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ON REAL—TIME TURING MACHINES
-
JAN HANAK, BRNO

(Received March 4, 1966)

Generalizing Rabin’s idea of the “bottleneck square” we give certain
sufficient conditions for the non-recognition by one-tape one-head real-
time Turing machines. The use of our result (Theorem 2) is illustrated
in examples, especially there is constructed a set not recognizable by the
above mentioned Turing machines but recognized by a one-twodimen.-
sional tape one-head real-time Turing machine and by a two-(onedi-
mensional) tape one-head real-time Turing machine, too.

1. BASIC CONCEPTS

1.0. card X means the cardinal number of a set X. N = {1,2, ...},
N,= Ny {0}. .

2'® is the set of all words consisting of symbols from a set 2' including
the empty word A, e.g. §° = {A}. w~! denotes the converse word of
word w. lw) is the length of a word w.

Everywhere in the following we shall consider only words from Ny’ .
For T < Ny let

B(T) = {0 | 0 € N,, there exist w,, w, € Ny such that wyow,eT}.
(B(T) is the set of all letters contained in words from 7'.) If B(T)
is finite, then 7' is called an event. v

1.1. Definition. Let T < Ny. We say that words w,, w, € N are
distinguished on T by & € Ny when one of the words w,, wyw is in T'
and the other is not. Words w,, w, are called distinguishable (L-distin-
guishable) on T if they are distinguished on 7' by some word & ({(&) < L).

(If w, , w, are distinguished on T' by @, then % € [ B(T')]° and w, or w,
is also in [ B(T)]>.)

1.2. A one- (onedimensional) tape one-head real-time Turing
machine (we will say in short a [1,1]-Turing machine) is a 5-tuple

Mm=1[2,8 W, F, M

where 2, S, W are finite subsets of Ny, 0eSnW, F < S and M
is a mapping, M: X X 8 X W—> W x P x 8, where P = {—1, 0, 1}.

Interpretation: X is the input alphabet, S is the set of states (0 is the
initial state), F is the set of designated states, W is the working alphabet
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(0 is the “blank symbol”). Let [0, s, a]e X X 8 X W, M([o, s, «]) =
= [M,, My, M,); if MM is in state s, the head sees « and the input is o,
then on the observing square 9 prints M, , the head will move one square
right (when M, = 1) or one square left (when M, = —1) or the head
does not move (when M, = 0), and M will go into the state M,. The
described action we call a tact (also an atomic move). I performs the
following tact under the successive letter of the input word or It stops
if the last tact was performed under the last letter of the input word.
For every input we 2=, MM starts the whole work (the computation
under w) in the initial state (i.e. in 0) and with only blank symbols
(noughts) on the tape. s(w) will denote the state in which It is at the
end of the computation under w, especially s(A4) = 0.
Now we define
TON) = {w | we 2>, s(w)eF}.

T(IM) is the event recognized by M.

1.3. By a covering of square A (of the tape of a [1,1] — Turing machine
in a computation) we mean every tact after which the head is on 4;
moreover, we assign one covering more to the initial square. (Thus,
during the computation under w e X* {(w) + 1 coverings occur on the
whole.) The set of all squares covered during the computation under
an input w we denote {((w) and we call this set the work space on input w.
Of course, t(w) is a segment*); its length we denote A(w). Evidently,
1 £ Aw) £ Yw) 4+ 1. The position of the head in ¢(w) in the end of the
computation under an input w (the first left square of t(w) we regard

_as the first, the first right square of {(w) we regard as the A(w)th we
denote m(w), the word printed on #(w) in the end of this computation
we shall denote z(w).

If we want to call attention to that X, S, ¢ (or W, s(w) and similar)
belong to a [1, 1]-Turing machine I, we write also Xy, Sy, & (or Wy,
Sm(w) and similar).

1.4. A triplet »(w) = [v(w), n(w), s(w)] (for we X®) we call the
coding of w. The number of codings with the length of the work spaces
not exceeding number k € N is evidently less than k(1 -+ card W)* card S.
If words w,, w, € 2= are distinguishable on T (M), then x(w,) # x(w,).

1.5. We define

T 3,0 ={T(M) | M is a [1,1]-Turing machine}.

