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A C H A R A C T E R I Z A T I O N OF O S C U L A T I N G MAPS 

By OliDftieH KowALSKi, Brno 

Received January 24, 1968 

In this paper we characterize osculating maps of higher order of a dif-
ferentiable map Vw -> Vm, Vn being a simply connected manifold 
and Vm an affine space or a Lie group. 

In the following, all manifolds, maps, vector bundles and their sections, 
respectively are supposed to be differentiable of class C00. 

Let Vn be a manifold of dimension n. For p e Vn let / be a local 
function at p such that f(p) = 0. Then a fc-jet jk(f) is called a covelocity 
of order k on Vn at the point p. Let Tk*(Vn)p be a vector space of all 
covelocities of order k at p. Each linear form X{k) on Tk*( Vn)p is called 
a vector of order k at p. The set of all X{k) is a vector space Tk(Vn)p. 
We put Tk(V„) = | J T,(V„)p. 

P e Vu 

For any k, Tk( Vn) is naturally a vector bundle over Vn and Tx( Vn) = 
-= T(Vn) is the tangent bundle of Vn. (See [1], [3].) 

Each vector Xp
k) e Tk( Vn) is a linear differential operator on Vn 

and, with respect to a local coordinate system (ux, . . . , un) at p, it is 
represented uniquely in the form 

l - i - v — 1 

i < ;< i .á. "S i tá« 
+ •• "- • Л - ' * ð«ł>...ð«ł» 

For any sequence of indices 0 £ ix £ ... •£ ik £ n, ik > 0, we can 
<9* £ * + i 

introduce an operator ---z--. -—r- putting inductively: ~ = r d u % i . . . OV* r 6 J du*du?i...du)1 

dl 

a a^,..g^i f o r e a c h * < *• ° = i i = ••• = if -* * ' i i > 0. Then (1) 
takes a simple form 

a* 
In a coordinate neighbourhood U cz Vn, the operators du^ ... du** ' 
0 S % <j ... g tA S n> H > 0» fr™ a basis of -T^V^ for each g e 0". 
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On the other hand, any vector X(k •1} e Tk+Y( Vn) may be written in 
the form 

(2) i ? + 1 ) = t--'..I-y.*). 
i — 1 

where X\k) are suitable local sections of Tk( Vn) defined at p9 and Xit p e 
€ T(Vn)p9 i = 1, 2, , . . , r. For any I 51 k we have a canonical injection 

Following P. LIBERMANN, a symmetric surconnection Sk of order k 
on Vn is a bundle homomorphism Sk: Tk+x(Vn) -> T(Vn) such that 
SkoIi,k+i- T(Vn)-+T(Vn) = the identity map. (See [2].) I t is easy 
to check that a symmetric surconnection Sx: T2(Vn) -+ T(Vn) is an 
ordinary linear connection V on Vn the torsion form of which vanishes. 
(See [3], p. 158.) Further, the successive interations Wk of V (k = 1, 2, ...) 
determine a sequence of symmetric surconnections Sk of orders k = 
= 1, 2, . . . , if, and only if, the curvature form of V vanishes, too. In 
this case, we can define the sequence {Sk} by induction: for K*f+1). e 

eTk+1(Vn), Z;*+" - 2 Xi<pXf, we put 
1 = 1 

r 

(3) W+1> = I Vz.JS^Z^), 
i—1 

I t must be shown that (3) does not depend on a representation of Xp
kn) 

in the form (2). But this is just guaranteed by vanishing of both torsion 
and curvature forms of V. (The proof is routine nad will be omitted.) 
For I £ k9Sk is a.prolongation of Sl9 i.e., S{ = Sk o Im,*+i o n Ti+i(Vn)> 

Note 1. If the curvature of V is non-zero, the successive iterations V* 
define a sequence {Sk} of semiholonomic surconnections; see [2]. 

Note 2. On a paracompact Vn9 there are symmetric surconnections 
of any order k. In fact, we can construct such a surconnection on each 
coordinate neighbourhood of Vn and then use a C°°-partition of unity 
subjected to a locally finite atlas of Vn. 

