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ON REAL—TIME T U R I N G M A C H I N E S 

J A N H A N Á K , BKNO 

(R c iv d Maгoh 4, 1966) 

Generalizing Rabin's idea of the "bottleneck square" we give certain 
sufficient conditions for the non-recognition by one-tape one-head real
time Turing machines. The use of our result (Theorem 2) is illustrated 
in examples, especially there is constructed a set not recognizable by the 
above mentioned Turing machines but recognized by a one-twodimen-
sional tape one-head real-time Turing machine and by a two-(onedi-
mensional) tape one-head real-time Turing machine, too. 

1. BASIC CONCEPTS 

1.0. card X means the cardinal number of a set X. N = {1,2,...}, 
N0 = Nu{0}. 

27°° is the set of all words consisting of symbols from a set E including 
the empty word A, e.g. 000 == {A}, w1 denotes the converse word of 
word w. l(w) is the length of a word w. 

Everywhere in the following we shall consider only words from N^°. 
For T c N£ let 

SB(T) = {a | a e N0, there exist wl9 w2e NQ such that wxaw2 e T} . 
(S(T) is the set of all letters contained in words from T.) If ®(T) 
is finite, then T is called an event. 

1.1. Definition. Let T -s N^. We say that words wx, w2eN$ are 
distinguished on T by w e NQ when one of the words wxw, w2w is in T 
and the other is not. Words wl9 w2 are called distinguishable (L-distin-
guishable) on T if they are distinguished on T by some word w (l(w) ^ L). 

(If wx, w2 are distinguished on T by w, then w e [ $5(T)]°° and wt or w2 

is also in [-B(-F)]00.) 
1.2. A one- (onedimensional) tape one-head real-time Turing 

machine (we will say in short a [l,l]-Turing machine) is a 5-tuple 

m = [E, S, W, F, M] 

where E, S, W are finite subsets of N0, OeS f\W, F c S and M 
is a mapping, M: E X S X W ~*W X P X S, where P = {—1, 0, 1}. 

Interpretation: E is the input alphabet, S is the set of states (0 is the 
initial state), F is the set of designated states, W is the working alphabet 
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(0 is the "blank symbol"). Let [a, s, a] e E X 8 X W, M([a, s, a]) = 
= [M1? M2, M3]; if 2R is in state s, the head sees a and the input is a, 
then on the observing square 9JI prints Mx, the head will move one square 
right (when M2 = 1) or one square left (when M2 = —1) or the head 
does not move (when M2 = 0), and $01 will go into the state M3. The 
described action we call a tact (also an atomic move). 9Ut performs the 
following tact under the successive letter of the input word or $Jl stops 
if the last tact was performed under the last letter of the input word. 
For every input w e 2?°°, 9K starts the whole work (the computation 
under w) in the initial state (i.e. in 0) and with only blank symbols 
(noughts) on the tape. s(w) will denote the state in which 9W is at the 
end of the computation under w, especially s(A) -= 0. 

Now we define 
T(9W) = {w | w e 2;°°, s(w) e F). 

T(ffll) is the event recognized by tyil. 
1.3. By a covering of square A (of the tape of a [1,1] — Turing machine 

in a computation) we mean every tact after which the head is on A; 
moreover, we assign one covering more to the initial square. (Thus, 
during the computation under w e 27°° l(w) + 1 coverings occur on the 
whole.) The set of all squares covered during the computation under 
an input w we denote t(w) and we call this set the work space on input w. 
Of course, t(w) is a segment*); its length we denote A(iv). Evidently, 
1 ^ K(w) g l(w) + 1. The position of the head in t(w) in the end of the 
computation under an input w (the first left square of t(w) we regard 
as the first, the first right square of t(w) we regard as the X(w)th we 
denote n(w), the word printed on t(w) in the end of this computation 
we shall denote z(w). 

If we want to call attention to that E, 8, t (or W, s(w) and similar) 
belong to a [1, 1]-Turing machine SOI, we write also Em, 8m, tm (or Wm, 
sm(w) and similar). 

1.4. A triplet x(w) = [r(w), n(w), s(w)] (for w e 2700) we call the 
coding of w. The number of codings with the length of the work spaces 
not exceeding number k e N is evidently less than k(l -f- card W)h card 8. 
If words w1, w2 e 27°° are distinguishable on T (9W), then x(wx) =fi x(w2). 

1.5. We define 

3Ta9li = {T(M) | SR is a [l,l]-Turing machine}. 

