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A N O T E TO D. GALE'S P R O D U C T I V I T Y 

VÁCLAV POLÁK (BRNO) 

Received May 24, 1966 

The sufficient condition for n + 1 points on the n-sphere in euclidean 
space EM to be ,,global" (reformulated as a covering theorem) and its 
application to the theory of non-negative matrices and to the economy 
is given. I am indebted to K. Kfiz for consultations in economics. 
Other economic applications of presented theorems are given in [6]. 

Lot y = {R1? . . . ,R„+ 1} be a covering of a set En—{O}1) by open 
half-spaces R/ s the boundaries of which H/ s pass through O. Then every 
Rr is indespensable (i.e. y—-{PJ is not a covering) and the sets S{ = 
= : n (—Rj) are mutually disjoint n-dimensional sharp cones satisfying 

H( n Si = {O}2) (Since y is the covering of En —{O}, n Hj = {O} is 
i*i _ 

valid for any i. Consequently every R^ is indispensable and S{ —{O} c: 
a R{). Hence it follows that the sets rjiy = : R?- n H{ (j ^ i) are open 
(n — 1) - half - spaces in H{ and a(i) = : {rf}-)dFi forms the covering 
of the set H{ —{O}. For an arbitrary x e Siy —rf) is a projection of the 
set (—Rj) n (—R{)(j ¥" i) in the direction ox into H{ (as the open 
projecting ray lies always in —Rj) and consequently the projection of 
the set Sj — Ht is sf = : n (—rf) f° r a n y 3 ¥> *•' 

x) A point x of the euclidean n-dimensional space E" is a column (i.e. an n-by-1 
matrix with xl as its i-th component), o means the origin, d(x, y) = yT(x — y)(x — y) 
the distance (for matrices A, B TA means the transpose of A, AB the ma trix multi
plication row by column and for a nonsingular C, C~x denotes its in vers, i.e. CC"1 = 
== I — (6{J)), <Bn~i(x0, r) = {x : d(x, x0) = r} the spherical (n — 1) - space, and 
for U, V, X = {x1, . . . , xk} d E n we denote by U or IU the closure or the interior 
of U (in the usual metric topology), U -j- V = {x : x = a^ -f xz, xx e U, x2 e V}, 
v k k 
—V = {x : x = —y, y e V}, CX = {x : x = £ ^xt, At ^ 0, £ A, = 1} (called a 

i = l t = l 
k 

convex polyhedron) and KX = {x : x = V Aixi, At —• 0} (called a cone). KX is 
4 = 1 

called a sharp cone if C(X -f- {o}) has o as its vertex. For K — {ix, ...,ik) Q 
Q {1, . . . , n } = :N xK is a point in Efc such tha t TxK = (xH, ...,xh) if x G E n is 
given. For a matrix A we denote A1 or A^ its i-th row of j - t h column. 

-) Bt = :Rt \j Ht, —S| = O Rj, hence R,' s are closed half-spaces and St s 

are interiors of S/ s. 
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Theorem 1. For a set X = {*i}i-Kn ^2, o$X and always x{ e S{) 
we have o e ICX and —S, c_ K(X — {*<}) /<* -*« *, */ * w 

(a) zn+1 G Sn+1 
and 

G8) *w £ H„+1, *w_i <£ / / n n Hw+i »••••** ^ n g #,-

Proof: Since — fl. c K (_f — fa} follows from O e IOK (For O e IC7K, 

K, -= : __(__—{«;.}) it is *_" K*. = En. Since ( U Kk) n (—#<) = 0 

(cones —Sj-, K*.(k # *) are separated by the hyperplane Hk) it is —S{ c 
c K.) it is sufficient to prove O e IOK. The proof will be done by means 
of the mathematical induction. If we project the set X — {#„+_} into 

Hn+1 in the direction oxn+1 (the corresponding projections will be denoted 
by an asterisk), it is (for j = 1, 2, .. . , n) x* e sf+1). Furthermore, there 
is :r*e<n+1) (because xn$Hn+x), x*n__x $ h%+v> = \Hnc\Hn+1 (since it 
is .rn__ £ h(n+1), we have in the case #*__ 6 h{%+1) xn„1 7- #*-_ and there-

*-
fore xn_x e Rn (because the open back projecting ray x*_xxn~x is disjoint 
with (—Rn) if it starts on Hn) — a contradiction), #*_2 $ h ^ n K+1) 

(in the case #*_2 e fyj__l) n ^n + 1 ) it would be analogically #n_2 e Rn_x — 
a contradiction as before), . . . , x* $ 0 Wg+1). Thus conditions (a), (/S) 

