
Applications of Mathematics

Milan Práger
A two parameter iterative method for solving algebraic systems of domain
decomposition type

Applications of Mathematics, Vol. 38 (1993), No. 6, 470–478

Persistent URL: http://dml.cz/dmlcz/104569

Terms of use:
© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104569
http://dml.cz


38 (1993) APPLICATIONS OF MATHEMATICS No. 6, 470-478 

A T W O PARAMETER ITERATIVE METHOD FOR SOLYING 

ALGEBRAIC SYSTEMS OF DOMAIN DECOMPOSITION T Y P E 

MILAN PRÁGER, Praha 

Summary. An iterative proceduře containing two parameters for linear algebraic systems 
originating from the domain decompostition technique is proposed. The optimization of the 
parameters is investigated. A numeric example is given as an illustration. 

Keywords: iterative methods, block matrix, domain decomposition 

AMS classification: 65N30 

The páper generalizes the iterative proceduře proposed in [1]. The proceduře is 
appropriate for solving linear algebraic systems of speciál forrn originating from the 
discretization of boundary value problems on composite domains and belongs to the 
domain decomposition algorithms. Mostly, such algorithms present preconditioners 
for the CG method, see e.g. [2], [3], [4], [5]. A one parameter method for the use 
independent of CG method is proposed in [6]. 

To the contrary of the previous čase, we use two parameters and perform their 
optimization. We thus obtain a reasonable improvement of convergence rate. The 
method can be easily modified to yield a preconditioner for the CG method. For all 
details see [7]. 

1. D E S C R I P T I O N O F T H E M E T H O D 

Let a systém of linear algebraic equations 

(1) Mw = d 

be given, where 

( A DT O \ /x\ 

D B ET\, w=[y\, d = 
O E C) \z) 

We suppose tha t the matrices A, B, C are square and symmetric, O are null matrices 
of the corresponding orders. 470 



Let B\ and í?2 be symmetric matrices such that B — B\ + #2 and that the matrices 

are positive definite. It is easily seen that the matrix M is positive definite, too. 
Let us denote Sxj the Schur complement of A in A\) i.e., Su = B\ — DA~1DT 

and by S L the Schur complement of C in ^2 , i.e., Sx = B2 — ETC~lE. Further, we 
denote p = DA~lf + ETC~lh. 

The proceduře consists in the construction of a sequence of vectors yn converging 
to the y-component of the true solution of (1). It is easily calculated that this exact 
value fulíils the equation 

(3) (Su + 5L)J/OO = (9 ~ p)-

Let a, (3 be reál parameters, 0 < a, /3 < 1. Let an approximation yn to t/00 be 
given. Let y„+i be the t/-component of the solution of the systém 

(40 Ax + DTy = f, 

(42) £>* + Bxy - (1 - a)flf + a(DA~lf + 5t/y„) - (1 - <*){£?C^h + 5Lt/n), 

and let 2/„^x be the y-component of the solution of 

(50 5 2 y + í;Tz = a < 7 - a ( D / l - 1 / + 5[;r/„) + ( l - a ) ( £ ; T C - 1 / l + 5L2/n) ) 

(52) £1/ + Cz = /». 

The new iteration is defined by 

(6) ! f e + i = / ? » & + ( l - / * ) v $ i . 

R e m a r k 1 . Let us substitute yn for 1/ into the systém (4), compute x from 
(4i) and substitute this value into the left-hand side of (42). We obtain 

Dx + Biyn=DA-lf + Suyn. 

An analogical manipulation with the systém (5) gives 

B2yn+ETz = ETC-lh + SLyn. 

This is the way for computing the right hand sides in the above systems. 
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After the solution of the systems (4) and (5) for y„+i and y„+i respectively, and 
the substi tution into (6) we háve 

i/n+i ={[«/*+ 0 - <*)(i - č)K - (i - <*W - «(i - i»)r-1}yn+ 
+ [ ( l - a ) / ? S ^ 1 + a ( l - / ? ) 5 í l ] ( P - P ) . 

where T-SulSL. 
The character of the iterations is determined by the spectral rádius of the iteration 

matr ix K 

K = [a/? + (1 - a ) ( l - /})] / - (1 - a) /JT - a ( l - p)T~l. 

Before studying the optimization of the spectral rádius in dependence of the pa-
rameters a and /?, we show that the process (if convergent) converges to the exact 
solution. In the čase of convergence we háve 

( / - K) 2/oo = [(1 - a)(ÍSvX + a ( l - 0)Sj;1] (g - p). 

However, it is easily seen that 

I-K = P(Su + SL)t 

where P = (1 — a)/3Syl + c*(l — Z^)*?^1. But for a convergent K the matrix P is 
regular and we obtain (3). 

The form of the matr ix / — K enables us to rewrite the iterations in the form 

2/n+i = yn~ P [(Su + SL) yn-(g ~ p)] • 

The mat r ix P can be thus considered as a preconditioner for the matr ix Su + SL 
and the proposed method as the method of residual iterations with preconditioning. 
This suggests the use of P a s a preconditioner for the method of conjugate gradients 
for the solution of the equation (3). 
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2. O P T I M I Z A T I O N OF THE PARAMETERS 

The eigenvalues of K depend only on the eigenvalues of T. We will suppose that 
we know the bounds for the spectrum of this niatrix 

sp(T) C [m ,M] , m,M > 0. 

Introducing new parameters s and t by 

(7) 

we obtain 

Further, we háve 

(8) 

( l - o ) / ? = «ť, 

a(í-0) = a/t. 