Thus, ^a>11 consists of all events recognizable by [\,\]-Turing machines. 
1.6. Analogically as above we may define also other types of real-time 

Turing machines, e.g. machines having p (onedimensional) tapes with h 

*) By a segment we mean a nonempty set of squares (of the tape) which with 
every two squares contains also all the squares lying between them. 
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heads on each of them (we denote these machines as [p, h]-Turing 
machines) or machines having one twodimensional tape with one head 
(we denote them as • -Turing machines) and similar ones, and to them 
we may define ^[Pth], &~Q . Besides, also finite automata*) we can 
consider as real-time Turing machines (without tapes), we shall denote 
them as O-Turing machines. Thus, ̂ "0 is the system of all regular events 
(letters of which are here only nonnegative integers). 

1.7. If Tx and T2 are recognizable by any real-time Turing machines 
having the same type, then Tx U T2 (and also Tx f] T2) need not be 
recognizable by Turing machines of this type (e.g. see Examples 5.2 
and 5.3). (As is known the system of all regular events is closed with 
respect to operations U, fl.) Nevertheless, there holds: if JT1? . . . , 
Tke<r[1>1}, then Tx U . . . U Tke^ktll (and Tx n . . . fl Tke^tlu 

too). (It is easily possible to generalize this notion.) 
1.8. If a O-Turing machine (i.e. a finite automaton) 2)1 has m states 

and every two (distinct) words from a set U are distinguishable on T(SOt), 
then evidently card U ^ m. Thus, if T e N£ and U& is an infinite 
event and its every two words are distinguishable on T**), thenT $£TQ. 
(Compare e.g. with the well-known example T = {0n\0n \ne N0} where 
we may take U^ = {O}00.) 

1.9. There holds ̂ 0 £ :Jfll]sJ[21] £ ^ " H 21***),^*ai] E - ^ D - Never
theless, tT[hl] ^<T0 (e.g. {OHO- | ne N0} e ^ r l § 1 ] - f \ ) , ^ r l ? 1 1 ^ ^ D 
(for the first time it was proved by Rabin [1]), &"[X 1} ^{Fu (moreover 
(^[2,ii H &~D) —«^[i,i] 7̂  0 — see Example 5.3). 

2. [d , /]-BOTTLENECK SQUARES 

Let in 2.0 — 2.7 9W be a [1, 1]-Turing machine with m states, 
let S and t belong to SOt. 

2.0. Definition. A square B (of the tape of SJl) we call a [d,f]-bottleneck 
square of an (ordered) pair [u, v] (on 501) if d ^ 1, / is a real function 
on N0, [u, v]eZco X S™ and there holds: 

(1) Bet(uv)—t(u), 
(2) under input uv B is covered at most d times, 
(3) if B lies between t(u) and the end E of t(uv)} then the length of the 

segment with end squares B and E (including both) is greater than 

*) See, e.g. [2]. 
**) Evidently, such set XJ^ exists if and only if the decomposition on [S(T)] 0 0 

which is induced by the relation of equivalence "to be not distinguishable on T'* 
has infinitely many classes. 

***) Generally there is ^ivM ^^"alPhi (see [3], pp. 483—484). 
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2.1, If B is a [d9 /]-bottleneck square of a pair [u, v] (on 9M) and 
&' -5 [d]9 g ^ / (i.e. g is a real function on N0 such that g(k) g f(k) 
for every keN0), then evidently B is a [eT, g]-bottleneck square 
of [u, v]. 

2.2, Let [u, v] have a [d9 /]-bottleneck square B9 let B be right (left) 
of t(u) and let J? be the right (left) end of t(uv). Let C be the right (left) 
neighbouring square of B. A passage (of 9JI) through B is every tact 
from 2? to C and also every tact from C to B (under uv)9 the state (of SR) 
during the passage is the state in which 9M is after the passage. Let s{ 

(i = 1, . . . , r) be the states during all passages through B (sx correspond
ing to the first, $2 to the second etc.). By the scheme of B (and of [u, v]) 
we mean the (r + l)-tuple [e, *1} . . . , sn]9 where e == 1 (e = —1). 
(See [1].) 

As B is (under uv) covered at every even passage and besides at least 
r + 1 r 4-2 

once (before the first passage), B is covered at least—-— times and ——-
z z 

times for r odd and for r even, respectively; thus, r g 2[d] — 1 and 
** .5 2[d] — 2, respectively. 

