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ON APPROXIMATION OF THE NEUMANN PROBLÉM 

BY THE PENALTY METHOD 

MICHAL KŘÍŽEK, Praha 

Summary. We prove that penalization of ccmstraints occurring in the linear elliptic Neu
mann problém yields directly the exact solution for an arbitrary set of penalty parameters. 
In this čase there is a continuum of Lagrange's multipliers. The proposed penalty method 
is applied to calculate the magnetic field in the window of a transformer. 
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1. I N T R O D U C T I O N 

The necessity of solving a linear elliptic problém with the Neumann boundary 
conditions arises in many branches, e.g., in modelling transonic flows [5], in theories 
of shells [10] and elasticity [11], in electrical engineering [4]. For simplicity, consider 
first the following model Neumann problém: 

—Au = / in fi, 

( 1 1 ) du n * o 
7-- = 0 on au, 
ov 

where Q, C Rd (d ^ 1) is a bounded domain with a Lipschitz boundary dQ, v is the 
outer unit normál to <9fŽ, and / £ L2(fi) is such that Jnfdx = 0. 

The associated bilinear form 

(1.2) a(v,w) = / V v - Vwdx, v, w £ Hl(ft), 

is not / /x(Q)-ell iptic, where Hl(Q) is the Sobolev space of functions whose gener-

alized derivatives belong to L 2(Q). The nonellipticity causes the nonuniqueness of 

the true solution which often represents some troubles in numerical solution of (1.1). 

There are several ways how to handle the Neumann problém: 

1. A natural approach is to use a duál variational formulation (see e.g. [11, p. 95]), 

since it has a unique solution. However, this formulation does not produce the 
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solution u but only its cogradient. Moreover, a particular solution of equilibrium 
equations has to be known a priori. 

2. The s tandard variational formulation of (1.1) is usually given (see [3, p. 33]) 
in the quotient space H1(Q)/Po(Q)i in which a( . , . ) is elliptic. (Here Po(ťl) s tands 
for the space of constant functions.) But quotient spaces are unsuitable for finite 
element approximations. 

3. The bilinear form (1.2) is elliptic also in the space 

W = [veHl(Q) | / váx = 0y 

However, to construct finite element fields which would belong to W is practically 
difficult (especially in problems with more than one constraint [8]). 

4. To fix the solution u in one point is also not advisable if d > 1, since u can háve 
a singularity just at this point. Moreover, in [1, Theorem 4.1], Babuška demonstrates 
why we cannot fix functions from the Sobolev space Hl(Q) in one point. (Notě tha t 
Hl(Q) is not contained in C(Q) for d > 1.) The associated finite element schemes 
are then unstable 

5. A direct finite element approximation of (1.1) leads to a systém of linear 
algebraic equations with a singulár matr ix 

where { v 1 } " - ! C Hl(Q) are finite element basis functions such that Ylc%v% = 1 in íí 
i 

for some coefřlcients c 1 , . . . , cn. Since A is singulár and positive semidefinite, we háve 
to use some speciál solvers—see e.g. [12, p. 117] for a modified conjugate gradient 
method. 

In the next section, we introduce another approach to solving the Neumann prob
lém which will be based on the penalty method (or Lagrange's multipliers method) . 
The associated finite element approximations then yield positive definite stiffness 
matrices. 

2. PENALTY METHOD FOR A GENERÁL NEUMANN PROBLÉM 

Throughout the páper we shall use the following assumptions: 
(AI) Let V be a reál or complex Banach space equipped with the norm ||.|| and let 

a ( . , . ) be a sesquilinear Hermitian (i.e., bilinear symmetric in the reál čase) continuous 
form on V x V. 
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(A2) Let m be a positive integer, let F\,..., Fm be linear continuous forms over 

V and let 

W = {veV\Fi(v) = 0, i = l m } . 

(A3) Let a ( . , . ) be H^-elliptic, i.e., there exists a constant C > 0 such that 

a{w,w)>C\\w\\2Vw£ W. 

(A4) Let dim P = m, where 

P = { P G 1/ | a ( p , v ) = 0 VvG V}. 

