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A CHARACTERIZATION OF OSCULATING MAPS
By OupkicE KowaLski, Brno

Received January 24, 1968

In this paper we characterize osculating maps of higher order of a dif-
ferentiable map V,—V,,, V, being a simply connected manifold

and 17,,, an affine space or a Lie group.

In the following, all manifolds, maps, vector bundles and their sections,
respectively are supposed to be differentiable of class C™.

Let V, be a manifold of dimension n. For pe V, let f be a local
function at p such that f(p) = 0. Then a k-jet jk(f) is called a covelocity
of order k on V, at the point p. Let T**(V,), be a vector space of all
covelocities of order k at p. Each linear form X & on T*(V,), is called

a vector of order k at p. The set of all X® is a vector space Ty(V,),.
We put T(V,) U T(V)p

For any k, T',( V,,) is naturally a vector bundle over V, and T\(V,) =
= T(V,) is the tangent bundle of V,. (See [1], [3].)
Each vector X e T(V,) is a linear differential operator on V,

and, with respect to a local coordinate system (u,, ..., u,) at p, it is
represented uniquely in the form
d 02
1 X(lc) _
@ Z % G T 1522; % dwow T T

ot
+ Z L7 W

16 Sipgn . Oul ”

For any sequence of indices 0 £ ¢, < ... £ 1, < »n, i, > 0, we can
X 6’“

introduce an operator puttmg inductively: ———— Ew
1

N oun ... o
=Wfor each l < k 0 < Jl = ... é jl é n’jl > 0. Then(l)
takes a simple form

o
v X® = iy iy TR
(19 ? ogilgggikgn Biy e ix oub ... Ou'r
x>0
¢
In a coordinate neighbourhood U < V,, the operatorsm,

054 = ...£4, S n, 1, >0, form a basis of T,(V,), for each ge U.
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On the other hand, any vector X% e T;4,(V,) may be written in
the form

(2) X;}kﬂ) = igl X, ,,X:;"’, N

where X® are suitable local sections of 7';(V,) defined at p, and X, ,€
€T(V,),, t=1,2,...,r. For any Il £ k we have a canonical injection
Il.k: Tl(Vn) - Tk(Vn)

Following P. LIBERMANN, a symmetric surconnection S, of order k
on V, is a bundle homomorphism 8;: T4 (V,) = T(V,) such that
Sio Iy 41t T(V,) —> T(V,) = the identity map. (See [2].) It is easy
to check that a symmetric surconnection S;: Ty(V,) — T(V,) is an
ordinary linear connection V on ¥, the torsion form of which vanishes.
(See [3], p. 158.) Further, the successive interations V* of V (k =1, 2, ...)
determine a sequence of symmetric surconnections S, of orders k =
=1, 2, ..., if, and only if, the curvature form of V vanishes, too. In
this case, we can define the sequence {S;} by induction: for X¥+1. e

r
€T (V,), Xg*P = Zl X; ,XP®, we put
1=

(3) Sng”l’ _ Z VX.,,,(S,(--lXEk))’
i=1

It must be shown that (3) does not depend on a representation of X1
in the form (2). But this is just guaranteed by vanishing of both torsion
and curvature forms of V. (The proof is routine nad will be omitted.)
Forl < k, 8, is a.prolongation of S,, i.e., S, = 8; o L}41 341 o0 Tp1y(V ).

Note 1. If the curvature of V is non-zero, the successive iterations V*
define a sequence {S,} of semiholonomic surconnections; see [2].

Note 2. On a paracompact V,, there are symmetric surconnections
of any order k. In fact, we can construct such a surconnection on each

coordinate neighbourhood of V, and then use a C®-partition of unity
subjected to a locally finite atlas of V,,.

A differentiable map ¢: V, — I7m induces canonically a sequence
{Tp): T(V,) > T(V,)} of bundle morphisms such that all the

diagrams 7', (V) — T‘.(I‘;'m) are commutative, k =1, 2, ... Let be

T @ 7, Y

V n -_— V??l

now 17,,1 = A™, an affine space of dimension m. Let us denote by W™
the associated vector space of A™ and for each x € A™ let w, : T(4™), —
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— W™ be the canonical isomorphism. The maps w,, x € 4™, determine
a vector form w on A™, w : T(A™) — W™.