2.3, Let U, V £ 2700 and for every u e U let there exist vue V such 
that the pair [u9 vu] has some [d9 /]-bottleneck square Bu. Let Bu lie 
between £(tt) and the end Eu of £(wt;w), let vu be the beginning of vu such 
that after input uvu the head comes at first on KM. Evidently, Bu is 
also a [rf, /]-bottleneck square of [u9 vu] and the corresponding scheme 
of Bu and [u, vu] has an odd number of passages. 

The number of schemes corresponding to all [d, /]-bottleneck squares 
(of all input pairs) with an odd number of passages is not greater than 
D = 2m + 2m3 + . . . + 2m2im~1. Now, let be cardU > D, then 
there exist %, u2 e U, ux -$-- u2 such that the schemes of BUjL , BUz (and 
[%> *>« 11^2> t \ J , respectively) are the same, we denote them [e, sXi . . . , 
^ J (r is odd). For shortness, let us denote vik) = 5^ (k -= 1, 2). 

We may write 
.«(*> = ^ " ш • • • <' 

where i/j! (j = 0 , T) k = 1 > 2) are the words such that under the 
last letter of input %4> • • • vfa1} (j = 1, - - •, r) the j t h passage is 
performed. Evidently, f#> * - £ f ° r 3 ~ 0, . . . , r, i = 1, 2. 

Now, let be v$*> = % ) , 4-1 = ^UfWW-k) • • • * $ . 
I t is easily proved that s(uxv\k>) = 5(w2v<*>) and that for e =--= 1 (e = — 1) 

under inputs uxv{k> 9 u24
k> there holds: the nearest [f(l(uk))] squares 

from the end positions of the head (including) to the left (to the right) 
are'in both these cases printed in the same manner*) and on all squares 

*) But on the squares BUlf Bu% different working letters may be. 
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to the right (to the left) from the end positions there are only blank 
symbols (noughts). Thus, if u e U00 and l(ii) g /(£(%)), it is s(u1v1

:k>U) = 
= s(u2v{k>u). 

Hence, the important assertion (Lemma 2.6) follows. For its clearer 
formulation we give first the following definition. 

2.4. Definition. For V s N£ we define 
Q}(V) = {[v±, v2] \vx,v2e NQ , there exist an odd number r and words 

v% e N%(k = 1, 2; j = 0, . . . , r + 1) such that t ^ ^ -4 for k = 1,2 
and j = 0, . . . , r , t>jg . . . t>&+1> e F (t = 1, 2), *,. = < , . . . v g , 

«• = t ^ M • • • <!}> 
^0(V) = {v | v G Nf, there exists t/ e NJ such that [v, v'\s3f(V) 

or [ti ',f;]6S(F)}. 
2.5. There is 3(V) <= ^0(V) x ^ 0 ( ^ ) (it is ^0(V) = prxS(V) u 

U pr2^(V)) . Let be 0 -^ V E N%, L = sup Z(v) (£ oo), then 0 ( F ) -^ 0 
if and only if D ^ 2 and it is easily seen that for [vt, v2] e Q( V) there 
hold inequalities 2 ^ l(vx) <; L, 2 ^ Z(v2) <; 2(D — 1). Moreover, for 
L ^ 2 sup Z(v) = 2(D — 1). 

2.6. Lemma. Let be U, V £ -T00, d g: 1 and let / be a real function 
on N0. Let us choose D = 2 (m + m3 + . . . + m21^"1). Let card U > D 
and let for every i* e U there exist v e V such that [u, v] has a [d!,/^bottle
neck square. Then there exist %, w2 e U, ux =7-= ^2 and #£*>(&, * = 1, 2} 
such that for every k = 1, 2 [^fc>, t?|*^] e&(V) and the words %-#<-*>, 
u2v^k> are not/(Z(%))-distinguishable on T(9ft). 

2.7. The preceding assertion (and also all assertions based on it) is 
possible to strengthen (e.g. we may add l(v\k>)"> f((l(uk))]. 

2.8. Lemma. Let T be an event. Let there exist sequences {Un}, {Vn} of 
events, a sequence {dn}, dn ^ 1 and a sequence {fn} of real functions on Na 

such that the next conditions are satisfied: 
L 

(a) lim (card Un)dn = oo, 
n->oo 

(b) if n G N, ux, u2e Un, ux -$--. u2 and if v\k>(k, i = 1, 2) are such 
that [vlk>,v\kJk] e9(Vn) for fc = 1, 2, then either for k = 1 or for £ = 2 
the words u^p^>, u2v2<

k> are fn(l(uk))-distinguishable on T, 
(c) if 9ft is a [l,l]-Turing machine recognizing T, then there exista 

Om ^ 1 such that for almost all n (from N) there holds: for every 
ueUn there exists v eVn such that [u, v] has a [Gmdn, / J -bottleneck 
square (on 931). 