A differentiate map q>: Vn -> Vm induces canonically a sequence 
{Tk(<p) :Tk(Vn)->Tk(Vm)} of bundle morphisms such that all the 

T*(9) „ 
diagrams Tk(Vn) • Tk(Vm) are commutative, k = 1, 2, . . . Let be 

**k\ (p nk t 
V • V 
r n r m 

now Vm = Am
9 an affine space of dimension m. Let us denote by Wm 

the associated vector space of Am and for each x e Am let o>x : T(Am)T -> 
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-> Wm be the canonical isomorphism. The maps cox, xe Am, determine 
a vector form co on Am, co : T(Am) -> Wm. 

In Am, there is a canonical flat connection V. Its successive iterations 
determine a canonical sequence {Sk} of symmetric surconnections on Am. 
In a linear coordinate system (xl9..., xm) of Am

9 each Sk9k *z 1, may be 
reprezented as follows: for X<*+1) e Tfc+1(A

m), X{k+1) = % ah..Ak+1 . 

. dxii^dxik+i , 0 ^ ^ . . ^ i m g m, t m > 0 we have Sk(X<*+») = 

= £ a0...ot p~T ̂  ^ n e ^ ^ o^er part of X**+1). Fork k = 0 we put 
i = l O# 

£0: T(^lw) ~> T(Am) == the identity map. Let <p: Vn -> Am be a smooth 
map. For any k ^ 1, we shall denote by <p*k: Tk(Vn) -> Ww the composi­
tions of maps of the sequence 

Tk(<p) £,_i co 
(4) Tk(Vn) • Tk(A

m) • T(Am) 1- Wm. 
We can see that any <p\ is a composition of a bundle morphism 
<pk: Tk(Vn) -+Vnx Wm and a canonical projection pr2: Vn X Wm ~+ 
~> Wm. In the regular case there is an index s such that <p8 is a bundle 
epimorphism. If (fl9 ...>fm) is a basis of Wm corresponding to a linear 
coordinate system (a?1, ...9x

m)9 we have 

m 

(5) flW)=- It-T^'oV)]./.. 
i = l 

For any I > k, <p* = <p* holds on the bundle ^ ( V J and hence it is 
possible to omit k. From (5) we obtain immediately 

(6) <p*(XpX^) = Xp<p*(X<*>). (k = 1, 2, ...) 

(Here gr>*(XW) is to be considered as a local vector function on Vn 

with values in Wm.) Therefore, if <p*(X^k)) = const, for a local section 
XW of the bundle Tk(Vn)9 we have ^"(X^X^) -= 0. 

Our task is to prove the converse: m £&e regular case, the last property 
is characteristic for the maps <p*. 

Theorem 1. Let Vn be a simply connected manifold and s ^ 1 an 
integer. Let be given a map <E>: Ts+1(Vn) -> Wm of the form <1> == pr2 Q <t>, 
where <t>: T8+1(Vn) ~-> Vn X Wm is a bundle morphism and pr2: 
Vn x Wm ~> Wm is a canonical projection. Suppose that 

a) the restriction of <t> to the subbundle Ts( Vn) is a bundle epimorphism, 
b) if Xp e T(Vn) and X(s) is a local section of T8(Vn) defined at p such 

that ®(X<*>) =• const., then <&(XpX<*)) == 0. Under these assumptions 
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there is exactly one map <p: Vn -> Am satisfying initial condition <p(p) = x 
and such that <p* = <f> on T(Vn). Moreover, we have <p* = <i> on the whole 
bundle T8+1(Vn). 

Proof. Let be given pe Vn and a basis (/l5 . . . , /m) of Wm. Denote 
by v the dimension of a fibre of T8( Vn). As 0 induces a bundle epimorphism 
^(^n)"-* ^n X ^m» *he following assertion may be easily verified: 
there is a coordinate neighbourhood U(ul9 . . . , um) at p and local 
sections X[8\ ..., Xv

s) of T8(Vn) over U such that (i) the vectors XfiP ..., 
Xv**p are linearly independent, (ii) we have 

0 W ) = / „ i = l , 2 , . . . , m 

<D(Kf) = 0, i = ro+1, . . . ,v 
identically on U. 