Thus, J ; ;; consists of all events recognizable by [1,1]-Turing machines.
1.6. Analogically as above we may define also other types of real-time
Turing machines, e.g. machines having p (onedimensional) tapes with &

_ *) By a segment we mean a nonempty set of squares (of the tape) which with
~ every two squares contains also all the squares lying between them.
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heads on each of them (we denote these machines as [p, h]-Turing
machtnes) or machines having one twodimensional tape with one head
(we denote them as 0-Turing machines) and similar ones, and to them
we may define 7, ,,, 7 5. Besides, also finite automata*) we can
consider as real-time Turing machines (without tapes), we shall denote
them as 0-Turing machines. Thus, 7 is the system of all regular events
(letters of which are here only nonnegative integers).

1.7. If T, and T, are recognizable by any real-time Turing machines
having the same type, then T, U T, (and also 7, n T';) need not be
recognizable by Turing machines of this type (e.g. see Examples 5.2
and 5.3). (As is known the system of all regular events is closed with
respect to operations U, n.) Nevertheless, there holds: if T, ...,
T.€J 44, then Ty U ... U T €Ty (and Ty n ... n TheT s
too). (It is easily possible to generalize this notion.)

1.8. If a 0-Turing machine (i.e. a finite automaton) 9t has m states
and every two (distinct) words from a set U are distinguishable on T(9),
then evidently card U < m. Thus, if T < NJ and U, is an infinite
event and its every two words are distinguishable on T**), then T'¢ .7 .
(Compare e.g. with the well-known example 7 = {0"10” | n € Ny} where
we may take U, = {0}*.)

1.9. Thereholds.J y = .7 ; 1 & T 511 €T 4,0***), 7 n €7 . Never-
theless, 7y 1) # T o (e.g. {0"10" | ne No} €T 1y — T 0,7 un # o
(for the first time it was proved by Rabin[1]), 7, # J o (moreover
(T e NI o) —F 11 # 0 —see Example 5.3).

2. [d,fl BOTTLENECK SQUARES

Let in 2.0—2.7 9% be a [1, 1]-Turing machine with m states,
let 2" and ¢ belong to IN.

2.0. Definition. A square B (of the tape of M) we call a [d, f]-bottleneck
square of an (ordered) pair [u, v] (on M) if d = 1, f is a real function
on N, [u, v]e Z* X X and there holds:

(1) Bet(uv) —it(u),

(2) under input uv B is covered at most d times,

(3) if B lies between #(u) and the end £ of ¢(uv), then the length of the
segment with end squares B and Z (including both) is greater than

UO)E

*) See, e.g. [2].

**) Evidently, such set U exists if and only if the decomposition on [ B(T)]®
which is induced by the relation of equivalence ‘“‘to ke not distinguishable on T**
has infinitely many classes.

*¥*) Generally there is 7, ,; SJ . ,n (see [3], pp. 483—484).
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2.1. If B is a [d, f]-bottleneck square of a pair [, ] (on M) and
d’" 21[d], g < f (ie. g is a real function on N, such that g(k) < f(k)
f(}r every ke N,), then evidently B is a [d’, g]-bottleneck square
of [u,v].

2.2, Let [u, v] have a [d, f]-bottleneck square B, let B be right (left)
of t(u) and let & be the right (left) end of {(uv). Let C be the right (left)
neighbouring square of B. A passage (of M) through B is every tact
from B to C and also every tact from C to B (under uv), the state (of M)
during the passage is the state in which I is after the passage. Let s;
(¢ =1, ..., r) be the states during all passages through B (s, correspond-
ing to the first, s, to the second etc.). By the scheme of B (and of [u, v])
we mean the (r 4 1)-tuple [e, s, ..., s,], where e=1 (e = —1).
(See [1].)

As B is (under uv) covered at every even passage and besides at least
r—; 1 times and ; 2
times for » odd and for r even, respectively; thus, r £ 2[d] —1 and
r £ 2[d] — 2, respectively. :

23. Let U, V < 2 and for every u € U let there exist v, € V such
that the pair [u,v,] has some [d, f]-bottleneck square B,. Let B, lie
between t(u) and the end E, of #(uv,), let 7, be the beginning of v, such
that after input uv, the head comes at first on E,. Evidently, B, is
also a [d, f]-bottleneck square of [«, v,] and the corresponding scheme
of B, and [%, 9,] has an odd number of passages.

