesz theorem (or the Lax-Milgram lemma) this problem has a unique
solution. Note that the standard weak formulation of a linear elliptic problem with
the Neumann boundary conditions is typically of the form (2.1). However, due to
the constraints occurring in the definition of W, a direct numerical solution of the
problem (2.1) can be difficult. In Theorem 2.1 we will show that the penalty method
enable us to solve (2.1) easily.

Define a functional J: V — R! by the formula

J(v) = a(v,v) — b(v) — b(v),

where the bar denotes the conjugate number. The problem (2.1) is then equivalent
to the following one: Find u € W such that

(2.2) J(u) = Inin J(w).

The penalty method for the problem (2.2) consists in finding ux € V such that
(2.3) Ia(up) = min Ja(v),

where

Ia(v) = J(v) + Y MIFi(v)?,
=1
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and where A = (A1,...,Ap) , A >0 fori=1,...,m. The function uy is a solution
of the problem (2.3) if and only if u is a solution of the problem: Find ux € V such
that

a(v,uy) + Zz\iFi(v)F;(u)‘) =b(v) YveV.

i=1
It is well-known (see e.g. [2, 12, 15]) that uy — u in V when all A; — co. However,

in our case the situation is much more simple. The next theorem shows that for any
choice of A with positive components we even have

U= 1uy.

Theorem 2.1. Let (A1)-(A5) hold and let Ay, ..., A\, be arbitrary positive num-
bers. Then there exists one and only one u € V such that

(2.4) a(v,u) + Z XiFi(v)Fi(u) = b(v) YveV.
i=1

Moreover, the forms F, ..., F,, are linearly independent and the solution u satisfies
the conditions

(2.5) Fi(u)=0, i=1,..,m,
i.e., u € W. The penalty method thus gives the exact solution of the problem (2.1)

for an arbitrary set of positive penalty parameters.

Proof. First of all we show that each v € V can be decomposed so that
v=w+p for some w € W and p € P. So let v € V be arbitrary. According to (Al)
and (A3), a(.,.) represents a scalar product on W and thus, by the Riesz theorem,
there exists precisely one w € W such that

(2.6) a(y,w) = a(y,v) VyeWw,

because y — a(y,v) is a linear continuous form. Let us denote by @ the mapping
v +— w. It is clearly a linear projection operator. Hence, by [14, Chap. 4.8], the space
V can be expressed as the direct sum V = Im(Q)®Ker(Q) = WdKer(Q) and

(2.7) dim Ker(Q) < m,

(since for the time being we do not know whether the forms Fy, ..., Fy,, are linearly
independent over V).
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Setting
(2.8) p=1v—w,
we find, in virtue of (2.6), that

(2.9) p€ Ker(Q).

For any ¢ € P we have a(y,q) = 0 for all y € W and thus Q(¢) = 0, i.e., ¢ € Ker(Q)
and P C Ker(Q). However, from (2.7) and the assumption dim P = m, we see that

(2.10) P = Ker(Q).

Consequently, due to (2.9), we obtain p € P.
Further, we will follow some ideas of [7]. The left-hand side of (2.4) obviously
represents a sesquilinear Hermitian continuous form on V' x V. We show now that

it is V-elliptic. For any v € V we have by (2.8), (A4), (A2) and (A3) that

m

a(v,v) + Z Ai

i=1

Fi(v)?

m

= a(w,w) + a(p, w) + a(p, w) + a(p,p) + Z Ai| Fi(w) + F,-(p)|2

i=1

= a(w,w) + Y NIFE@)P > Cllwll’ + Cillpll* > Callw + pl|* = Callvll?,

i=1

as all norms in the finite dimensional space P are equivalent. Thus the existence of
a unique solution of (2.4) follows again from the Riesz theorem.
Next we check the relation (2.5). According to (2.10), dim Ker(Q) = m and thus

the forms Fy, ..., F), are linearly independent over V. Therefore, we may choose for
any i € {1,...,m} such an element v; from the space
fveV|Fi(v)=...= F;_1(v) = Fiz1(v) = ... = Fu(v) = 0}

for which Fj(v;) = 1. Hence,
F,-(vj):é,-j, i,j:l,...,m.

Putting

pi=vi—w;, t=1,...,m,
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where w; = Q(vi), we see that
Fi(p;) = 6ij, 4,j=1,...,m.

From here, (A4), (2.4) and (A5) we get for each j € {1,...,m} that

NEW = Y MR F(W)

=a(pj,u)+ Z X Fi(p; ) Fi(u) = b(p;) = 0.

i=1

Therefore, Fj(u) =0 for j =1,...,m, ie, u € W and by (2.4) we obtain
a(w,u) = b(w) Ywe W.

a

Remark 2.2. Let V be a real Banach space. The subspace W from (A2) may
also be defined as follows

W={weV|(Fi(w)?>=0,i=1,..,m}.

The functionals v — J(v) = a(v,v)—2b(v) and v ~— (F;(v))? are continuously Fréchet
differentiable in V. Hence, from (2.2) and well-known results [13] it follows that if u
is the solution of the problem (2.1) then there exist Lagrange’s multipliers Ay, ..., Ay
so that

a(v,u) + Z AiF;(v)Fi(u) = b(v) YveV.