Put 

^-«.?«.•**'(w^w)- '- ' '• 
*.>o 

then the determinant | aj- -{p)
i' | 7-= 0. Now 

J_x<»' = v ( M i l / » \ , ail...i. (
 d'+1 \\ 

5M* * L \ 3M* \ a M < > . . . a M i . / ^ * \5M<« . . .aM* . . .3M<./ / ' 

W» = l{^o( duk v * ' ^ \ dw* \ óV- .. . du{' 

+ * m І ðu> il®\duii...dui-)) ° ' 

and according to the assumption b of the Theorem, 

CD (J-x<A = yl*!t±* ( t \ + 
\du* l } L \ duk \duii...dui')^ 

+ aii-i. 0> {----. ^-v —rH = 0. 

Thus we have, for any k = 1, 2, . . . , n and i = 1,2,..., v, 

LaS*<;;* \®P\suH...duk...dui')~\'cW) ° \ a ^ . . . 3 u V } = °* 
In view of I a*» •;• *• I -*-= 0, 1 * (P) ' 

o / £-. ) = A 0 / » \ 
\5MH ... SM* ... 5M«. / 3M* \5Mť»... dMť« / 
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for any sequence 0 <; ix <; i2 <£ ... ^ k g ... ^ is <; ft, k > 0. Hence 
we obtain easily 

(7) a>(ZpZ<*>)^Zpa>(Z<*;) 

for any vector Z p 6 T(Vn) and any local section Z<*> of 3P*(Vr)) denned 
at p. 

To complete our proof we shall use the Frobenius Theorem. Put 
D = Vn x A.m. At each point a e D, oc = (p, x) we have T(D)a = 
= ^ ( ^ J p + - ^ " V W e s n a 1 1 construct on D a differentiable distribu-
tion Aa of dimension n as follows: for any cze D,<x= (p,x), let Aa cz T(D)a 

be a linear subspace of all vectors of the form Xp + co"1 <£> (Xp)f 

XpeT(Vn)p. The distribution Aa is involutive. In fact, let n: D-> VM 

be a canonical projection. For any a = (p9 x) e D, there are linearly 
independent vector fields Z x , ..., Xn defined on a neighbourhood 
U B p. Then the vector fields Xif 8 = Xiq + a)*10(Zt-5 q)r i = 1, 2, . . . , n, 
generate the distribution A/?, /? = (<?, 2/), on a neighbourhood ^_1(c7) of a. 
It suffices to prove that [Xi9 Z , ] a belongs to Aa . But since Xi9^Xj do 
not depend essentially on y, we have co"10(Zt- p) Z , = 0, 
c o - 1 ^ ^ . ^ 1 , = 0, and hence [ 1 „ Z , ] a = [Z t . ,Z,]p + Z, .p C 0- i^ (X t . ) -
- Z,, ^co-1 <Z>(Z,, „) = [Xi9 X,]p + <o?{Xi9P <D(Z,) - Xup 0)(Z,)} = 
= [Z„ .X,], + co-!0([Z,, Z,]p), according to (7). 

There is only one maximal integral manifold Vn of the distribution Aa , 
passing through a prescribed point a 0 e D . Then for any a e Vn, a = 
= (p, x), we have dn[T(Vn)a] = dn(Aa) = T(Vn)p. Hence n is a local 
diffeomorphism. Since A is invariant with respect to all transformations 
of D of the form (q, y) ~> (q, y + a), fn is a covering space of Vn. 
As Vn is simply connected, TZ is a diffeomorphism. If Q: D -* Am is 
a canonical projection, we obtain a map <p: Vn->Am

f <p =g 0 TIT1. 
Here d<p(Xp) = o)^p) ®(Xp) for any Xp e T(Vn)p and consequently, in 
view of (4), <& = 0)od<p = a)o Tx(<p) = <p* on T(Vn). Finally, from 
(6), (7), we see, step by step, that <p* = d> on T^(Vn), T3(VJ, ..., 
T8+l(Vn), q.e.d. 