(A5) Let 6(.) be a linear continuous form over V such that 

b(p) = 0 Vp G P. 

We shall deal with the problém: Find a function u satisfying 

(2.1) ueW, a(w, u) = b(w) Vw G W. 

By the Riesz theorern (or the Lax-Milgram lemma) this problém has a unique 

solution. Notě tha t the standard weak formulation of a linear elliptic problém with 
the Neumann boundary conditions is typically of the form (2.1). However, due to 
the constraints occurring in the definition of W, a direct numerical solution of the 
problém (2.1) can be difficult. In Theorem 2.1 we will show that the penalty method 
enable us to sol ve (2.1) easily. 

Define a functional J: V —* Rl by the formula 

J(v) = a(v, v) — b(v) — b(v), 

where the bar denotes the conjugate number. The problém (2.1) is then equivalent 
to the following one: Find u G W such that 

(2.2) J(u) = min J(w). 
wčW 

The penalty method for the problém (2.2) consists in finding u\ G V such that 

(2.3) Jx(ux) = mm Jx(v)} 

where 
m 

A(tO = J(«) + 2>lfi(»)la. 
J = l 
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and where A = ( A i , . . . , Am) , A; > O for i = 1 , . . . , m. The function it\ is a solution 
of the problém (2.3) if and only if ii\ is a solution of the problém: Find u\ G V such 
tha t 

m 
a(v,ux) + ^\iFi(v)FJ^x) = b(v) Vu € V. 

It is well-known (see e.g. [2, 12, 15]) that u\ —* u in V when all A, —+ oo. However, 
in our čase the situation is much more simple. The next theorem shows that for any 
choice of A with positive components we even háve 

ti = u\. 

T h e o r e m 2 . 1 . Let (A1)-(A5) hold and let A i , . . . , Am be arbitrary positive num-
bers. Then there exists one and only one u £ V such that 

m 

(2.4) a(v, ti) + ^ 2 XÍFÍ(V)FÍ(U) = b(v) Vv E V. 

Moreover, the forms F i , . . . , Fm are linearly independent and the solution u satisfíes 
the conditions 

(2.5) ^ ( 1 0 = 0, t = l , . . , m , 

i.e., u G W. The penalty method thus gives the exact solution of the problém (2.1) 
for an arbitrary set of positive penalty parameters. 

P r o o f. First of all we show that each v £ V can be decomposed so that 
v = w + p for some w G W and p G P. So let v G V be arbitrary. According to (AI) 
and (A3), a ( . , . ) represents a scalar product on W and thus, by the Riesz theorem, 
there exists precisely one w G W such that 

(2.6) a(y,w) = a(y,v) Vy G W, 

because y ~̂> a(t/, i;) is a linear continuous form. Let us denote by Q the mapping 
v »—• w. It is clearly a linear projection operátor. Hence, by [14, Chap. 4.8], the space 
V can be expressed as the direct sum V = lm(<5)®Ker(<3) = VF0Ker(Q) and 

(2.7) dim Ker(Q) ^ m, 

(since for the t ime being we do not know whether the forms F\>..., Fm are linearly 
independent over V). 
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Setting 

(2.8) p - v - w , 

we find, in virtue of (2.6), tha t 

(2.9) p£ Ker(Q). 

For any q G P we háve a(t/, q) = 0 for all T/ E Í4^ and thus (2(g) = 0, i.e., </ G Ker(Q) 

and P C Ker(Q). However, from (2.7) and the assumption dim P = m, we see that 

(2.10) P = Ker(Q). 

Consequently, due to (2.9), we obtain p E P . 

Further, we will follow some ideas of [7]. The left-hand side of (2.4) obviously 

represents a sesquilinear Hermitian continuous form on V x V. We show now that 

it is V-elliptic. For any v G V we háve by (2.8), (A4), (A2) and (A3) that 

m 

a(v,v)+J2xMv)\* 
Í = I 

m 

= a(w, w) + a(p, w) + a(p, w) + a(p, p) + ^ At-|F,-(iu) -f F f(p) | 2 

m 

= „(«,, a») + £ Ať|F,(p)|2 > C||H|2 + Ci||p||a £ C3||u; + p||2 = C2|M|2, 
1 = 1 

as all norms in the finite dimensional space P are equivalent. Thus the existence of 
a unique solution of (2.4) follows again from the Riesz theorem. 