In A™, there is a canonical flat connection V. Its successive iterations
determine a canonical sequence {S,} of symmetric surconnections on 4™.
In a linear coordinate system (z,, ..., x,) of A™, each S;, k = 1, may be

reprezented as follows: for X$Ve T, (4™), XV =Y ay
PR+

' ax"l ... Oxten

b
, 024 £ ... 2 gy £ M, Gy > 0 we have S (XFHY) =

= Z Q.. .00 a—__ the first order part of X&¥+D. Fork k = 0 we put

So: T(A”‘) — T(A™) = the identity map. Let ¢@: V,, - A™ be a smooth
map. For any k = 1, we shall denote by ¢}: Ti(V, ) — W™ the composi-
tions of maps of the sequence .

Ty (9) 81 w
(4) TV, — Tydm) — T(4") — W™
We can see that any ¢} is a composition of a bundle morphism

&A T«V, -V, x W™ and a canonical projection pry: V, X W —
— W™, In the regular case there is an index s such that g, is a bundle

epimorphism. If (f,, ..., f,) is a basis of W, corresponding to a linear
coordinate system (!, ..., ™), we have

' m
(5) XY = X [XP@ o )l fi-

For any ! > k, ¢} = gy holds on the bundle 7(V,) and hence it is
possible to omit k. From (5) we obtain immediately

(6) PHXXW) = Xpp*X®).  (k=1,2,..)

(Here ¢*(X®) is to be considered as a local vector function on V,
with values in W™.) Therefore, if ¢*(X®) = const. for a local section
X® of the bundle T (V,), we have ¢*(X,X®) = 0.

Our task is to prove the converse: in the regular case, the last property
is characteristic for the maps @y .

Theorem 1. Let V, be a simply comnected manifold and s 2 1 an
integer. Let be given a map ©: T, (V,) — W™ of the form ® = pr, , O,

where ®: T, (V,) =V, X W™ is a bundle morphism and pry:
V, x Wm— W™ is a canonical projection. Suppose that
a) the restriction of ® to the subbundle T(V,) is a bundle epimorphism,
b) if X,eT(V,) and X® is a local section of T (V) defined at p such
that ®(X®) = const., then ®(X,X®) = 0. Under these assumptions
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there is exactly one map @: V, — A™ satisfying initial condition @(p) = x
and such that g* = ® on T(V,). Moreover, we have ¢* = ® on the whole
bundle T, ,(V,).

Proof. Let be given pe V, and a basis (fy, ..., f,) of W™ Denote
by » the dimension of a fibre of T',(V ). As @ induces a bundle epimorphism
T,V,) =V, x Wm, the following assertion may be easily verified:
there is a coordinate neighbourhood U(w,,...,u,) at p and local
sections X{, ..., X® of T(V,) over U such that (i) the vectors X{, ...,
X, are linearly independent, (ii) we have

DX = f, 1=1,2,.
P(XP) =0, t=m++1,...,v
identically on U.
Put

L 0*

X® = aoste f—~

»e osﬁggsﬁsn P@ \ duh... Out)’
1,>0

1=1,...,9,

then the determinant | afi;¥*| # 0. Now

0 s = {a“i"" ‘ . i i ot
X X our (au"l...auis)-*_a‘ (au"l...auk...au‘-)}’
9 - {aa:;,...i. o )
Fur P = X ouk ® ( por v e
AP 0*
+apet W‘D(au“‘a...au—i.)} =0,
and according to the assumption b of the Theorem,

0 ® aa::, verly 0*
(D(a F X ) Z:{ ouk ‘D(aw‘n...au-'-)+

¥ i @ ( _ o -0
: ouh ... 0u® ... Quv )

Thus we ha,ve, forany k=1,2,...,nand ¢+ =1,2,..., v,

i a‘+l a al
Lk, l (aw‘x owE aw-)‘“(“aﬁ),,q’ (auﬁ aw‘-)} =0

In view ofla”l |.7&O

aa+1 0 / 0*
® (auix Tour . u) = ® (aun au")
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for any sequence 0 £ 4, £ 4, < ...
we obtain easily

(M) OX,X®) = X, D (X)

for any vector X ,e T(V,) and any local section X® of T',(V,) defined
at p.