ThenT$$r {lil]. 
Proof. Let the suppositions be satisfied and yet there is a [l,l]-Turing 

machine 9ft such that T (9ft) == T (so, *B(T) s" 2m). We shall denote 
m = card #m and Dn = 2(m + m3 + ...... + m2I£nAH). There holds 
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Dn < (m + l)2CtiA. Let nmeN be such that for every n 2> nm there 
holds the assertion from the condition (c). From (a) there follows that 

there exists n0 2> wm such that (card Uno)dnQ *> (m + l)2<7m. Thus, 
Dw < (m + l)2Cmd»0 gcard Uno. According to (c), the suppositions of 
Lemma 2.6 are satisfied (for Uno, FWo, Cm. dno,fno). From this and from 
condition (b) there follows a contradiction. 

2.9. From the proof of 2.8 there follows that instead of condition (a) 
i_ 

we may take only condition sup (card Un)dn = oo; of course, this is not 
neN 

an improvement on Lemma 3.5 (if there were satisfied new suppositions, 
there would be for suitable subsequences also satisfied the former 
suppositions). 

2.10. The preceding Lemma gives sufficient conditions for non-
recognition of a set by [l,l]-Turing machines, but these conditions are 
not suitable for direct application on given events with regard to the 
character of (c). Suitable sufficient conditions for satisfaction of (c) are 
established from sect. 3. (Of course, it is possible to prove also more 
general assertions of type 2.8; the above mentioned Lemma we have 
quoted with regard to its use in proof of the main theorem.) 

3. THE E X I S T E N C E OF CERTAIN BOTTLENECK 
SQUARES 

3.1. Lemma. Let Wl be a [l9iyTuring machine, let 6 > 0, b' > 0, 

K > 0, let d == bK ( l + — J + 1. Then for every u, veEZ such that 

b'. l(u) £ l(v) S b . Am (uv) no more than squares of tm (uv) are 
K 

covered more than d times in the computation under uv. 

Proof. Let the suppositions be satisfied for some u, v and let a d* 

be such that more than m squares of tm(uv) were covered more 
K 

than d* times. Under input uv l(u) + l(v) + 1 coverings occur on the 

whole; because at least I -^-= h 1 | squares were covered at least 

[d* + 1] times there holds ( l + y ) l(v) £ l(u) + l(v) £ | * E ^ 1 + l l x 

x[d* + ij _ i > h^\d*] > *£l (d*~l). Therefore,<** < Kb (l + 
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-f -VT-J + 1. Thus, for every d i* Kb ( l + -p-i + 1 no more than 

2 t<j/<y\ 

-̂ —— squares of tm(uv) are covered more than d times. 
K. 
3.2. Lemma. Let b > 0, R ^ l,/(fc) = J?(fc + 2). There holds: if 501 is 

a [l,l]~Turing machine and u,v e Zm are such that b(2R + 3) (l(u) + 2) <£ 
^ Z(#) ^ bXm(uv), then the pair [u, v] has a [b(2R + 3) + 2, f]-bottleneck 
square. 

Proof. Let the suppositions be satisfied. Let us divide tm(uv) into 
five disjoint segments, we denote them (from left to right) as Jx, . . . , 

J 5 , such that Jt and J 5 have the lengths at least R\ • lj) • | and J 2 , ^ , «I4 
^2ii+3J 

have the lengths at least * , 0 | . There holds Xm(u) g l(u) + 1 ^ 
|_2ii + 3J m r m 1 < [jU^n < 7 ? r AmM I 

b(2R + 3) * " [b(2R+ 3) J == [2E + 3 J " [2i? + 3 J' 
hence tm(u) is coincidental with one of the segments Jlt . . . , J 5 or with 
two neighbouring ones and in each of this five segments there exists 
a square which does not belong to tm(u). Thus, there exists a segment 