Comparing this with (2.2), we observe an interesting fact that there is a continuum
of Lagrange’s multipliers in the considered case. One can a priori choose any set
A1, .. A of positive numbers.
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3. APPLICATIONS

Example 3.]1. Let uslook for a complex vector £ which minimizes the quadra-
tic functional
J(z) = Az — by — 2Hp

over the set of linear constraints
Bz =0,

where 2 stands for the conjugate transposed vector to z, A is an n x n Hermitian
matrix (i.e., A = A) which is positive semidefinite, B is an m x n complex rectan-
gular matrix such that 1 < rank(B) = m < n, and ¥ Az > 0 for all £ # 0 for which
Bz = 0. Finally, let b¥p = 0 for all p € P, where P is the space of those complex
vectors p such that pf Az = 0 for all complex vectors z. In view of Theorem 2.1, we

see that & is a unique solution of the problem
(A+ BHB)z =b.

For exact penalty methods in a finite dimensional space see also [16].

Example 3.2. We describe how to calculate a reduced magnetic potential u in
the window of an ideal transformer (see Fig. 1).

window

Fig. 1

From the stationary Maxwell equations in the standard cylindrical coordinates
(r,0,2), one can derive (under some simplifying assumptions—see [4]) that
0 (1 6u) 0 (l Ju

(31) __67 ;51_ —6_z ;-&—):ﬂol m Q,



where Q@ = (r1,7m2) x (21,22), (m = 0.3, ro = 0.65, z; = 0, zz = 0.5 [m]), is
a rectangular domain which corresponds to the upper half of the window, gy =
4m - 10”7 [kgm/s2A?] is the vacuum permeability and I is the current density for
which fn Idrdz = 0. Since the permeability of the transformer magnetic core is
much more greater than po, we get the Neumann boundary condition

ou

’a—y~:

Define the associated forms as follows

Ovow  Oviowy1l
(I(U,’ll))—\/(.z(aﬁ;—-*-é—z-a);drdz,

b(v) = o / Ivdrdz
o

(3.2) 0 on 9.

for v,w € V = H(RQ), where
106 in Ql)
I(’I‘, Z) = _106 in QZ’
0 in Q\(Ql UQz),

(the values of I are given in [A/m?]). The position and shape of the domains Q;
and  are sketched in Figure 2. They correspond to the primary and secondary
windings.

1
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2
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) 24 Q
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/
//
:

T
—

L -
Pe=-

Fig. 2

Let us approximate V by bilinear finite elements, i.e., we set
Vih = {vh € V | vs|K is bilinear for all K € Ta},
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where the partition 7}, consists of 35 x 50 rectangles. Consider now the problem:
Find a function u, € Vj such that

(3.3) a(vh,uh)—}-/\/vhds/uhds:b(vh) Yo, € Wy,
r r

where A > 0 is a given number and T = [ry,7;] x {22} is the upper side of Q.
Since the left-hand side of (3.3) represents a symmetric elliptic form, the associated
stiffness matrix is symmetric positive definite. It is band if we number the usual
basis functions of V}; row-wise. The choice of A has no influence upon u; whereas
it has an influence on the condition number of the associated stiffness matrix, see
[9]. The convergence of uy to u in the H!(f2)-norm follows now from the standard
theory of finite elements (see [3]).

In Figure 2 we see the contour lines of u, which seem to satisfy the Neumann
boundary condition (3.2). Figure 3 illustrates the corresponding approximation of

the radial and axial components of the magnetic field (B,, B,) = (—}%ﬁz‘-, }%% .

Fig. 3

Remark 3.3. For further application to a linear elasticity problem we refer to
[7], where the assumption (A3) is satisfied due to Korn’s inequality [6]. In [8], periodic
boundary conditions in linear elasticity are treated by the proposed method based
upon the assumptions (A1)-(A5). The next theorem shows that the coerciveness of
a(.,.) (see (3.4) below) already implies that the space

P={peV]|alp,v)=0 YveV}.

is finite dimensional. In other words, the assumption (A4) is fulfilled a priori.
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Theorem 3.4. Let Q C R?, d € {1,2,...}, be a bounded domain with a Lipschitz
boundary and let

q
v=]]H%@),
i=1

where H¥i(Q) are the Sobolev spaces with kj > 1. Let a(.,.) be a sesquilinear

Hermitian form such that
(3.4) a(v,v) + [|v]l§ > collvll* Vv eV,

where ||.||o is the (L?(2))9-norm and ¢y > 0 is independent of v. Then dim P < co.

Proof. Assume that P is not a finite-dimensional space. Then by the Riesz
lemma (see e.g. [14, Theorem 3.12-E]) there exists a sequence {p;}$2; C P such that
[lpi]| = 1 and

(3.5) llpi = pll > 3 Vpespan{p,..,pi-1}.

Using the compactness of the imbedding V C_, (L?(£2))?, we find that there exists an
(L?%(2))9-convergent subsequence of {p;} which will be still denoted by {p;}. Hence,
there exists an integer ig such that

llpi — pillo < 3+/c0

for all i > j > ip. However, this contradicts (3.4) for v = p; — p;, since a(p; —
pi»pi —pj) = 0 and ||p; — p;|| > 3 by (3.5). a
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Souhrn
O APROXIMACI NEUMANNOVA PROBLEMU METODOU PENALIZACE
MicuaL KRiZEK

V ¢lanku je dokdzéno, Ze penalizaci ohraniceni, kterd se vyskytuji v linedrnim eliptickém
Neumannové problému, dostaneme pfimo piesné feseni pro libovolnou mnoZinu penaliza¢-
nich parametri. V tomto pfipadé také existuje kontinuum Lagrangeovych multiplikdtoru.
Navrzend metoda penalizace je pouzita k vypocltu magnetického pole v okné transformdito-
ru.
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