As an application of Theorem 1, we can re-prove a result of KO6ANDRLE 
(see [6]). First we shall present some concepts of [6]. Let be given 
a covariant tensor t(xl9 . . . , xr) of degree r on Wm. We shall denote 
by *S the set of all vectors y e Wm such that t(xx,..., x^x, y, xi+1 ,...9xr) = 
= 0 for arbitrary vectors xl9 . . . , xir.x, xi+1, ..., xr from Wm. The inter-

r 
section S = f\*S is called the singular space of t. The automorphism 

group of the tensor t is the group of all transformations g e GL(m) such 
that t(xx, ..., xr) = t(xxg, ..., xrg) for each xY, . . . , xre Wm. Jt is a Lie 
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subgroup G° c GL(m). Let be given9 a fixed regular tensor t (xx, . . . , xr) 
on Wm, i.e., such that its singular space S = {0}. If y: Vn->Am is 
a map, cp*k: Tk(Vn) -> Wm the induced maps given by (4), k = 1, 2, ..., 

we can define an r-linear form t\ = t 0 (®<Pk) on -TA(VW) for each k — 
== 1, 2, .. . For each k > h t*k coincides with t* on Tt(Vn). The sequence 
{tk} of multilinear forms is called the fundamental tensor of the manifold 
Vn. Now, the main result of [6j is a characterization of the fundamental 
tensor. 

Let us consider the following conditions: 
I. On Vw, there is given a differentiable tensor t*, covariant of 

degree r, acting at each point p e Vn on the (k0 4 1)-vectors from 
TkQii(Vn)p, k0 is a given number. 

Let us denote by Sk(ttP, #*0+i,p the singular spaces of t* on Tk0(Vn)p 

and Tko+i(Vn)pi respectively. 
II. For any differentiable fields of k0-vectors Xlf*\ ..., X(

r
ko) and 

any vector YpeT(Vn)p, we have Ypt*(X[k* ..., *{*•>) = £ **(*?$, 

- . *&.,. Wo)> *ftU •••> *ft). 
III . dim Tk0(Vn)pISkniP = . dim-T*.+i(F l-)p/SVMff, = m for each 

point jp e Vw; fl^+i,-, n ^(Vw)p = {0} for each p e Vw. 
Let P denote the principal fibre bundle of all bases of the spaces 

Th(Vn)plSh)P,peVn. 
IV. To each point p e Vn there is a neighbourhood U cz Vn of p and 

a local section s of the fibre bundle P over U such that the components 
of t* with respect to the basis sq are constant functions of q on U. 

V. There is a point p e Vn such that the vector space Wm with the 
given tensor t is isomorphic to the space TkJ Vn)p/$*0> v w ^ n t n e tensor $*-. 

Let us introduce the abbreviations Tk0 ~ TkJVn), Sko = [J Sko>q, 
and similarly for the index k0 -f 1. From III we obtain easily 
a commutative diagram Sko *-Sko+i over Vn, and a canonical iso-

\ I 
r * . — - 7 V i 

morphism cr: TkJSko-*> TkffiilSko.i of factor bundles. Let 
^ o : Tk9-* TkJSkyy 7ik0+i: Tk^+i-^Tk^S^+i 

be canonical projections. We have a commutative diagram 

Tk. T M i 
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Let G0 be the automorphism group of the tensor t on Wm. We can prove 
that V is satisfied at each point qe Vn. Let P°q be the set of all isomorphisms 

r 

Xq: ^*o, ql$h> Q ~~* Wm W^ tae property V, i.e., such that t* = t 0 ® (%q o 
o n^ q)- Then P0 = U P°q is a principal fibre bundle over Vn with 

the structural group G0. If we choose a fixed basis QW of Wm, we obtain 
a canonical injection P° -> P . Let be given j? G Vn. To each section s of P° 
over a neighbourhood (7 a p , we can join a matrix form cop on T(Vn)p 

as follows: put s = (|f0>, . . . , f̂ *j)) over U, |J*o) being local sections 
of TkJSko. Let Zf0), . . . , K<*0) be sections of 2 ^ over U such that 
a^jq*o) = £*•>, U l , 2, ..., m. For any ZpG .T(Fn)p the elements 
rj£p