To complete our proof we shall use the Frobenius Theorem. Put
D=V, x A™ At each point a€ D, « = (p, ) we have T(D), =
= T V,,),, + T'(A™),. We shall construct on D a differentiable distribu-
tion A, of dimension % as follows: for any « € D, = (p, 2),let A, = T(D),
be a linear subspace of all vectors of the form X, + w;!® (X,),
X,eT(V,),. The distribution A, is involutive. In fact, let n: D—>V,
be a canonical projection. For any a« = (p, x) € D, there are hnearly
independent vector fields X, ..., X, defined on a neighbourhood
U 3 p. Then the vector fields X; 5 = X; , + w2 ®(X; ), i =1,2,.
generate the distribution Ay, f = (¢, %), on a nelghbourhood n‘l( U) of o.
It suffices to prove that X, X ila belongs to A,. But since X X do
not depend essentially on_ y, we have w; O(X, )X =0,
a)_l(I)(X7 » X; = 0, and hence X, X, =(X;, X, ]p-}—X,’pwy (D(X,, )—

w, DX, ;) = [X,;, X;], + 074X, , D(X,) — X, , DX} =

[Xz, X,]IJ + w,, (I)([X,, X1y accordmg to (7)

There is only one maximal integral manifold ¥, of the distribution A,,
passing through a prescribed point «y € D. Then for any aeV,, a=

= (p, x), we have dn[T(V )ol = dn(Ag) = T(V,),. Hence z is a local
diffeomorphism. Since A is invariant with respect to all transformations
of D of the form (g, ¥) — (g, y + a), V, is a covering space of V,.
As V, is simply connected, 7 is a diffeomorphism. If g: D — 4™ is
a canonical prOJectlon, we obtain a map ¢: V, > A", ¢p =90, 7L
Here dg(X,) = wyy, ©(X,) for any X,eT(V,), "and consequent]y,
view of (4), O=wodp=woT(p)= ¢* on T(V ). Finally, from
(6), (7), we see, step by step, that ¢* =@ on Ty(V,), Ts(V,), ...,
T.1(V,), qed.

A

k

A

.S, 2 n k > 0. Hence

*

As an application of Theorem 1, we can re-prove a result of KOGANDRLE
(see [6]). First we shall present some concepts of [6]. Let be given

& covariant tensor #(, ..., #,) of degree r on W™. We shall denote
by S the set of all vectors y € W™ such thaté(zy, ..., %1, ¥, Titys -+ &,) =
= 0 for arbitrary vectors #,, ..., #;—;, Z;11, ..., %, from W™. The inter-

T
section S = ('S is called the singular space of t. The automorphism
i=1
group of the tensor t is the group of all transformations g € GL(m) such
that t(z,, ..., ,) = tyg, ..., x,g) for each x,, ..., z, € W™. It is a Lie
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subgroup G° = GL(m). Let be given a fived regular tensor t (z,, ..., z,)

on W™, i.e., such that its singular space S = {0}. If ¢: V, > 4,, is

a map, g: T;(V,) — W™ the induced maps given by (4), k=1, 2, ...,
r

we can define an r-linear form ¢ =t o (®g}) on 7', (V,) for each k =
= 1,2, ... For each k > I, ¢} coincides with ¢ on 7',(V,). The sequence
{te} of multilinear forms is called the fundamental tensor of the manifold
V,. Now, the main result of [6] is a characterization of the fundamental
tensor. :

Let us consider the following conditions:

I. On V,, there is given a differentiable tensor t* covariant of
degree r, acting at each point pe V, on the (k, + 1)-vectors from
Ti,1(V,)p, ko is & given number.

Let us denote by S, ,, Sk +1,, the singular spaces of t* on T4 (V,),
and Ty, 1(V,),, respectively.