The number of schemes corresponding to all [d, f]-bottleneck squares
(of all input pairs) with an odd number of passages is not greater than
D=2m+42md + ... + 2m2¥-1. Now, let be cardU > D, then
there exist u,, u, € U, u; % %, such that the schemes of B, , B,, (and

(w1, 9], [, 17,,2], respectively) are the same, we (}enote them [e, s, ...,
8,] (r is odd). For shortness, let us denote vy) = v, (k=1,2).
We may write

once (before the first passage), B is covered at least

v = vOUE - VR
where v, (j =0, ..., r; k=1, 2) are the words such that under the
last letter of input v - - - eV (=1, ..., r) the Jjth passage is
performed. Evidently, o) #k/l for .(70= ?{) o r, k =>1, 2.
Now, let be v§*> = vy, V3-% = v(3)—k)”(k);’<3)—k) e V)
It is easily proved that s(#;v*”) = 8(uzv$*’) and that fore =1 (e =—1)

under inputs uws®>, ugvs®’ there holds: the nearest [f(!(u;))] squares
from the end positions of the head (including) to the left (to the right)
are'in both these cases printed in the same manner*) and on all squares

*) But on the squares By,, By, different working letters may be.
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to the right (to the left) from the end positions there are only blank
symbols (noughts). Thus, if @ e 2Z® and U(#%) < f(l(u)), it is s(u,v{*>%) =
= s(uws*>w).

Hence, the important assertion (Lemma 2.6) follows. For its clearer
formulation we give first the following definition.

2.4. Definition. For V = NJ we define

9( = {[vy, v5] | ¥y, v € N(°,° , there exist an odd number r and words

eN°°(Ic——1 ,j—-O ..., 7 1) such that v{ = A for k =12

and J—O r, v .3t eV k=1, 2), v, =10 ... v}{},
= sgii . o)

D\V) = {v |ve Ny, there exists v' € Ny such that [v,0]e2(V)
or [v', v]e D(V)}.
2.5. There is D(V) € Dy(V) X Dy(V) (it is Dy(V) = pr; 2(V) U
U pry 2(V)). Let be 0 = V = NJ, L = sup l(v) (£ o0), then D(V) # 0
veV
if and only if L = 2 and it is easily seen that for [v,, v,] € Z(V) there
hold inequalities 2 <I(»,) £ L, 2 £ l(v,) £ 2(L — 1). Moreover, for
L 22 sup l(v) =2(L—1).
ve@y(V)
2.6. Lemma. Let be U, V < X, d 2 1 and let f be a real function

on N,. Let us choose D = 2 (m + m® + ... 4+ m#-1) Let card U > D
and let for every u € U there exist v € V such that [«, ] has a [d, f]-bottle-
neck square. Then there exist u,, u, € U, u; % u, and v{¥>(k, 1 =1, 2)
such that for every k = 1, 2 [vi*’, v$¥2] € 2(V) and the words u,vi¥>,
uyv$ %> are not f(I(u,))-distinguishable on T(IMN).

2.7. The preceding assertion (and also all assertions based on it) is
possible to strengthen (e.g. we may add 1(»$*2) > f((l(w,))]-

2.8. Lemma. Let T be an event. Let there exist sequences {U,}, {V,} of
events, a sequence {d,}, d, = 1 and a sequence {f,} of real functions on N
such that the next conditions are satisfied:

. 1
(a) lim (card U ,,)d, = oo,
n— oo

(b) if neN, uy, uge U,, u; # u, and if v$¥’(k, ¢ = 1, 2) are such
that [v3%”, vgk;] eQ(V,) for k =1, 2, then either for k=1 or for k=2
the words u1v1<’“> u0,<k> are fn(l(u,c)) distinguishable on 7',

(e) if M is a [1,1]-Turing machine recognizing 7', then there exists
C. = 1 such that for almost all » (from N) there holds: for every
u € U, there exists ve ¥V, such that [u, v] has a [Cy,d,, f,]-bottleneck
square (on IN). .