+1> == nko+1(XpXf% ^ ^ T u L A - f i , ^ do not depend on 
the representation of f fo) by Xfo) and we can write 

where co^K^) is a matrix of type m X m. 
It may be deduced from II that ct)p(Xp) belongs to the Lie algebra g<, 

of G\ Further, the forms cop(p e Vn, s being a local section of P° defined 
at p) determine a connection co in P°. (See [6] and, for instance [7].) 
Now, the last condition of the Paper [6] is the following: 

VI. The curvature form of the conmction co is equal to 0. 
The main result of [6] is the following: if the conditions I—VI are 

satisfied then there is a covering manifold Vn with the covering map n: 
Vn —> Vn and a regular map W: V#-> Am such that we have locally t* = 

r 

= t o (<g) <pj0+1); here <p = W o n~x is a local embedding Vn -> Am. 
Proof. First let us suppose that the manifold Vn is simply connected. 

Because the curvature form of co vanishes, there are local horizontal 
sections in P0 , and from the monodromy theorem (see [8]) follows 
that there is a global horizontal section s: Vn -> P°. We have global 
horizontal sections in the associated fibre bundle E = TkJ8k& ^ 
—< Tko+ilSk0+1, too. Let p e Vn be a fixed point, %: Ep -> Wm a fixed 

r 

isomorphism such that t* = t o ® (% o 7Z*0-f i, p) (Condition V). Let 
hq: Eq -> Ep be the parallel translation with respect to the connection IO. 
Put * f = z o * f o * * . + 1 , f , ®q: Tk$+i(Vn)q-»Wm

f for qeVn, Then 
the restriction of <bq to Tko(Vn)q is an epimorphism. Let X(*o) be a local 
section of Tk0( Vn) over a neighbourhood U B q, and Xq e T( Vn)q a vector. 
Suppose that <I>(.X<*«>>) = const. Then n,*eX<*«> is a horizontal section 
of E and there is a constant matrix a = (ax,..., am) such that tt^JT<*«> = 
= s . a. We have co J = 0 because the section s is horizontal. Now, 
7tk^hq(XW) = Jf(***<*•>) - X ^ . a = * £ . <o7

g(Xq) . a) = 0; 
hence ®(XqX(*J) = 0. 
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The conditions of Theorem 1 are satisfied and consequently, there 
is a map <p: Vn -> Am such that O = cptQ+1 on T^+ i(Vn). Since the re­
striction of <S>q to T(Vn)q is a monomorphism (the second condition 
of III), we can see easily that cp is an immersion. Now from the con­
struction of the principal bundle P° we see that, on each ?Vf-i( Vn)q, 

r f t 
t* = to ® (xoJgonr i | + 1 | 1-) = t o ( ® Og) = *o (® <p*0+i,q), 

which proves our assertion for Vn simply connected. 
In case Vn to be not simply connected, let us consider the universal 

covering manifold Vn of Vn (see [8]). Then the proof will be easily 
traced back to the preceding case. 

In the second part of this Paper we shall try to generalize Theorem 1, 
at least in a weakened form, to the case when Am is replaced by an 
arbitrary Lie group. So, let G be a Lie group, g its Lie algebra. For 
Xg E T(G) let us denote by co(Xg) the left invariant vector field on G 
determined by Xg. Then co: T(G) -> g is a vector form on G9 each partial 
map o)g: T(G)g->g being an isomorphism. Let Sk: Tk+1(G) ->T(G) 
be a surconnection on G and cp: Vn -> G a differentiable map. Then we 
have a sequence of maps, analogous to (4): 

Tk+i(<P) Sk co 
(8) Z W F J • W ) >T(G) >g . 

