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A R E M A R K TO T H E P A P E R M. F R O D A - S C H E C H T E R : 
P R É O R D R E S ET É Q U I V A L E N C E S DANS L ' E N S E M B L E 

DES F A M I L L E S D'UN E N S E M B L E 

MILAN SEKANINA, BRNO 

Reeeived January 7, 1965 

The aim of this remark is to deepen the knowledge about the lattice 
of all classes $\e(St?) from the preceeding paper [1], We use the notation 
introduced in [1], Cardinal and ordinal operations with ordinal types 
are denoted as in [2j. 

Let G be a partially ordered set. If X -5EL G, x e X, x ^ y => y e X 
then X is an end of G. The set of all ends is denoted by $(G) . <_?(G) is 
supposed to be ordered by inclusion, i e. X, Y e $(G), X S Y == X S-Y. 
Now, we shall deal with type of $(G). Let / be an isotonic mapping 
of G into {0, 1}, 0 < 1. The set of all g e G, for which/(g) = 1 is an end. 
On the other hand, if X is an end and h(x) = 1 for x e X, h(x) — 0 
for xe X, then h is an isotonic mapping of G into {0, 1}. Hence we get 
immediately that the ordinal type of $(G) is 2?, where y is an ordinal 
type of G and 2 is an ordinal type of {0, 1}. This result can be also easily 
obtained from general considerations in [3] (theorem 5.4). Especially, 
if 9P(E) is ordered by means of inclusion, e the type of an antichain 
with cardinal number card E, the ordinal type of $(8P(E)) is 22C. In 
following, we put £ = £(SP(E)). 

Put S\e = {SKe(Se) '.Se ^.0>(E)} and order # e by (D 10) from §5 
in [1]. According to (3.2) in [1], Jfe(S?) = {M e 0>(E) : 3 L _S_ M) is the 

Lei? 

greatest element in $\e(SC). Clearly Jte(Se) e i . USe e S, then Jte(Se) = 
= Se. Thus a mapping / which maps $te(je) on Jte(Se) is an one-to-one 
mapping of 5ie on $. 

Let Re(S?x) -< 5te(J§?2). Then there exist Sf1 e # e ( ^ i ) and J_?2 e 

e fte(J£?2) such that J271 ^ JSf2. Thus Jte(^v) = Jte(Sex)^.Jte(Se*) = 

=-= Jt (se). 
On6the2 contrary if Sex, Se2e S, SC1^S(?

2 it is «e(J^2) < M&i)-
e 

This implies that / is an antiisomorphism. 
By [2] I, § 7 it is a^ = 3ĉ , where oc is an ordinal type of a set which 

is antiisomorphic to a set of the type a. Thus 

(a) 2*e ==_ 22*. 



58 

Hence we get 

The ordinal type of $te is 22'. 
From (a) it follows that the following assertion mav be added to (5.3) 

in [1]. 
The set of all classes e-superior is a lattice which is isomorphic to SKe. 
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