Next we check the relation (2.5). According to (2.10), dim Ker(Q) = m and thus 
the forms Fi , . . ., F m are linearly independent over V. Therefore, we may choose for 
any i G { 1 , . . . , m} such an element VÍ from the space 

{v G V | Fi(v) = . . . = Fi-ift;) - F i+i(t>) = . . . = Fm(t;) - 0} 

for which FÍ(VÍ) = 1. Hence, 

í í ( v j ) = č,j, i , j = l , . . . , m . 

Put t ing 
pt- = v,- - WÍ, i = l , . . . ,m, 
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where W{ = <2(^i), we see that 

Fi(Pj) = *i j , *,Í = l , . . . , m . 

From here, (A4), (2.4) and (A5) we get for each j G { 1 , . . . , m} that 

rn 

ř = l 

m 

= a(p^ti) + ^ A i F i ( p i ) f i ( í ) = 6(pi) = 0. 

Therefore, F / (u) = 0 for j = 1 , . . . , m, i.e., u E W and by (2.4) we obtain 

a(w, u) = 6(u;) Vu> E VF. 

D 

R e m a r k 2.2. Let K b e a reál Banach space. The subspace W from (A2) may 
also be defined as follows 

W = {weV\ (Fi(w)ý = 0, i = 1 , . . . , m } . 

The functionals v »—• J (v ) = a(v, v)—26(i>) and v »—• (Fi(v))2 are continuously Fréchet 
differentiable in V. Hence, from (2.2) and well-known results [13] it follows that if u 
is the solution of the problém (2.1) then there exist Lagrangťs multipliers A i , . . . , Am 

so that 
m 

a(«,tt) + 2A i F i ( t ; )F i ( t i ) = 6(t;) Vv € V. 

Comparing this with (2.2), we observe an interesting fact that there is a continuurn 
of Lagrange's multipliers in the considered čase. One can a priori choose any set 
Ai, • •., Am of positive numbers. 
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3. A P P L I C A T I O N S 

E x a m p 1 e 3.1. Let us look for a complex vector x which minimizes the quadra-
tic functional 

J{x) = xHAx - bHx - xHb 

over the set of linear constraints 
Bx = 0, 

where xH s tands for the conjugate transposed vector to x, A is an n x n Herrnitian 
matr ix (i.e., A = J4) which is positive semidefmite, B is an m x n complex rectan-
gular niatrix such that 1 <C rank(B) = ni < n, and xHAx > 0 for all x ^ 0 for which 
Bx = 0. Finally, let bHp = 0 for all p E P , where P is the space of those complex 
vectors p such that pH Ax = 0 for all complex vectors x. In view of Theorem 2.1, we 
see that x is a unique solution of the problém 

(A + BHB)x = h. 

For exact penalty methods in a finite dimensional space see also [16]. 

E x a m p l e 3.2. We describe how to calculate a reduced magnetic potential u in 
the window of an ideál transformer (see Fig. 1). 

L-joint 

Fig. 1 

From the stat ionary Maxwell equations in the standard cylindrical coordinates 
(r, 0, z), one can derive (under some simplifying assumptions—see [4]) that 

(3.1) 
dr 

í\ du\ 
\řdr) 

d / l d u \ 
dz\rdz) 

/ i 0 / in Q, 
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where íi = ( r i , r 2 ) x {z\)z2), ( n = 0.3, r2 = 0.65, z\ = 0, z2 = 0.5 [m])5 is 
a rectangular domain which corresponds to the upper half of the window, //o = 
4TI • 10~7 [kg m/s2A2] is the vacuum permeability and I is the current derisity for 
which fnIdráz = 0. Since the permeability of the transformer magnetic core is 
much more greater than //o, we get the Neumann boundary condition 

(3.2) ~ = 0 on díl. 
ov 

Define the associated forms as follows 

a(i>, w) 

b(v) = /x0 / Ivdrdz 

Jn^dr 

/io / Iv 

dw dvdw\1 . . 
~á~~ + 7 T ~ á ~ ) ~ d r d 2 : ' or oz oz J r 

for v} w £ V = i /1(í í) , where 

I(r,z) = 
106 i n í l i , 

-10 6 inQ 2 , 

0 i n f i \ ( f i i U f i 2 ) , 

(the values of / are given in [A/m2]). The position and shape of the domains fii 
and O2 are sketched in Figuře 2. They correspond to the primary and secondary 
windings. 