I1. For any differentiable fields of ky-vectors X{, ..., X% and
r

any vector ¥Y,eT(V,),, we have Y *X{ ..., X%) = % *(X{,
., X ¥ X0 Xko . Xdo) i~

IIL dim T(V,),/8.» = dim Ty 1(V,),/Skerr,p =m for each
point p € V,; Si41,p N T(V,), = {0} for each pe V,.

Let P denote the principal fibre bundle of all bases of the spaces
Tko( Vﬂ)p/Sko:?’ pev,.

IV. To each point p € ¥V, there is a neighbourhood U < ¥V, of p and
a local section s of the fibre bundle P over U such that the components
of t* with respect to the basis s, are constant functions of g on U.

V. There is a point p € V,, such that the vector space W™ with the
given tensor ¢ is isomorphic to the space T (V,),/Sk,, » With the tensor ¢*.

Let us introduce the abbreviations Tk, = T(V,), Sk, = U Sk, 4.

eV,

q
and similarly for the index k, + 1. From 1lI we obtain easily
a commutative diagram Sy, — Sj, 4, over }’,, and a canonical iso-

Tko - T’ﬂr‘ 1
morphism o: T'4,/S¢, — Tk, .1/S, .1 of factor bundles. Let
ity Ty > TofSky Tgir: Thotr = Thyi1/Sky1
be canonical projections. We have a commutative diagram

T, Theo+1

Tr Sk Tty 11/Sky11-
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Let G, be the automorphism group of the tensor t on W™. We can prove
that V is satisfied at each point g € V,,. Let P be the set of all isomorphisms
r

xa: Tk, o/ Sky, ¢ — W™ with the property V, i.e., such that t* =t o @ (x, 0
o ko, q)- Then Py = U P9 is a principal fibre bundle over V, with
€Vn
the structural group ?}o. If we choose a fixed basis g* of W™, we obtain
a canonical ¢njection P® — P. Let be given p € V,,. To each section s of P
over a neighbourhood U 5 p, we can join a matrix form wj on T'(V,),
as follows: put 8 = (&, ..., &%) over U, £ being local sections
of T[S, Let X&), ..., X% be sections of T, over U such that
X&) = g, =1, 2, ..., m. For any X,eT(V,), the elements
nFtD = (X, XE), nEtV e Ty 11,,/Sk41,p, do not depend on
the representation of £ by X% and we can write
X, ={X&R, ..., X, E&0} = (fesD, ..., nkeiD} = ofs, . wy(X,)],

where o;(X,) is a matrix of type m X m.

It may be deduced from II that w}(X,) belongs to the Lie algebra g,
of ", Further, the forms wy(p € V,, s being a local section of P° defined
at p) determine a connection w in P°. (See [6] and, for instance [7].)
Now, the last condition of the Paper [6] is the following:

VI. The curvature form of the connzction w is equal to 0.

The main result of [6] is the following: if the conditions 1—VI are
satisfied then there i3 a covering manifold V, with the covering map n:
Vo—>V, and a regular map ¥: V,— A" such that we. have locally t* =

r

=10(® @r,+1); here ¢ = Yoa is a local embedding V, — A™.

Proof. First let us suppose that the manifold V,, is simply connected.
Because the curvature form of w vanishes, there are local horizontal
gections in P,, and from the monodromy theorem (see [8]) follows
that there is a global horizontal section s: V, — P%. We have global
horizontal sections in the associated fibre bundle E = T /8, =~
= Ty,11/Sky+1, too. Let pe V, be a fixed point, x: B, - W™ a fixed

