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OPERATORS 
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Much attention is being devoted in literature to the problem of cha
racterization of spectral operators in the Dunford sense [1, 2] since this 
problem has not yet been solved in a satisfactory way. A characterization 
in terms of operational calculus (i. e. in terms of a homomorphism of an 
algebra of functions into the algebra of operators) is a very useful one 
and permits various generalizations (see e.g. [4, 6]). The main theorem 
of the present note gives a characterization of spectral operators in 
terms of this kind. The corollaries of this theorem present generalizations 
of some criteria known from literature (especially [5]). 

Let X be a Banach space, L(X) the algebra of all bounded linear 
operators in X. If T e L(X) is an operator a(T) stands for its spectrum. 
The set of all complex numbers will be denoted by Cx. We use the nota
tions Rx = {A Ureal, AeCJ, Kx =-={A | | A | = 1, AeCJ. 

Let K be a set and A an algebra of complex-valued functions on K. 
Let t: A -> L(X) be an homomorphism of A into L(X). The homomor
phism t is said to be weakly (K, .X)-compact if, for every x e X, the set 

{t(f)x\ feA9BapAmK\f(l)\ .5 1} 

is relatively weakly compact in X. 
If K is a topological space (e.g. a subset of Cx), then C(K) will stand 

for the algebra of all complex bounded continuous functions on K and 
B(K) will stand for the system of all Borel subsets of K. 

We denote by j the identity function on Cx (i.e. j(X) = A for X e Cx) or, 
sometimes, its restriction to a subset of Cx. 

A spectral measure is a strongly cr-additiveand multiplicative L(X)-v&-
lued function E on a tr-algebra of subsets of a set K such that E(0) = 0 
and E(K) = / , where 0 is the zero operator and I is the identity operator. 

An operator T e L(X) is said to be a scalar-type spectral operator if 
there exists a spectral measure E : B(a(T)) -> L(X) such that 

(1) T^fjdE. 

A scalar-type operator T is called pseudohermitian if a(T) <= Rx and 
pseudounitary if a(T) <-- Kx. 

Theorem. An operator TeL(X) is a scalar-type spectral operator if 
and only if there exists a compact space K and a xveaTdy (K> X)-compact 
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homomorphism t: C(K) -> L(X) such that there exists a function f0 e C(K) 
for which t(f0) = T. 

Proof. If T is a scalar type spectral operator we put K = a(T) and 
t(f) = ff&E, feC(a(T)), where E is the spectral measure from (1). 
It is known that t is an homomorphism of C(a(T)) into L(X). According to 
[3; VI. 7.3] the mapping/ -» t(f) x from C(a(T)) into X is weakly compact 
for every x G X. Therefore t is a weakly (K, Z)-compact homomorphism. 

Now suppose K is a compact space and t: C(K) ~> L(X) a weakly 
(K; JT)-compact homomorphism. By [3; VI. 7. 3], for every xeX, 
there exists a regular X-valued measure mx such that t(f) x = ffdmx, 
feC(K), and s u p r e i W 11 mx(r) 11 <£ 11 «11 \\x\\. Because mx(r) is deter-
mined uniquely by r, x and depends linearly and continuously on x, for 
every r e -B(J5L), we may put F(r) x = mx(r). Evidently F(r) e £(X), 
T G J?(K). The function F : JS(K") -> -£(-5-") is an operator-valued measure 
such that t(f) = ffdF in the sense that t(f) x = ff(s) dF(s) x, for every 
xeX. It is easy to prove (by passing to limits) that F is multiplicative 
(see e.g. [7; Lemma 6]). I t follows that F is a spectral measure. By hypo
thesis T = t(f0) = / / 0 dF. According to [1], T is a scalar-type spectral 
operator and we have (1) if we define E(Q) = F({s \f0(s) e Q}) for Q e 
€B(a(T)). 

Remark . Following [3; VI. 7. 6], if X is a weakly (sequentially) 
complete space, an homomorphism t: C(K) -> L(X) is weakly (K, X)~ 
compact if and only if it is continuous (in the strong operator topology). 
For this case the theorem is given in [6]. 

Corollary 1. T is a scahr4ype spectral operator if and only if there 
exists a weakly (T, X)-compact homomorphism t: C(a(T)) -> L(X) such 
thatt(j) = T. 

If K c Cx is a compact set and t: C(K) .-> L(X) is a weakly (1£, X)-
compact homomorphism such that t(j) = T, then T is ascalar-type spectral 
operator. 

In the sequel we give some corollaries of the theorem in which the 
criterium of spectrality is given in terms of operational calculus/ ->f(T) 
defined for holomorphic functions by the means of Cauchy formula 
[3; VII. 3]. 

Let K <= Cx be a compact set and A an algebra of holomorphic 
functions on K (i.e. for every fe A there exists an open set Uf^K 
such t h a t / is holomorphic on Uf). If the uniform closure of the algebra 
consisting of restrictions of functions belonging to A is identical with 
C(K), then the set K is called an ,4-set. 

Corollary 2. Let K c Cxvea compact set, T e L(X), a(T) <= K. Let A 
bean algebra consisting of functions holomorphic on K. Let K be an A-set. 

The operator T is a scalar-type spectral operator if and only if the ope-
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rational calculus f-+f(T),fe A, is a weakly (K, Xycompact homomorphism 
of A into L{X). 

Proof. K being an -4-set the homomorphism/ ~->f(T) can be extended 
uniquely by continuity on a homomorphism t; C(K) -> L(X). The set 
W)x\feC(K)9 BupAcjci/(A) I-£ 1} is a part of the closure of 
{f(T)x \feA9 supAe* l/(A) |-S 1} and, therefore, by Eberlein-Smuijan 
theorem [3; V. 6. 1] it is relatively weakly compact in X. 

Let N be the set of all integers and N the system of all its finite subsets. 
Denote by P the set of all functions of the form 

/(A) = 2 anX» 
nev 

where an are complex numbers and v e N. 

Corollary 3. An operator TeL(X) is pseudounitary if and only if 
the homomorphism f ->f(T) of P into L(X) is weakly (Kt, Xycompact. 

Proof. It is known, that Kx is a P-set. 
Denote by Q the algebra of all trigonometric polynomials, i.e. of func

tions of the type 
/(A) = 2 an#* 

f l€ f 

where an are complex numbers and veN. 
Corollary 4. Let T e L(X)9 \\T \\ < TZ. The operator T ispseudohermi-

tian if and only if the homomorphism f->f(T) of the algebra Q into L(X) 
is weakly (Rl9 Xycompact 

Proof. Denote by a = \\ T \\ and choose /? so that a < /? < n. The 
segment <—/?, £> is a Q-set and/(T) = g(T) if/(A) = g(K) for | A | g p. 

Remarks. 1. If X is a weakly complete space in all corollaries the 
weak (K9 Z)-compactness of considered homomorphisms may be replaced 
by the requirement of its continuity in the uniform-norm topology of 
respective algebra of functions. 

2. If X is a reflexive space (in this case it is also weakly complete), 
the criterium contained in Corollary 4 presents a simplification of criteria 
from [5] (Theorem 4). In [5] there is exploited the group eUT, teRl9 
or the algebra of operators generated by this groiip. Since T is a bounded 
operator it suffices to consider the subgroup eln<*r, neNr where /? < 
< nj\\ T (I, i.e. to consider the powers of the operator e^T. 
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