•f-
Fig. 2 

Let us approximate V by bilinear řinite elements, i.e., we set 

Vh = {VH € V I i>fc|J£ is bilinear for all V\ E Tfc}, 
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where the partition Th consists of 35 x 50 rectangles. Consider now the problém: 
Find a function Uh 6 Vh such that 

(3.3) a(vh,uh) + \ vhds uhds = b(vh) Vvh 6 14, 

where A > 0 is a given number and T — [ n , ^ ] x {̂ 2} is the upper side of O. 
Since the left-hand side of (3.3) represents a symmetric elliptic form, the associated 
stiffness matrix is symmetric positive definite. ít is band if we number the usual 
basis functions of Vh row-wise. The choice of A has no influence upon Uh whereas 
it has an influence on the condition number of the associated stiffness matrix, see 
[9]. The convergence of Uh to u in the i/1(Q)-norm follows now from the standard 
theory of finite elements (see [3]). 

In Figuře 2 we see the contour lineš of Uh which seem to satisfy the Neumann 
boundary condition (3.2). Figuře 3 illustrates the corresponding approximation of 
the radiál and axial components of the magnetic field (Br,Bz) = (— £§7, £§7)-

Fig. 3 

R e m a r k 3.3. For further application to a linear elasticity problém we refer to 
[7], where the assumption (A3) is satisfied due to Koriťs inequality [6]. In [8], periodic 
boundary conditions in linear elasticity are treated by the proposed method based 
upon the assumptions (A1)-(A5). The next theorem shows that the coerciveness of 
a(.,.) (see (3.4) below) already implies that the space 

P = {PE v l a(P, v) = o Vvev}. 

is finite dimensional. In other words, the assumption (A4) is fulfilled a priori. 
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T h e o r e m 3.4 . Let Q C Rd, d E { 1 , 2 , . . . } , be a. bounded domain witb a Lipscbitz 

boundary and let 

where Hkj(Q) are the Sobolev spaces with kj ^ 1. Let a( . , . ) be a sesquilinear 

Hermitian form such that 

(3.4) a(v,v) + | M I Š £ c 0 | M | 2 Vv € V, 

where ||.||o is íne (L2(Q))q-norm and CQ > 0 is independent ofv. Then dim P < co. 

P r o o f . Assume that P is not a finite-dimensional space. Then by the Riesz 

lernma(see e.g. [14, Theorem 3.12-E]) there exists a sequence { p t } ^ 1 C P such that 

\\pi\\ = 1 and 

(3.5) ||pi — jp|| > ~ V p E s p a n { p i , . . . , p t _ i } . 

Using the compactness of the imbedding V C_> (L 2 (Q)) 9 , we find that there exists an 

(L2(fi))9-convergent subsequence of {p t} which will be still denoted by {p t } . Hence, 

there exists an integer ÍQ such that 

llPť-Pillo < \yfto 

for all i > j J> ÍQ. However, this contradicts (3.4) for v — PÍ — pj, since a(pi — 
Pj,Pi ~Pj) = 0 and ||pi - p j | | > | by (3.5). • 
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S o u h r n 

O A P R O X I M A C I NEUMANNOVA P R O B L É M U M E T O D O U P E N A L I Z A C E 

M I C H A L K Ř Í Ž E K 

V článku je dokázáno, že penalizací ohraničení, která se vyskytují v lineárním eliptickém 
Neumannově problému, dostaneme přímo přesné řešení pro libovolnou množinu penalizač-
ních pa ramet rů . V tomto případě také existuje kontinuum Lagrangeových multiplikátorů. 
Navržená me toda penalizace je použita k výpočtu magnetického pole v okně t ransformáto
ru. 
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