Let <p*: Th+x(Vn) -> g denote the composed map of the sequence. 
9> Prz 

Obviously <p* may be written as a composition Tk+1( Vn) -+ Vn X g -> 

-> g, of a bundle morphism and a canonical projection. 
Proposition 1. There is a map 5P*: T(Vn) ® Tk(Vn) -> g, a compo­

sition of a bundle morphism T(Vn) (g) Tk(Vn) -> Vn x g and the canonical 
projection pr2: Vn X g -> g, with the following property: 

(9) " (p*(x^>) = xpV*(xw) + y*(z„ ® x?) 
for any vector Xp e T( Vn) and any local section X<k) of Tk( Vn) defined at p. 

Proof. Let be given Xp e T(Vn)pi Xf e Tk(Vn)p. Let Z<*> be a local 
section of Tk(Vn) passing through Xp

kK I t suffices to prove that the 
expression <p*(XpX^) — Xp<p*(XW) depends on Xp, Xf only and 
that it is linear in each argument. Choose a local coordinate system 
(ut,-..., un) at p and put 

xp= ia<4~j> x(k) = I «*» •••• Hq) irr^iTi -
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Then 
,0a*--*'* дk 

ôu 
gш 

{ rìa.4 ••• h-

. . . c?'+1 1 
+ a%a%i »• »* (©) ~—-. — --—r-} , 

^(X^-x^x^) -- SaW. -.<,, {̂  (^,,„^,..aJ ~ 

This proves our assertion. 
Proposition 2. For any Xpi YpeT(Vn)p we have W*(Xp eg) Yp — 

— F p eg) Xp) = [<p*(Kp), <p*(Yp)], [ , ] bei^ the bracket operation 
in the algebra g. 

Proof. Let us remind the equations dco = — 1/2 [co, co], dco(X, Y) = 
= Kco(7) — Yw(X)—co([X, Y]), where co: T(G) ->g is the canonical 
form. (See [5], for instance). These equations are still valid if we substitute 
the form co by the form co' = co 0 0*99, ^T91 ̂ ( ^n) ""* T(Q) being the tangent 
map of cp. According to (8), we have co' = cp* on T(Vn). Let X, Y be 
local tangent fields at p passing through Xp, Yp, respectively. Then 

<p*(XpY) - <p*(YpX) = <p*([X, Y]p) = Xpco'(Y) - Ypco'(X) -
- do^X, , Yp) = Xpco'(Y) - Ypco'(X) + [co'(Xp), co'(Yv)} = 

= Xpcp*( Y) - YpCP*(X) + [<p*(Xp), <p*( Yp)]. 

On the other hand 

<p*(XpY) - ^ ( Y . X ) = Xpcp*(Y) + W*(Xp ® Yp) - Y„<p*(X) -

-W*(Yp®Xp). 

This proves our assertion. 
Theorem 2. Let Vn be a simply connected manifold, G a Lie group 

with the algebra g. Let be given differentiable maps <$>: T8+1(Vn) -> g; 
ty:T(Vn) 0 T8(Vn)1-> g, w.Wcft are compositions of bundle morphisms 
<&: T8+1(Vn) -> Vn X g, $: T(Vn) ® ^ (V n ) - > F B X g , respectively 
and of the canonical projection pr2: Vn X g -»* g. Suppose that 

a) £Ae restriction o/O £0 ̂ e subbundle T8(Vn) is a bundle epimorphism, 
b) i/ I p e T ( F n ) a ^ JL<«> is a ZocaZ secftw of T8(Vn) defined at p 

such that <D(X<«>) = const, then ®(XpX&) = ty(Xp eg) Xf), 
c) /or awt/ £wo vectors Xp, Ype T( VJ t#e &a?;e 

^(X„ ® Y„ - Yp ® X„) = [cl>(Xp), <D( Y„)]. 
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Then there is exactly one map (p: Vn -> G satisfying initial condition 
q)(p) == g and such that <t> = o) 0dq> on T(Vn). 