ThenT ¢T 44

Proof. Let the suppositions be satisfied and yet there is a [1,1]-Turing

machine MM such that T (M) =T (so, B(T) < X,,). We shall denote
m = card S, and D, = 2(m + m?® + ... 4+ mACmdI1). There holds
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N

D, < (m + 1)20nmd. Let n, € N be such that for every n = n,, there
holds the assertion from the condition (c). From (a) there follows that

1
there exists m, = n, such that (card U,)é, 2 (m + 1)2°0m. Thus,
D,, < (m + 1)2Cmdn, < card U,,. According to (c), the suppositions of
Lemma 2.6 are satisfied (for U,,, Va,, Cy. dy,, fr,). From this and from
condition (b) there follows a contradiction.

2.9. From the proof of 2.8 there follows that instead of condition (a)
1
we may take only condition sup (card U,)d. = o0; of course, this is not
neN

an improvement on Lemma 3.5 (if there were satisfied new suppositions,
there would be for suitable subsequences also satisfied the former
suppositions).

2.10. The preceding Lemma gives sufficient conditions for non-
recognition of a set by [1,1]-Turing machines, but these conditions are
not suitable for direct application on given events with regard to the
character of (c). Suitable sufficient conditions for satisfaction of (c) are
established from sect. 3. (Of course, it is possible to prove also more
general assertions of type 2.8; the above mentioned Lemma we have
quoted with regard to its use in proof of the main theorem.)

3. THE EXISTENCE OF CERTAIN BOTTLENECK
SQUARES

3.1. Lemma. Let M be a [1,1]-Turing machine, let b > 0, b’ > 0,

K >0, le d =0bK (1 +%) + 1. Then for every w, ve Xy such that

A (wv)
K

b . lu) £ Uv) £ b.An(uv) nmo more than

squares of ty(uv) are
covered more than d times in the computation under uv.

Proof. Let the suppositions be satisfied for some u, v and let a d*

A (w0)
K

" be such that more than squares of t,(uv) were covered more

than d* times. Under input wv l(u) + I(v) + 1 coverings occur on the
Am(uv)
K

whole; because at least + 1} squares were covered at least

[d* + 1] times there holds (l -+ —;7) Uv) 2 Uu) + l(v) = [)L;;v) + 1] %

X[d*+1] —1> ’1‘“2‘”) [d*] > L};’g (@* — 1). Therefore, d* < Kb (1 +
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-+ —b—,) + 1. Thus, for every d = Kb (1 + %,—) + 1 no more than
Am(up) |
K

squares of ¢,(uv) are covered more than d times.

3.2. Lemma. Let b > 0, R = 1, f(k) = R(k + 2). There holds: if M is
a [1,1]-Turing machine and u, v € Z"’ are such that b(2R 4 3) (l(u) + 2) <
< Uv) £ bAy(uv), then the pair [u, v] has a [b(2R + 3) + 2, S1-bottleneck
square. _

Proof. Let the suppositions be satisfied. Let us divide t,(uv) into
five disjoint segments, we denote them (from left to right) as J,, ...,

J5, such that J; and J; have the lengths at least R[ 3 I‘S(f:;] and J,,Jg,J,
Am{uv)

SR 13| There holds Ap(w) < U(u) +1 =

U(v) l(v) Am(uv) Am(uv)
=3eR+y LT [b(2R+ 3)] = [213 +3] <R [2R+ 3]’

hence ¢,,(u) is coincidental with one of the segments J,, ..., J; or with
two neighbouring ones and in each of this five segments there exists
a square which does not belong to ty(u). Thus, there exists a segment

have the lengths at least

J < ty(uv) the length of which is at least l; 1‘;(3}))3] +1 such that

Jn(J,U J5U ty(w) =@. Let us choose K =2R+ 3, b =0bK,
=b (1 + —bl,—) K + 1 =0b(2R + 3) + 2, then (see Lemma 3.1) no more

A (uv) |

than SR 13
there exists a square Be J < t,(uv) — tn(w) which is covered no more
than d times. If £ is the end of ¢,(uv) between which and &,(u) B lies,

then between B and E (including both) are at least R[; 1,;(3;0)3]
}bm(u'”)

2R+3]+1 R(l(u) + 2) + 1 > R(l(u)
+ 2) = f(lw)). Therefore, B is a [b(2R 4 3) 4+ 2, f]-bottleneck square
of the pair [u, v].