< € ( 0 , o o ) , s £ ( 0 , i / ( l + í)2]-

Conversely, for every pair (s,t) satisfying (8), the systém (7) has at least one 

solution a, /3. In fact, let us denote 

V>(<?) = 
qt 

(q + t)(l + qt)' 

We find such a q} 0 < q < 1, that s — ý(q). This is always possible because the 

function xji is (for a fixed t) positive and increasing on the interval [0, 1] and takés 

the values between 0 and t/(l + t)2. Setting a — 1/(1 -f qt) and (3 = t/(q -f 0> w e 

obtain one solution of (7). 

With the new parameters, we háve for the matrix K 

K i - . [ f + T tT+ -T~l 

For every eigenvalue /zř of T we háve an eigenvalue At of K 

< + 0 ~ s r i + i 
or, with the use of the function ip(t) = t + t l — 2, 

Xi = l-8[4+ip{t) + (p(tiii)]. 
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The spectral rádius of K, Q(K) = max |A t | should be minimized in dependence of 
i 

s and t. Instead of max|A, | , we will consider 
t 

R(a,t)= max \l - s[4 +<p(t) + <p(tx))\ 
xč[m,M] 

and minimize the function i?(s,č) for s, t satisfying (8). We obtain thus an upper 
bound for the spectral rádius Q(K). 

T h e o r e m . The function R(syt) attains its minimum in the region given by (8) 

fof 2 , 1 
and t 

and we háve 

8 - f 2 V p ( v / M ^ ) + ^ ( v / M ) VM 

IV mJ 
(9) min i ř ( s , ť ) = 

s,t 8 + 2^(V^m)+^(y^) 

See [7] for the proof. 
The vaiue given by (9) is less than one, so the iterative process converge for 

the opt imum values of the parameters. The parameters a and (3 necessary for the 
iteration scheme are computed from s and t by the proceduře described above. 

R e m a r k 2 . If the bounds for the spectrum of T are strict, i.e., if /Límjn = m 
and /imax = M, and, moreover, if ^^ = yMm fóre some k the estimate (9) gives the 
exact value of Q{K). In other cases the spectral rádius is less than the estimate. 

3 . NUMER1CAL EXAMPLE 

As an illustration of the above proceduře we will use the following problém.Let O 
be the L-shaped domain of Fig. 1, consisting of three squares, each with the side of 
length ^. Let the following boundary value problém be given on O 

Au = 0 in O, 
( 1 2 ) an 

u — g on ou, 
where g is chosen so that the exact solution be 

IÍ(X, y) — x3 — 3xy2. 
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We introduce a uniform square mesh with the step j ^ . Then, we approximate the 
problém in the usual way with the standard five point scheme. We thus obtain a 
systém of linear algebraic equations. In order to put it into the suitable form (1) 
with appropriate blocking of M, w and d we gather the equations corresponding to 
the mesh points lying in 0\ and O3 in the first block, the equations corresponding 
to the points on the both interfaces i\ and ř'2 to the second block and the equations 
corresponding to the mesh points in O2 to the third block. 

(1,1) 

(0,0) (1,0) 
Fig . l 

We use the splitting B — B\ + B2 with B\ = B2 = B/2. The application of the 
rriethod consists in the following steps: 

1) We choose the values at the points on i\ and z 2 arbitrarily. 
2) We solve three discrete Dirichlet problems on each square separately. This 

corresponds to the computing of x from (4i) and of z from (52), see Remark 1. 
3) We compute the values of the discrete normál derivatives of these solutions on 

both interfaces from both sides. We proceed again according to the Remark 1. The 
splitting of B we made gives just the discrete normál derivatives. 

4) We solve the systems (4) and (5), i.e., solve three separate discrete boundary 
value problems with the Neumann condition on the interfaces. The solution of the 
discrete boundary value problém on O2 has, however, to fulfill the Dirichlet condition 
in the single point (^, ^ ) . 

5) We compute the new approximation of the values on the interfaces from (6). 
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For the numerical experiment the null vector was taken for the initial approxima-
tion of the values on the interfaces. There were ušed two choices of the parameters. 
The first one was the choice of standard parameters a = 0.5, /3 = 0.5. This choice does 
not guarantee convergence, in generál, but it is reasonable in many cases. It yields 
convergence in our čase. The second choice are the optimal parameters described in 
§2. 

The maximum and minimum nurnerically computed eigenvalues of the matr ix T, 
i.e., of the generalized eigenvahie problém SLU = fiSi/u were taken as the values of 
M and m, respectively. The values of the optimal parameters for different values of 
n are shown in Table 1. 

n 

a 

P 

4 
.5454 
.5724 

8 
.5590 
.6186 

16 
.5664 
.6614 

32 
.5699 
.6999 

64 
.5713 
.7337 

128 1 
.5713 
.7631 

Table 1. Optimal parameters 

Figures 2 and 3 show the results of the iterative process for the first four iterations. 
The values shown are the maximum norms of the error on the interfaces. The curves 
from top to bo t tom correspond to the values n = 128, n — 64, n = 32, n — 16, 
n = 8, n = 4. 

o 
M W 

10 
10 
10 
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1 2 3 4 
Number of iteration 

Figuře 3. Direct iterations, optimal parameters 
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Figuře 4. Preconditioned CG method, standard parameters 

As it was mentioned in paragraph 1, we can use the matrix P for the precondition-
ing of the CG method. It follows from [2] that the spectral rádius of P(Su •+- SL) is 
bounded independently on n. The numerical realization of this method is easy and 
needs only minimal extra cornputational eífort in comparison to the direct method. 
The results of computations with the preconditioned CG method, again for two 
choices of iteration parameters, are shown in Figuře 4 and 5. The curves from top 
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io-6 
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lO-io 

IO-12 

1Q-14 

10-16 

Nurnber of iteration 

Figuře 5. Preconditioned CG method, optimal parameters 

to bo t tom correspond again to the values n = 128, n = 64, n = 32, ri = 16, n = 8, 
n = 4. 
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