isomorphism such that t* =fo ® (y o M,+1,,) (Condition V). Let
h,: E, — E, be the parallel translation with respect to the connection w.
Put ®, = yohk, omt1,e5 By Thyy1(V,),— W™, for ge V,. Then
the restriction of ®, to Ti(V,), is an epimorphism. Let X*o be a local
section of Tx,(V,) over a neighbourhood U 5 ¢, and X, € T(V,,), a vector.
Suppose that @(X®*)) = const. Then 7; X%*o is a horizontal section
of E and there is a constant matrix ¢ = (a,, ..., @,,) such that 7; X% =
—=3.a. We have w'f; = 0 because the section s is zxorizontal. Now,
Tyt 1, o( X X ®) = Xq(nk,X(”o)) =Xgs.a = os, . o)X, .a]l = 0;
hence (X, X*0)) = 0. / :
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The conditions of Theorem 1 are satlsﬁed and consequently, there
is & map ¢: V, — A™ such that ® = gj,,; on T4,+1(V,). Since the re-
striction of ®, to T(V,), is a monomorphlsm (the second condition
of III), we can see easily that @ is an immersion. Now from the con-
struction of the principal bundle P° we see that, on each T, 1(V,),,

, r r ’
ty=1to ® (xohyoMrr1,q) =t0(®D) =1t0(® @kt1,q)

which proves our assertion for V, simply connected.
In case V, to be not simply connected, let us consider the universal

covering manifold 17,, of V, (see [8]). Then the proof will be easily
traced back to the preceding case.

*

In the second part of this Paper we shall try to generalize Theorem 1,
at least in a weakened form, to the case when 4™ is replaced by an
arbitrary Lie group. So, let G be a Lie group, g its Lie algebra. For
X, € T(G) let us denote by w(X,) the left invariant vector field on ¢
determined by X,. Then w: T(G) — g is a vector form on @, each partial
map w,: T(G)g—-> g being an isomorphism. Let S,: 7,4, (&) - T(G)
be a surconnection on G and ¢: V, — @ a differentiable map. Then we
have a sequence of maps, analogous to (4):

Tiia(9) S o
8) Tya(Vy) = T144(6) —> T(G) —> .
Let ¢*: T,4,(V,) > g denote the composed map of the sequence.

@ pry
Obviously ¢* may be written as a composition 7, ,(V,) - V, X g —
pry
— g, of & bundle morphism and a canonical projection.
Proposition 1. There is a map ¥*: T(V,) @ T(V,) — g a compo--
sition of a bundle morphism T(V,) @ T\ (V,) - V, X g and the canonical
projection pry: V,, X g — g, with the following property:

© PHE,X®) = X,gHXO) + PHX, © XP)

for any vector X, € T(V,) and any local section X®) of T\(V,) defined at p.

Proof. Let be given X, e T(V,),, X3 € Ty(V,),. Let X® be a local
section of 7'(V,) passmg through X"" It suffices to prove that the
expression P*(X, X("))—-X P*(X®) depends on X,, X¥ only.and
that it is linear in each ar gument Choose a local coordmate system
(43,.:.,u,) at p and put

Y a2 2 s

X = )a—-——, X®O= @i o () e,

PSS oul’ 0si <. Sipsn @ ouhr ... Qui
1k>'
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Then

Qg ok
® — 5 g )
XX X {a ou’ oulr ... Ou' +

o o'+t
tEat () S T aw Bu""‘}'

L ' ok+1
* (*)) *( X (F)) — Sytis oos U *
@ (X,,X ) Xp(]) (X ®) E a'a () {(P,, (aui, T ow .. 6uit)

9 ) x o }
(81:‘_ (au’l. Quiv ) [

This proves our assertion.

_ Proposition 2. For any X,, Y,eT(V,), we have ¥*(X, ® ¥, —
— Y, ® X,) = [¢*X,), *(Y,)], [ , | being the bracket operation
in the algebm g

Proof. Let us remind the equations dw = — 1/2 [w, w], dw(X,Y) =
= Xo(Y) — Yo(X) —w([X, Y]), where w: T(G) — g is the canonical
form. (See [5], for instance). These equations are still valid if we substitute
the form w by the form ' = w o dp, do: T(V,) — T(G) being the tangent
map of . According to (8), we have w’ = ¢* on T(V,). Let X, Y be
local tangent fields at p passing through X,, Y, respectively. Then

(P*(XpY) - (p*(YpX) = (P*([X’ Y]p) = Xpwl(Y) - pr'(X) -
- dw'(Xyn p) - Xpw,(Y) - pr,(X) + [w,(xp)’ w,(Yp)] =
= Xp(p (Y) - Yp(p*(X) + [(p*(Xp)’ (p*(Yp)]'

On the other hand
(p*(XpY) - (P*(YpX) = Xp(p*(Y) + W*(Xp ® Yp) - qu)*(X) -
—PHY, ® X,).