3.3. Lemma. Let T be an event and let {U,}, {V,} be sequences of events,
let all V,, be nonempty and finite. Let there be satisfied the next conditions:

squares of ¢,(uv) are covered more than d times, thus,

-+ 1squares, but R [

(x) if neN, ueU,, 1, v,eV,, v; #v,, then
uv,, uv, are distinguishable on 7',
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1
max [(r)

8) hmmf (card Vn).,ey,, > 1,%)
() lim max I(v) =

n—+wo veV,
Then there holds:
if M is a [1,1]-Turing machine recognizing T, then there exists a real
“number by, such that for every ne N, ue U tkere exists ve V,, such
thatl(v) £ bpdn(uw).

Proof. Let M be a [1,1]-Turing machine with card S, = m and
card W, = p such that T (M) = 7. Let us denote u, = card V, and
k,(u) = max Ay(uv) (for we U,). According to (x) and to 1.4 there

14

veV
follows that for every u e U, the words from the set {uv |ve V,} have
mutually distinct codings (i.e. they have exactly u, codings) and —
because the lengths of work spaces in these codings are not greater than
k,(u) — there holds the inequality u, < (p + 1)*(“).k, (u).m**). So,

% < [2(p + 1)J(») and, according to (f) and (), there exist ¢, > O

C,,max (v

s p
and n, € N, such that (2(p 4 1)] **V» = — forn = n,. Hence,

¢y max l(v) < k,(u) for every n = ny and w € U,,. For every 1 < ny < ny
V.

veV,
there are max l(v) £ -[max max l(v)]. k, (u). Thus, for every n e N,
veVy, 1=nsny, velV,
and ue U, there holds the inequality max I(v) £ by k,(u), where
eV,
b = max (——1—, max l(v) ) .
Gm veVyu...uVny

Consequently, if n e Ny and e U,, then there exists v e V, such
that A,(wv) = k,(u), i.e. l(v) < by An(uv) holds for this .

3.4. Theorem 1. Let 7T be an event. Let there exist sequences {U,}, {V,}
of nonempty finite events and let there exist a sequence {R,} of real numbers
such that R, = 1 for all n and there are satisfying the conditions («), (B)
Jrom Lemma 3.3 and also the condition

min I(v)
. veVy -
(©) };I—I»I:o R, (1 + max I(u))
— neV,

*) According to the condition () there holds max l(v) = 0 only for finite many
. VEV n
n; the condition (f) is equivalent to the condition: there exists ¢ > 1 such that

maxl(v) .
the inequality card V, = q2v€V» holds for almost all n.
**) Moreover, a stronger inequality y, < pks® k (u) . m is satisfied.
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Then there holds:

if M is a [1,1]-Turing machine recognizing the set T', then there exists
a real number Cy, = 1 such that for almost all n (from N) there holds:

fueU,, then there exists v eV, such that the pair [u, v] has a
[CuR,, f,)-bottleneck square.

Proof. Let M be a [1,1]-Turing machine such that T (M) = T
According to (8) there is max l(v) - c0. Because (x), (8) are satisfying,

VEV g
there exists b such that for every ne N, ue U, there exists ve V,,
such that I(v) < b A, (uv) (see Lemma 3.3). Moreover, there is b = 1:
for every ¢ > 0 there exists (according to (d)) n, € N such that I(v) 2

= %R (Uw) 4+ 1) for every u € Uy, v € Vp,; 80, if U(v) £ b Ay(uw), then

Iw) < b(Uu) + Uv) + 1) S bl@) (1 + &), thus, 1 £ (1 + ¢) b for every
, 1R, —
¢ > 0. Now, we choose Oy, ="T7b(=17), R, = —"2——% — % (then