&=3 
are fulfilled for the set K*+1 = : {x*, . . . , x*) in Hn+1 and consequently 
we have O e ICX*+1 in the case that our theorem holds for the dimension 
n — \ (n > 2). Consequently there exist nonnegative A/ s not all zero 

n 
such that o = __] Af#*. All A/ s are positive, because each of points #* is 

i = i 
n 

indispensable for the condition o e ICX*+1. For # = : __] Xixi it is #* = 
t - i 

= O((2At^.)* = -SAt-.z* = O) and x ^ o(xn$Hn, An > 0). Consequently 
n 

K{xn+V — xn+1} c KK. Let 1/ G E n and «/*=_£ Pitf> /** = 0- Since 
i = l 

?/_ = S/it-^.(e KK) is situated on the projecting ray #( c KK) of the 
point 2/, we have yeKX. Thus KK = E n , which means oelCX. 
Since our theorem is true for the plane (it can be seen easily) O e ICK 
follows from (a), (/?) for any n ^ 2, q.e.d. 

Remark . 1. A/s in # = _£ A;#,- exist, are uniquely determined and 
?-M 

all positive for all x e — S4- (it follows from —St- c K(__ — {#t})). 
R e m a r k 2. Namely we have KK = En in the case a;t. e S,- (i = 1, 

2,...,n+ 1). 
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R e m a r k 3. Theorem 1 also expresses the sufficient condition for the 
set X = {xx, . . . , xn+l} of points on the spherical (n — 1) - space 
© = ©W_1(O, r) to be global (which should mean that o e ICX), if we 
consider spherical simplices S^ constructed by open hemispheres R{ 

forming the covering y = {PJn=i of the set © : X is global, if it holds 
xi e S{ for all i and (a), (/3) are true. The property of the system y to be 
a covering is essential, 'because the set X — {xt, x2, xz, x4}, Tx1 = 

0, —pr) lies on the unit sphere © with its center in the 
( • 1/2"' '\2 

origine, a system y -= {RJ, Rx = lxz < —- x2\ n ©, I-*2 = l#3 < — 

- | - *2} O ©, K3 - (*3 < | a1} n © and R4 = L 3 < — - | z1} n © 

defines spherical triangles —Ŝ  = n Bj, x{e S{ for all i, y does not 

cover © and it is KK =j= E3. 
Theorem 1 has an interesting application in the economics: Let 

us assume the production fulfils the following conditions: 
(Px) There exist n(^2) different kinds of goods. 
(P2) Each of goods is measured in the fixed units. 
(P3) A square matrix A = (a^) of the type n-by-n is given where aif 

is the quantity of the j t h good which vanishes during the production 
(any production process is of the unit time duration) of the unit of the 
ith one. 

(P4) I t is A{ > To for all .̂3) 
(P5) The production takes place in production branches. 
(P8) Each of goods is produced in one production branche only 

(nameny, the i-th good in the branche i). 
(P7) Each branche produces one kind of goods only. 
Thus, A can be considered as an input matrix (A1 is an input for the 

i-th branche, if it produces the unit of the good i) for the production 
with the output unit matrix I = (6^). The intensity vector of production 
x s En is called reproductive, if x > o and Tx(I — A) ^ To. We say 8, 
0 -̂  S <z N = : {1, 2, . . . , n} is the fundament for the vector x if it is 
[Tx(I — A)]s = Tos and a{j = 0 for i $ 8, j e 8. 

(P8) There exists a reproducting intensity vector with no fundament. 
Theorem 2. For the production of type Px — P8 the matrix I—A is 

3) For x, y e E" we write x > y, or y *> y, or x ^y if for all i x* > y{, or x* ^ yi 

and x ^ y, or xx ^ y*t respectively. 
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regular and we have (I — -A)"1 I > O for I ;> O (with (I — A)-1 I > o 
for I > O). 

Proof. Let y be a reproductive intensity vector of the production 
given by P8 . Put xn+1 = : — y, Rn+1 = {x : Tyx < 0}, x} = : Zj(Z = 
= : (I — A)) and R} = {x : x* > 0} for V, 2, . . . , n, y = : {R1? . . . , Rn+1}. 