Proof. An argument like that in the proof of Theorem 1 shows that 

(10) WX^M) = X p <&(*<'>) + <\>(Xp ® Xf) 

for any vector X- e T(Vn) and any local section X^ of T8(Vn) defined 
at p. Let us define a distribution Aa on D — Vn X G as follows: if 
a = (p, g) e D, then Aa consists of all vectors of the form Xp + oj^^Xp), 
XpeT(Vn)p. For two vector fields X3 = Xq + co*1 ®(Xq), fR = 
= rq + co^"1<D(r„) belonging to A in a neighbourhood of a = (p, g) 
we obtain [ 1 , f]a = [X, F ] p + <o?Xp<b(Y) - a>;lYp<b{X) + 
+ V N W ' ° ( F P ) ] = tX> 7-*> + V * ^ Y]p). I t is a consequence 
of (10) and of the assumption c) of the Theorem. Thus the distribution A 
is involutive. The rest of the proof is the same as at Theorem 1. 

N o t e 3. If the restriction of <t> to the subbundle T(Vn) is a mono-
morphism, then <p is an immersion. 

There is an interesting special case when we may prove a stronger 
result, an exact analog of Theorem 1. It is the case when [[X, Y], Z] = 0 
for any X, F, Z e g. As known, on any Lie group G there is exactly 
one connection V with the following properties: 

a) The geodesies of V are the integral curves of left invariant vector 
fields on G, 

b) the torsion form T(X, Y) = 0. (See [5], Chapter 6.) We have 

(11) VX f Y = oo~x {xgo>( Y) + ±- M I , ) , a>( F f)]} 

for any vector Xg e T(G)g and any vector field 7 at g. Finally, the 
curvature form is given by R(X, F, Z) = 1/4[[Z, F], Z]. In our special 
case we have R(X, F, _Z) == 0 and consequently, the iterations V* gene­
rate a canonical sequence {S,.} of symmetric surconnections on G. 
According to (3), (11) we have 

(12) 8k(Xgxm) -= VxA-iW = V {XÁ°> ° S*-J <z(ř)) + 

+ 2 І-tю(i,).t«>0'S'*-i]да]} 

foг k ä: 2. 
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Now, for any differentiable map <p: Vn-*G and any i ^ O w e can 
define a map <p*+i'- Tk+l(Vn)-+g by <p*k+l = co oSko Tk+X(<p). (Here 
y* = a) o Tx(<p).) From (11), (12) we get a formula 

(13) <p*(XpX<») = Xp<p*(XW) + - 1 [<p*(Xp), <p*(Xf)]. 

If the mapping ^: T(VJ <g>-F,(FJ ->g introduced in Theorem 2 
is given by ty(Xp ® Xf) = 1/2[0(X|)), 0(XJ>)], the condition c is 
fulfilled. From Theorem 2 and (10), (13), we obtain the following result: 
there is exactly one map <p: Vn-+G satisfying an initial condition and 
such that <p* == O on T(Vn). Moreover, we have <p* == O on the whole 
Ts+i(Vn). 

REFERENCES 

[1] Ch. E h г e s m a n n , Les prolongements ďune variété diffèrentiaЫe, I, CR.Ac.Sc, 
Paris, t. 233, (1951), p. 598. 

[2] P . L i b e r m a n n , Surconnexюns — propriétés générales, CR. Acad. Sc. Paris, 
t. 258 (1964), p. 6327. 

[3] P . L i b e r m a n n , Sur la géométrie des prolongements des espaces fibrés vectoriels, 
Ann. Inst. Fouri r, Gr nobl , 14, 1 (1964), 145—172. 

[4] S. Sasak i , A global formulation of ťhe fundamental theorem of the theory of 
surfaces in three-dimensional Euclidean space. Nagoya Mat. J., 13, 69—82, 
1958. 

[5] R. L. B i s h o p , R. J. Cr i t t n d n, Oeometry of manifolds, Acad mic Pr ss 
N w Yorţc and London, 1964. 

[6]M . K o č a n d r l e , Dijferential geometry of submanifolds in affine space with 
tensor structure, Cz ch. Math. Journal, 17 (92) 1967, Praha, p. 434—446. 

[7] A. L i c h n row icz, Théorie globale des connexions et de groupes ďholonomie. 
Ed. Cremonese, Roma, 1955. 

[8] C Ch v a l l y, Theory of Lie groups I, Princeton, 1946. 

Department of Maťhematics 

Technical Highschool, Brno, Barvičova 85. 


		webmaster@dml.cz
	2012-05-09T13:25:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