1< R,< R, <1 R,), then b(2R, + 3)+2 = C,.R,. From ()

easily follows that there exists n, € N such that for every n = n, the
1nequat10n b(2R,, + 3)(maxl(u) + 2) £ mIi,n l(v) is satisfied. Therefore,
uel,

let n 2 n, and let u € U there exists v € V,, such that I(v) £ bAdn(uv)
and Wlth respect to the a,bove b(2R, + 3) (l(u) +2) £ l(v) Thus, from
Lemma 3.2 there follows that the pa,lr [u, v] has a [B(2R, + 3) + 2, g,
bottleneck square, where g,(k) = R,(k + 2) = R,(k + 2) = f,(k). There-
fore, this bottleneck square is also a [CmRn, f.]-bottleneck square of

[u, v].
4. THE MAIN THEOREM

4.1. Theorem 2. (The main theorem.)

Let T be an event. Let there exist sequences {U,}, {V,} consisting of
nonempty finite events and let there exist a sequence of real numbers {R,},
R, = 1 (for all n e N) such that there holds:

1
(1). lim (card V )max ‘max i(v) 1,
_1_
(2) lim (card U,)B» = oo, 7

n—» oo
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min I(v)
lim —%Vn o
( )n_NDR max l(u) @ )
nel,
(4) f neNy, ueU,, v, v,€V,, vy % v,, then uv,, uv, are distin-

guishable on 7',
(6) if neN uy, ug € U,, u; # u, and if v{*>(k, i = 1, 2) are such
that [vs*”, v$¥21 e D(V,) for k =1, 2, then either for £ = 1 or for k = 2

the words wu,v{*> uzva‘> are R, (I(u,) + 2) — distinguishable on 7.

Then T ¢ T 0

Proof. Theorem 2 immediately follows from Theorem 1 and from
Lemma 2.8 if we choose d, = R,,, f,(k) = R, (k + 2).

4.2. As it is shown in sect. 5 the application of Theorem 2 need not
be complicated (though the formulation of Theorem 2 at the first glance
could corroborate the contrary). Especially, it is sufficient if instead
of the condition (5) the stronger condition

(6") if ne Ny, uy, up€ U,, uy # uy, v, v,€Dy(V,), then the words
U3y, U, are R, [2 + min(l(u,), [(u,))]-distinguishable on T’
is satisfied. (In fact, its satisfaction is usually proved for v;, v, from
a suitable set containing the set D(V,).)

e

5. EXAMPLES

The using of the main theorem can be illustrated on many interesting
examples. We quote here only three, however, being important also
from the theoretical point of view — they give the qualitative comparison
of relative strengths of [1,1]- versus [2,1]-, [1,2]- and [J-Turing machines
(see 1.9). From this view, the first example is the Wea,kest and the third
the strongest.

5.1.0. Example “w§w,” **).
Let § € N***) and let X, be a finite subset of N, card X, 2 §¢2,,
let 20 = X, U {§}. We define
TO = {w§w, | w e 2O, w, is a beginning of w}.
5.1.1. Let be uy, uy, vy, v, € 27, Uy # Uy, Uu;) = l(uy). Then the

*) Evidently, max l(u) = 0 only fot finite many n (see condition (2)).

uelU,
**) This example is mentioned by P. Strnad [4].
***) Similarly as in the following (at the symbols %, f) we choose the notation
according to the references ([1], [3]).
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words u,v,, uw, are (2 + l(u;))-distinguishable on T® (in fact, they
are (1 + I(u;))-distinguishable) for k=1, 2: w0, §u,€ TD, uy_,v,_, §u, €T
(i.e. they are [2 + min ({(u,), l(%,))]-distinguishable on T'®). Now, let u,
vy, V€ X7, vy 7 ¥y, Uv;) = Uvy). Then the words wv,, uv, are distin-
guishable on T® (e.g. uv; §uv, € TW), yv,§uv, ¢ TW). Hence, we may take
(for neN) U, ={u|uely, Yu)=n} and V,={v|vely, l(v)=
=n?}, R, = 1. As Dy(V,) < X7 for all n, from the preceding follows
that the conditions (4) and (5) (see the main theorem) and also the
conditions (1), (2), (3) are satisfied. Thus, according to the main theorem,

T(i) ¢'7- ma-

5.1.2. Evidently, T®eJ ;,. If card X, =1, then TWeJT ,,.
Always (when Xy % () T® ¢.7 (see 1.8; it is possible to choose U, =
= Z2).