J £ $tn(ttt0 the length of which is at least — - I + 1 such that 

J fl (J2 U J 5 U tm(u)) = 0. Let us choose K -== 2R + 3, 6' == 6K, 

d = 6 I l + — ) K + 1=- 6(2R + 3) + 2, then (see Lemma 31) no more 

i f \ 
than —~ squares of tm(uv) are covered more than d times, thus, 

2JR + 3 
there exists a square BeJ^ tm(uv) — tm(u) which is covered no more 
than d times. If E is the end of tm(uv) between which and tm(u) B lies, 

then between B and E (including both) are at least R ™ I + 
[ZR + o j 

+ 1 squares, but R f / " ^ 0 1 + 1 £ B{l{u) + 2) + 1 > R(l(u) + 
[2R + 3J 

+ 2) =^f(l(u)). Therefore, B is a [b(2R + 3) + 2, /]-bottleneck square 
of the pair [u, v], 

3.3. Lemma. Let T be an event and let {Un}, { Vn} be sequences of events, 
let all Vn be nonempty and finite. Let there be satisfied the next conditions: 

(a) if neN, ueUn, %, vzG Vn, vx=£v2, then 
uvx, uv% are distinguishable on T, 
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l 

(p) liminf (card vJSv.'{,)> 1*) 
n-*oo 

(y) lim max l(v) == oo. 
n-+ao veVn 

Then there holds: 
if ffl is a \1X\-Turing machine recognizing T, then there exists a real 

number bm such that for every neNf ue Un there exists ve V n such 
thatl(v) <; bmXm(uv). 

Proof. Let ffl be a [l,l]-Turing machine with card Sm = m and 
card Wm = p such that T(ffl) = T. Let us denote jun = card Vn and 
kn(u) = max Xm(uv) (for ue Un). According to (a) and to 1.4 there 

veVn 

follows that for every ueUn the words from the set{uv\v e Vn} have 
mutually distinct codings (i.e. they have exactly jun codings) and — 
because the lengths of work spaces in these codings are not greater than 
kn(u) — there holds the inequality jun g (p + l)k^ulkn(u) . m**). So, 

- ^ < [2(p+ 1 )]*«(«) and, according to (/?) and (y), there exist cm > 0 
m 

O ^ m a x l(v) < n 

and nm e N0 such that (2(p + 1)] veV« ~ — forn ^ nm. Hence, 

cm max l(v) < kn(u) for every n^nm and ueUn. For every 1 ̂  ^ ^ »m 
«*W» 

there are max l(v) ^ [max max l(v)]. kfh(u). Thus, for every neN^ 
veVHi l ^ » ^ w m veF n 

and ue Un there holds the inequality max l(v) £ bm &n(w), where 
veVn 

bm = max I YT~ , max £(#) 1. 

Consequently, if ne NQ and u e Un, then there exists v eVn such 
that Km(uv) = &w(^), i.e. Z(#) S &m-*m(wv) holds for this v. 

3.4. Theorem 1. Let T be an event. Let there exist sequences {Un}> {Vn} 
of nonempty finite events and let there exist a sequence {Rn} of real numbers 
such that Rn ^ 1 for all n and there are satisfying the conditions (a), (f3) 
from Lemma 3.3 and also the condition 

min l(v) 
0). lim "** — - = oo. 

n+n Rn(l + max l(u)) 
™vn 

*) According to the condition (y) there holds max l(v) = 0 only for finite many 
veVn 

n; the condition (p) is equivalent to the condition: there exists q > 1 such t h a t 
maxt(v) 

the inequality card Vn ^ g?teF« holds for almost all n. 
**) Moreover, a stronger inequality (Jtn ^ pkn(u) kn(u) . m is satisfied. 
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Letfn{k) = (k + 2)R„. 
Then there holds: 
if Wl is a [\,\]-Turing machine recognizing the set T, then there exists 

a real number Cm ^ 1 such that for almost all n (from N) there holds: 
ifue Un, then there exists v eVn such that the pair [u, v] has a 

[CmEn, fn]-bottlenecJc square. 
Proof. Let 501 be a [l,l]-Turing machine such that T (WH) = T. 

According to (<5) there is max l(v) -> oo. Because (a), (/?) are satisfying, 
veVn 

there exists b such that for every neN, ueUn there exists veVn 

such that l(v) <_ b Xm(uv) (see Lemma 3.3). Moreover, there is b ^ 1: 
for every e > 0 there exists (according to (d)) neeN such that l(v) ^ 