n 

y covers Ew — {O} (Ew— U R is non-positive cone (i.e. {x : x g O}) 
7 = 1 ' 

which is (except for its vertex) contained in Rn+X), o£X = : {xx, .., 
. . . , xn+1} (xn+1 7-- O because y > o; but it as also Z?- 7*. o because in the 
case of any Z} = O it would be a{j = 0 for i -̂  j and a^ = 1, and S = 
= : {j} would be a fundament), xn+1 e Sn+1 (because Sn+1 is a negative 
cone) and the others #?. e S^ (because TZ^ = (—a1?. . . . , —aj-i.y, 1 — a??-, 
—a,j+xtj 9 • • • - —

an,?)> at? = 0 (anc* 1 — ajj = 0 ({i} l s n o t fundament, we 
have even a^ < 1))). By means of the suitable change of the denotatiton 
of points from X (and the corresponding change of the denotation of 
R/s and S/s) we can achieve thruthfullness of (a) (/?) (Let us put xn+1 = 
= : xn+1, Rn+1 = : Rn+1. Since TyZ > To,j1 exists such that TyZ)x > 0. 
Let us put x'n = : xix, R'n = : I^,, and consequently x'n^H'n+1. j2 

exists in the set N — {jx} such that TyZH = 0 and «;i?-2 = 0 are not true 
simultaneously (otherwise the set N—{j_} would be fundament for y) and 
for that reason we have x'n__ fi H'n n H^+i f° r xn-\ — : x)2> ^n-i == : fy* • 
In a similar way we proceed up to the case x2 = : xjnx, R'2 = : R;n x, 

w+i 
#2 ̂  fl H&. Finally let us denote by x[ the remaining element of X 

fc=3 
and by R[ the remaining element of y. The sets X'', y' and S^ (i = 1, 
2, . . . , ft + 1) fulfil the assumptions (a), (/?).). Theorem 2 is, now, the 
immediate consequence of Theorem 1 and Remark 1. 

R e m a r k 4: Notice that we used only A _> 0 in the preceding proof 
(hence theorem 2 is true when we exchange (P4) for this weaker property). 

R e m a r k 5: Since there is a w > o such that (/ — A) w = I > O, 
it follows that (I — A)"1 >; O, each principal minor of/—^4 is positive 
and 0 < determinant (I — A) <J 1. (These results follow from the 
theory of non-negative matrices — see [1], [2] and [4].) 

R e m a r k 6: A real square matrix Z is called of type Z (see [2]) if 
all its off-diagonal elements are nonpositive. In [2] the equivalence of 
the following three statements is proved: 
(1) There exists a point x ^ o such that Zx > O. 
(2) There exists a point x > O such that Zx > O. 
(3) The invers Z~x exists and Z'1 ^ 0. 

We call a square matrix A ^ O productive (see [3]), if there is a s _> o 
such that T$(I — A) > To. 

If A is productive, Z = : 7(I — A) is of type Z and (1) is true. Hence 
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according to (2) there is a s* > o such that Ts*(I — A) > To. Thus 
(P8) is fulfilled. 

Let a matrix A _• O have the property (P8). From theorem 2 and 
Remark 4 it follows (3) for Z = : I — A and hence (3) is true also for 
TZ. Hence we have (1) for this matrix. Consequently A must be productive. 

Hence we have this theorem: A square matrix A ^ O is productive 
iff (P8) is fulfilled. 

R e m a r k 7: Desired properties of J — A follow alho from the exis
tence of prices p > o such that (J — A) p > o. 

Assume that the production has the following properties: (Lx) There 
exist n different kinds of the labour. (L2) Any labour is measured in 
fixed units. (L3) For the production of a unit of the good i one needs 
the quantity l{ > 0 of labour i and no quantity of labour j (j ?- i). 
(L4) An abstract labour is given and any labour can be transferred on 
abstract one. (We say an abstract labour is given if any quantity of labour 
of any kind corresponds to a real number (called an abstract labour) 
in such a way that for each i it is settled how much units of abstract 
labour is one unit of labour i. Hence for each i such a linear function 
Xi(u) is given that A (̂0) = 0 and X^u) > 0 for u > 0. One can now add 
the quantities of different kinds of labour (each kind of labour is transfer
red on abtract one and these numbers are summed up). 

K. Marx has defined (see [5]) the labour value w{ of the good i by this 
rule: The labour value of any good is the quantity of abstract ,,live" 
labour (i.e. one really exerted in the course of the production of this 
good) plus the quantity of the abstract labour which is ,,objectified" (i.e. 
the quantity of abstract labour contained as labour value in the goods, 

n 

exhausted during the production of our good) thus, wl = A ^ ) + X aijwi 

7 = 1 

i.e. (I — A)w = l where Tw = : (w1, . . . , tvw), Tl = : (I1, ..., ln) and 
F = : W 

Theorem 3. If the production fulfils Px — P8 &nd L± — L4, then 
the labour value wl of the i-th good (for any i) exists, it is positive and even 
defined uniquely: w = (I—A)11. (This fact follows immediately 
from the Theorem 2.) 
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