5.2.0. Rabin’s example*).

Let o, f € Ny, o %~ B, let X, X, be disjoint finite subsets of Ny which
do not contain o, 8, let X 3 @, card 2y = 2. We choose X' = 2, U 2, U
U {«, B} and we define

T? ={uwvoau? |ue Xy, ve Xy},
TP ={uwpv|luecli,vely},
7@ — T(IZ) U Té?).

5.2.1. Let be uy, u, €27, v, v,€2Y, u, # u,. Then the words
UV, , Ugl, are ((2 + I(u,))-distinguishable on T'® for k = 1, 2: ww,auz' €
€T, uy_v; ;ourl¢ T®. Now, let be ue Xy, v, v,€25, v F# ;.
Then the words uv,, uv, are distinguishable on 7® (e.g. uv,fv7le T®),
uvyfort ¢ T®). Let us choose U, ={u |uec Xy, Yu) < n}, V,={v|ve
€2y, l(v) =n*, R, = 1. As Dy(V,) < 27 forall n, from the preceding
follows that the conditions (4) and (5) and also the conditions (1), (2), (3)
are satisfied. Thus,

T®¢T gn-

5.2.2. It is easily to be seen that TP, T'? eIy, 80 T® =TP y
UTPeT o1 ST na (see 1.7). Rabin in [1] shows that T®eJ
for card 2, = card 2, = 1. From 1.8 there follows that 7% ¢95,
(Gf Xy #0), TP ¢T, (if 2, #9), T®¢T, (if Z, U 2y 5 0).

5.3.0. The main example.

For z, y € Ny we choose f(z, y) = 2[3’.] + ¥ _ + 1.
{

1 1+ [7:-])

. *) See [1]; here we consider also the case card X, = 1, card X = 2 (and we -
take as %, v also the empty word — but that is not an important difference).
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For ze N, 4(1 + [;—]) =2+ 1 holds. Thus, 1= f(r,y) < :—;--{—

x_-z .+ 1 forallz,y € No.

Let X be the set from 5.2.0 (card X, = 2). We define

TO = fuvaku~t |ue Z7, ve I, k 2 f((w), (),
TP = {uvﬂv‘l | u EZ?, ve Z;}’
T® =T9 y TP.

53.1. For neN we choose U,={u|uel?, n < lu)=<2n},
V,={v|vely, l(v) = n?}, T, = 5. Thus, the conditions (1), (2), (3)
of the main theorem are satisfied. Forne N,ue U,, v,,v,€ V,,, v, 5% v,
the words wv,, uv, are distinguishable on 7'®) (up,fv,~1 € T®), uv,fv;! ¢
¢ T'®), i.e. the condition (4) is satisfied. Forn e Ny, u,, uy € U,,, Uy 7 u,,
v;, v, € Dy(V,) there holds v, v, € X7, l(vy), l(vy) < 2(n? — 1) (see 2.5).
Let us choose @ = a*ujyl, where &k = f(l(«,), !(v,)), then uv,% e T®,

Uuy) Uvy)

+

i (3) h) =
Uy ¢ T® and U() = Uu,y) + & < Uu,) + 5 T T iwy) +1=s1+
2—1
+ 3n + 2(—;117;) =5n—1 < R,[2 4+ min(l(«;), I(u,))]; the condition
(b) is satisfied. Thus,

T® ¢T g

5.3.2. In 5.1.1 and 5.2.1 it was possible as V¥, to choose the set of all
words with length »” (on the corresponding alphabet) for any re N,
7 = 2. In 5.3.1 this is not possible.

5.3.3. The idea of the main example is to be seen in the proofs 5.3.4,
5.3.5, the choice of the set 7'® was performed such that the set is
“gimilar” to the set T® (even TP = T'%) and the function f(z, y) is,
as far as possible, simple (also for the price that the []-Turing machine
recognizing 7'® would be more complicated).