5 — Rn(l(u) + 1) for every u e Une, v e Vne; so, if l(v) <; b Xm(uv), then 
s 

l(v) ^ b(l(u) + l(v) + 1) ^ b l(v) (1 + e), thus, 1 g (1 + e) b for every 
n jy o "I 

e > 0. Now, we choose Cm = lb(^ 7), Rn = — (then 
I b 

\SRn^Rn<jRn)> then 6(2R; + 3) + 2 = Cm.Rn. From (d) 

easily follows that there exists n0e N such that for every n _£ n0 the 
inequation b(2Rn + 3) (max l(u) + 2) £ min l(v) is satisfied. Therefore, 

ueUn veVn 

let n g n0 and let ueUn; there exists veVn such that J(t;) <; bXm(uv) 
and with respect to the above b(2i^ + 3) (l(u) + 2) <_ Z(v). Thus, from 
Lemma 3.2 there follows that the pair [u, v] has a [b(2Rn + 3) + 2, gn] 
bottleneck square, where gn(k) = Rn(h + 2) £ jr?n(fc + 2) =/n(k).There-
fore, this bottleneck square is also a [CmRn, /J-bottleneck square of 
[u, v]. 

4. THE MAIN THEOREM 

4.1. Theorem 2. (The main theorem.) 

Let T be an event. Let there exist sequences {Un}, {Vn} consisting of 
nonempty finite events and let there exist a sequence of real numbers {Rn}$ 
Rn = 1 (for all neN) such that there holds: 

(l).lim (card Vn)
m^x^> > 13 

n~*-ao VGVn 

_t_ 

(2) lim (card UJ«» = oo, 
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min l(v) 
(3) lim - r « -= oo,*) 

n->oo-Kwmaxt('u) 
ne£7n 

(4) if neN0, ueUn, vx, v2eVnt vx 7-= v2, then w^, ?w2 are distfru 
guishable on T, 

(5) if n 6N , %, ^2
 e ^w> % ^ ^2 an (* -f ^^^(ft, i = 1, 2) are such 

that O p , v<*l] e9(Vn) for k = 1, 2, then either for & = 1 or for k = 2 
the words %#(*>, <w2̂ |*> are Bn(l(uk) + 2) — distinguishable on T. 

ThenT $$"aiY 

Proof. Theorem 2 immediately follows from Theorem 1 and from 
Lemma 2.8 if we choose dn = Bn,fn(k) = i?n(k + 2). 

4.2. As it is shown in sect. 5 the application of Theorem 2 need not 
be complicated (though the formulation of Theorem 2 at the first glance 
could corroborate the contrary). Especially, it is sufficient if instead 
of the condition (5) the stronger condition 

(5') if n€N0, ux, u2eUni ux .5-= u2, vx, v2eQ0(Vn), then the words 
u1vl> u2v% are Bn[2 -f- min(J(%), i(-w2))]-distinguishable on T 

is satisfied. (In fact, its satisfaction is usually proved for vl9 v2 from 
a suitable set containing the set i^0(Vn).) 

5. EXAMPLES 

The using of the main theorem can be illustrated on many interesting 
examples. We quote here only three, however, being important also 
from the theoretical point of view — they give the qualitative comparison 
of relative strengths of [1,1]- versus [2,1]-, [1,2]- and • -Turing machines 
(see 1.9). From this view, the first example is the weakest and the third 
the strongest. 

6.1.0. Example "10 ja>6"**). 
Let § e N***) and let ZQ be a finite subset of N0, card £0 £ 2, § £ 270, 

let £W = S0 U {§}. We define 

JW = {w§wb I w e J?*1*00, wb is a beginning of w}. 

5JL1. Let be %, u2, vlt v2e£09 ux ->-= u%, l(ux) = l(u2). Then the 

*) Evidently, max l(u) = 0 only fof finite many n (see oondition (2)). 

**) This example is mentioned by P. Strnad [4], 
***) Similarly as in the following (at the symbols oc9 ft) we choose the notation 

according to the references ([1], [3]). 
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words uxvx, u2v2 are (2 + £(%) ̂ distinguishable on TM (in fact, they 
are (1 + J(%))-distinguishable) for &=1, 2: ukvk§uke TW, us_kvB^ukeT(^ 
(i.e. they are [2 + min (l(ux), J(t*2))]-distinguishable on TW). NOW, let u, 
vx, v2e EQ , vx T& v2, l(vx) = l(v2). Then the words uvx, uv2 are distin
guishable on T<U (e.g. uvx§uvx 6 Ti1)t uv2$uvx $ TW). Hence, we may take 
(for neN) Un^ {u\us=E0

c, l(u) = n} and Vn = {v \ v eE^, l(v) = 
= n2}, Rn = 1. As ^0(Vn) £ EQ for all n, from the preceding follows 
that the conditions (4) and (5) (see the main theorem) and also the 
conditions (1), (2), (3) are satisfied. Thus, according to the main theorem, 