This proves our assertion.

Theorem 2. Let V, be a simply connected manifold, G a Lie group
with the algebra g. Let be given differentiable maps ®: T, (V,) — §;
$: T(V,) @ T(V,) — g, which are compositions of bundle morphisms
O: 7, (V) >V, xg U:TWV,)QT,(V,) — V, X g, respectively
and of the canonical projection pry: V, X g — g. Suppose that

a) the restriction of @ to the subbundle T (V,) is a bundle epimorphism,

b) if X, eT(V,) and X® is a local section of T, (V,) defined at p
such that B(X®) = const., then B(X,X®) = Y(X, ® X®),

¢) for any two vectors X,,, Y,e T(V,) we have

q"(Xp ® Y‘n_‘ Yp &® Xp) = l—q)(xp)y (D(Yp)]
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Then there is exactly one map @: V,— G satisfying initial condition
@(p) = g and such that ® = w o dp on T(V,,).

Proof. An argument like that in the proof of Theorem 1 shows that
(10) Q(XFX(')) = XP(D(X(')) + ¢(Xp ® X;}a))

for any vector X, e T'(V,) and any local section X® of T',(V,) defined
at p. Let us define a distribution A, on D =V, X G as follows: if
a = (p, g) € D, then A, consists of all vectors of the form X, + w2 ®(X,),
X,eT(V,),. For two vector fields X;= X + w;'®(X,), Y, =
= Y, + 03" ®(Y,) belonging to A in a neighbourhood of « = (p, g)
we obtain [X, ¥), = [X, Y], + 0;'X,®(¥) — ;'¥,O(X) +
+ 0 [P(X,), D(Y,)] = [X, Y], + 0, ) ®([X, Y],). It is a consequence
of (10) and of the assumption ¢) of the Theorem. Thus the distribution A
is involutive. The rest of the proof is the same as at Theorem 1.

Note 3. If the restriction of @ to the subbundle T(V,) is a mono-
morphism, then ¢ is an immersion.

*

There is an interesting special case when we may prove. a stronger
result, an exact analog of Theorem 1. It is the case when [[X, Y],Z] =0
for any X, Y, Ze g. As known, on any Lie group G there is exactly
one connection V with the following properties:

a) The geodesics of V are the integral curves of left invariant vector
fields on G,
b) the torsion form 7'(X, Y)= 0. (See [5], Chapter 6.) We have

ay Va,¥ = o7 {X0(0) + 5 [0(X,), o7,

for any vector X, e T(&), and any vector field Y at g. Finally, the
curvature form is given by R(X, Y, Z) = 1/4[[X, Y], Z]. In our special
~ case we have R(X, .Y, Z) = 0 and consequently, the iterations V* gene-
rate a canonical sequence {S,} of symmetric surconnections on G.
According to (3), (11) we have

(12)  SyX,X®) = Vr,S(XP) = g’ {X,[w 0 811 (X®) +

+ /;‘ [w(X,): [@o 8] ( X;"’)]}
for k 2 2.
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Now, for any differentiable map ¢: V,— G and any k£ = 0 we can
define & map @kt Tpn(V,) > 8 bY @iy = @ 08, 0 Tyiy(g). (Here
¢} = w o Ty(¢).) From (11), (12) we get a formula

1) HEX®) = XgHE®) + o [gE,), XD

If the mapping ¢: T(V,) ® T,(V,) »> g introduced in Theorem 2
is given by {(X, ® X) = 1/2[®(X,), ®(X¥)], the condition ¢ is
fulfilled. From Theorem 2 and (10), (13), we obtain the following result:
there is exactly one map @: V, — G satisfying an initial condition and
such that ¢* = ® on T(V,). Moreover, we have @* = ® on the whole
Toa(V,).
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