6.3.4. Lemma. 7® €S .

Proof. We describe the idea of the construction of a suitable [J-Turing
machine*) M* recognizing the set T'®). The square of its tape we denote
with pairs of integers**) (analogically as points of the plane — [z, y]
design the square lying in the ath column and in the y th line), the initial
square is [0,0]. If at first an input word » € X° comes, It* prints it from

*) A [J]-Turing machine is defined quite the same as a [1,1]- Turing machine
in sect. 1, only to set P we add two further elements (designating the moves up
and down).

**) Lot us note that in our construction only squares from the set {[¢, j] | 4, j € Ny}
will be used.
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left to right in squares of the zeroth line such that on every of these
squares four subsequent letters of the word w are always printed, of
course, with regard to their order). So, after the (4k)th tact the head
passes from the square [k — 1,0] to [k, 0], during the other tacts the
head stops with the exception of the first and the second tact, when it
moves to [0,1] and back to [0,0], at which it signs both these squares™
by some marker. Thus, during the input « the head passed through the
squares [0,0], ..., l(:?— ,0]. Let after u follow a v e X7 . IM* again

prints the word » four subsequent letters on each square, first onsquares

in the first line (from the square O] , 1] up to [0, 1]), then in the

4
second line (from [0,2] up to [ [E%)—], 2]) etc. Moreover, at the entering
on the rth line (r = 1) (i.e. on the square [A,, r], where 1, = [Z(Z)]

for r odd and A, =0 for r even | the head uses two tacts for a marking

of the square [4,, 7+ 1] (so that at the printing on the (r + 1)th line 9t*
may discern the “end” of this line and also of the square [4,, 7] (with
regard to the “back moving”, see-in the following). With fours of letters
W)
[ Uu) ]
4(1 + LT_)
Now we distinguish two cases:
a) After uv there comes oy’ (ke N, w' € 27). In this case at first

the head exactly during 2 Z—(Zl + 1 tacts goes to the square u 4) 7o
(the idea for the construction of MM*: in the (o + 1)th line at the first
the head designs its position @ somehow and moves directly to the left

end [0, 7y 4+ 1] and from there back, at which in reaching again @ it starts
(Z) , o+ 1] and from there after the

of theword v ry= {lines are fully occupied on the whole.

to move with half speed to

l(w)
4

following tact to [[
arrangein all cases and after the farther r, tacts { in the [ Hu 4) ]th column)

] ro] — it is to be seen that this is possible to.

the head is on the square _l%‘.)_ 0 ) Thus, if there is k< f (Iu), iv)),

then the head does not reach the zeroth line and hence Yi* can reject
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the word uva*u’. If there is k = f(!(u), {(v)), then the head waits on the
Yw)

square “—4— , 0] till o* ends and then it compares «’ with »~1. Thus,
M* decides whether uva*u' is in T'®) or not.

b) After uv there comes fv’ (v’ € 27). In this case the head performs
the “back moving” — it moves reverse as at the writing of the word v
and compares v’ with v—1. Thus, IM* decides whether uvfv’ is in T'®
or not.

It is easy to arrange that I* may not accept words of other forms
than wva*u' and uwfv’. Thus, this IM* recognizes the set T,

5.3.6. Lemma. T €T ,,,, T9 €T .

Proof. Evidently 79 €7 ; ,,. The set T is recognized by a suitable
[1,1]-Turing machine 9 which simulates the work of the []-Turing ma-
chine IM* (see proof 5.3.4) such that to square [7, j] of the tape of M* there
corresponds the (¢ 4 j)th square of the tape of M, but such that the
head does not print the letters of word » (under an input uwv, uw € X7,
vel2y), M only registers how the fours of its letters pass. (Moreover,
here it is necessary to choose several markers.) Of course, M rejects all
words of other form than wvatu’.

5.3.6. From Lemma 5.3.5 first of all follows that 7® = T® y T9® e
€T 1 S 9 (see 1.7). From the kind of construction of the ma-
chine 9 (see proof 5.3.5) it is to be seen that there holds: if card X, = 1,
then T® e, ;,. Again there is (see 1.8) T9 ¢, (if X, # 0), TD ¢.7,
(if 2o #0), T® ¢ T, (if Z, U Z, # 0).

Remark. With the comparison of the relative strengths of many-
dimensional tapes real-time Turing machines the paper [6] deals.
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