5.1.2. Evidently, T^ e^a^. If card E0 = 1, then .TWeJ^. 
Always (when E0 -^ 0) TM ^i^"0 (see 1.8; it is possible to choose U^ = 
= £?)• 

5.2.0. Rabin's example*). 
Let a, /9 e N0, a -?-= /?, let 27x, 272 be disjoint finite subsets of N0 which 

do not contain a, /?, let Ex =fc 0, card 272 ^ 2. We choose E = Ex [J E2U 
U {a, /?} and we define 

Tf = {^a^-11 % e 27f, t? G 27*}, 
Tf = {w îr* | we27J>e27n, 
>p<2) =_ rpm y >p(2)# 

5.2.1. Let be ux, u2eEx, vx, v2eE%, ux^u2. Then the words 
uxvx, u2v2 are ((2 + Z(%))-distinguishable on TW for k = 1,2: t ^ a ^ j j : 1 6 
G P , % ^ 3 - ^ F 1 £ ^(2)- Now, let be ueE?, vx, v2eE%, vx^v2. 
Then the words uvx, uv2 are distinguishable on T(2> (e.g. uvx^vx

x 6-T<2), 
WgjSvjf1 i T&). Let us choose Un = {u\ueE™, l(u) £ n), Vn = {v \ v e 
eE%,l(v) = n2},Rn = 1. As^0(Vw) s 27* for all n, from the preceding 
follows that the conditions (4) and (5) and also the conditions (1), (2), (3) 
are satisfied. Thus, 

5.2.2. I t is easily to be seen that Tf, Tf e^iXX], so T& = Tf U 
U Tf 63Ti2)X] c ^ a 2 ] (see 1.7). Rabin in [1] shows that T^ G3~LX)U 
for card Ex = card' E2 = 1. From 1.8 there follows that Tf4^0 

(if EX # 0), Tf $$-0 (if E2 ^ 0), rw £«r0 (if 2^ u 272 ^ 0). 
6.3.0. The main example. 

For x, y e N0 we choose f(x, y) = 21 -— I + H-Й Ž/ 

HЛ) 
+ 1. 

, *) See [1]; here we consider also the case card Sx = 1, card 272 g> 2 (and we 
taka as w, v also the empty word — but that is not an important difference). 
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holds. Thus, 1 g f(x, y)£j + 

H — + 1 forall^,«/eN0 . 
x + 1 
Let Z be the set from 5.2.0 (card Z2 £ 2). We define 

T f = {uvofiu-1 \ueZ\*,veZ%,k> f(l(u), l(v))}> 
Tf = {uvflvri \ueZ?,ve Z%}, 

5.3.1. For n e N we choose Un = {u\ueZx, n S Up) S 2^}, 
Vn = {t; | v e Z%, l(v) = n*}, Tn = 5. Thus, the conditions (1), (2), (3) 
of the main theorem are satisfied. For n e N, u 6 Un, vx, v2 e Vn, vx ^v2 

the words uvx, uv2 are distinguishable on r(3> (uvjivf1 e T^,uv2^vx
x $ 

$ IW), i.e. the condition (4) is satisfied. For n e N0, ux, u2 e Un, ux ^ u2, 
vx, v2e20(Vn) there holds vx,v2eZ%, l(vx), l(v^) ^ 2(n2 — 1) (see 2.5). 
Let us choose u = ockuJ"1, where k=f(l(ux), l(v2)), then uxvxueT@\ 

u2v2u $ T<3> and l(u) = l(ux) + £ g J(%) + - ^ + — ^ — + U 1 + 
I 1 + £(%) 

2(n2 — 1) 
+ 3^ + -A——-' = 5n — 1 < JBn[2 + min(Z(%), Z(wa))]; the condition 

x —j— % 

(5) is satisfied. Thus, 

5.3.2. In 5.1.1 and 5.2.1 it was possible as Vn to choose the set of all 
words with length nr (on the corresponding alphabet) for any re N, 
r ;> 2. In 5.3.1 this is not possible. 

5.3.3. The idea of the main example is to be seen in the proofs 5.3.4, 
5.3.5, the choice of the set TW was performed such that the set is 
"similar" to the set TW (even Tf = T ( | ) and the function f(x, y) is, 
as far as possible, simple (also for the price that the • -Turing machine 
recognizing -F<3> would be more complicated). 

5.3.4. Lemma. . T ^ e ^ p . 
Proof. We describe the idea of the construction of a suitable • - Turing 

machine*) 9W* recognizing the set JP<3>. The square of its tape we denote 
with pairs of integers**) (analogically as points of the plane — [x, y\ 
design the square lying in the #th column and in the y th line), the initial 
square is [0,0]. If at first an input word u e Zx comes, 9Jt* prints it from 

*) A O-Turing machine is denned quite the same as a [1,1]- Turing machine 
in sect. 1, only to set P we add two further elements (designating the moves up 
and down). 

**) Let us note that in our construction only squares from the set {[i, j ] | i, j € N0} 
will be used. 
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left to right in squares of the zeroth line such that on every of these 
squares four subsequent letters of the word u are always printed, of 
course, with regard to their order). So, after the (4&)th tact the head 
passes from the square [k —1,0] to [&, 0], during the other tacts the 
head stops with the exception of the first and the second tact, when it 
moves to [0,1] and back to [0,0], at which it signs both these squares" 
by some marker. Thus, during the input u the head passed through the 

squares [0,0], . . . , 11 ——-1, 0 J. Let after u follow a v e £% . W* again 

prints the word v four subsequent letters on each square, first on squares 

in the first line (from the square J ——~1,11 up to [0,1]), then in the 

second line (from [0,2] up to JI j , 2 JI etc. Moreover, at the entering 

on the rth line (r > 1) (i.e. on the square [Ar, r], where Xr = I —— I 

for r odd and Xr = 0 for r even J the head uses two tacts for a marking 

of the square [Xr, r + 1 ] (so that at the printing on the (r + l)th line 9Qt* 
may discern the "end" of this line and also of the square [Af, r] (with 
regard to the "back moving", see in the following). With fours of letters 

I i i n e s a r e fully occupied on the whole. of the word v r0 = 

H-3-]) 
Now we distinguish two cases: 
a) After uv there comes a%' (keN, u' e Z f ) . In this case at first 

the head exactly during 21 -—--1 + 1 tacts goes to the square IJ - — J, rQ I 

(the idea for the construction of 501*: in the (rQ + l)th line at the first a 
the head designs its position Q somehow and moves directly to the left 
end [0, rQ + 1] and from there back, at which in reaching again Q it starts 

to move with half speed to I ----- I, rQ + 1J and from there after the 

following tact to -^~-1, rQ —it is to be seen that this is possible to 

arrange in all cases and after the further rQ tacts j in the I - — j - Ith column J 

the head is on the square ~~- , 0 IV. Thus, if there is k < f (l(u), l(v))> 

then the head does not reach the zeroth line and hence 9H* can reject 
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the word uvocku'. If there is k ^ f(l(u), l(v)), then the head waits on the 

square I ------- ,01 till ock ends and then it compares u' with w1. Thus, 

9K* decides whether uvochi' is in JT<3) or not. 
b) After uv there comes pv' (v' e Z%). In this case the head performs 

the "back moving" — it moves reverse as at the writing of the word v 
and compares v' with v~x. Thus, 5R* decides whether uv$v' is in T<3> 
or not. 

I t is easy to arrange that 9W* may not accept words of other forms 
than uvocku' and uv{iv'. Thus, this 9Jt* recognizes the set T{Z\ 

5.3.5. Lemma. T f e - ^ - , T f e ^ [ U ] . 

Proof. Evidently T(|> e&~a>1]. The set 27<

1

3> is recognized by a suitable 
[l,l]-Turing machine 3R which simulates the work of the • -Turing ma
chine 501* (see proof 5.3.4) such that to square [i,j] of the tape of 991* there 
corresponds the (i + j)th square of the tape of 9M, but such that the 
head does not print the letters of word v (under an input uv, u e Uf, 
v e l ^ l ) 501 only registers how the fours of its letters pass. (Moreover, 
here it is necessary to choose several markers.) Of course, 9ft rejects all 
words of other form than uvocku'. 

5.3.6. From Lemma 5.3.5 first of all follows that T^ = T<?> u Tf e 
e«^"[2,n ~«^"[i,2] ( s e e 1-7). From the kind of construction of the ma
chine 9ft (see proof 5.3.5) it is to be seen that there holds: if card Z2 = 1, 
then !F<3> eSTa v . Again there is (see 1.8) Tf $3r

0 (if 2^ + 0), T f $3T0 

(if S% # 0), Tb $F0 (if 2 i u ^ # 0). 
Remark. With the comparison of the relative strengths of many-

dimensional tapes real-time Turing machines the paper [5] deals. 
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