Ivo Rosenberg The refinement of two isomorphic generalized lexicographic products

Archivum Mathematicum, Vol. 6 (1970), No. 4, 229--235

Persistent URL: http://dml.cz/dmlcz/104728

Terms of use:

© Masaryk University, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

THE REFINEMENT OF TWO ISOMORPHIC GENERALIZED LEXICOGRAPHIC PRODUCTS

Ivo Rosenberg

(Received April 15, 1968)

INTRODUCTION

In a recent paper [3] M. Novotný has described a decomposition induced by an isomorphism of two Cartesian products. The purpose of this note is to introduce a generalization of the lexicographic product and to extend some of the results of [3] and [4] to this product.

1.

Without reference we shall use the terminology and notation of [3]. We start with a generalization of the lexicographic product. Let A, M be nonempty sets and let M^A denote the set of all mappings from A to M. The elements of M^A will be denoted also by $(m_a)_{a \in A}$. A subset ϱ of M^A will be called an *A*-relation on M. If card $A = h < \aleph_0$, we agree to identify the *A*-relations on M with the *h*-ary relations on M, i.e. with the subsets of the Cartesian power $M^h = M \times \ldots \times M$.

Let A, C, Q and $B_q(q \in Q)$ be nonempty sets. Let α_q be A-relations on B_q and let γ be a C-relation on Q. The Cartesian product of the sets B_q will be denoted by $B = X B_q$. We shall consider the set Φ of all logical formulae which: $q \in Q$

1° have exactly the free variables $(f_q^a)_{q \in Q} \in B$ and

 2° are built up from the following atomic predicates:

(i) the equalities: $E_{a'a''q} \equiv d_f f_q^{a'} = f_q^{a''} (q \in Q, a', a'' \in A),$

(ii) the predicates defined by the relations $\alpha_q : P \nu_q \equiv df(f_k^{\nu a})_{a \in A} \in \alpha_q$ $(q \in Q, \nu : A \to A),$

(iii) the predicates defined by the relation $\gamma : W_{\mu} \equiv d_f(\mu c)_{c \in C} \in \gamma$ $(\mu : C \to Q)$. Hence the formulae from Φ are formed from the atomic predicates (i)—(iii) by means of the disjunction \swarrow , the conjunction &, the negation \sim , and the quantifiers \exists and \forall (whose bound variables range over Q) according to the laws of the predicate calculus.

Example. Let card A = card C = 2 and let \leq_q and \leq be binary reflexive relations on $B_q(q \in Q)$ and Q respectively. We have the following example of a formula from Φ :

(1)
$$L(f^1, f^2) \equiv {}_{df} \bigvee_q \Big((f^1_q = f^2_q) \bigcup_u (\exists (u \le q) & (f^1_u \le uf^2_u) & (\sim (f^1_u = f^2_u)) \Big) \Big).$$

It is easy to check that (1) is in fact the definition of the lexicographic product.

Let $L \in \Phi$. The A-relation corresponding to L will be denoted by λ_B . Hence $(f^a)_{a \in A} \in \lambda_B$ iff $L(f^a)_{a \in A}$ holds. Let $m = (m_q)_{q \in Q} \in B$ and let λ_B satisfy the following condition (C_m) :

(C_m): If $f^a \in B(a \in A)$, $s \in Q$, and $f^a_q = m_q$ for all $a \in A$ and all $q \in Q \setminus \{s\}$, then

$$(f^a)_{a \in A} \in \lambda_B$$
 iff $(f^a_s)_{a \in A} \in \alpha_s$.

We shall call the set B with the A-relation λ_B satisfying (C_m) the L_m -product of (B_q, α_q) over (Q, γ) , in symbols $\prod_{q \in Q} B_q$ (shortly L-product only). It is a simple matter to check that L defined by (1) satisfies (C_m) for any $m \in B$; hence the lexicographic product is an L_m -product, in particular the cardinal product is also an L_m -product. Thus the L_m -product is a generalization of the lexicographic product.

2.

2.1. Definition. Let K, K', S, and U_{kk} , $(k \in K, k' \in K')$ be sets. Let h be a mapping of $\underset{(k,k')\in K\times K'}{\times} U_{kk'}$ into S. We define $h^*: \underset{k \in K}{\times} (\underset{k' \in K'}{\times} U_{kk'}) \to S$ by

$$h^*((u_{kk'})_{k' \in K'})_{k \in K} = h(u_{kk'})_{(k,k') \in K imes K'}$$

for any $u_{kk'} \in U_{kk'}(k \in K, k' \in K')$. Obviously $h \to h^*$ is an one-to-one correspondence between the set of all mappings of $\underset{k \in K}{X} U_{kk'}$ into S and the set of all mappings of $\underset{k \in K}{X} (X U_{kk'})$ into S. In the sequel we shall denote both mappings h and h^* by the same symbol.

2.2. Definition. Throughout this note S will be a nonempty set, σ an A-relation on S, (U, λ_U) will be a fixed L_m -product $\prod U_k$ of the sets (U_k, ϱ_k) over (K, \varkappa) and $(U', \lambda_{U'})$ will be a fixed $L_{m'}$ -product $\prod_{k' \in K'} U'_{k'}$ of the sets $(U'_{k'}, \varrho'_{k'})$ over (K', \varkappa') (where ϱ_k and $\varrho'_{k'}$ are A-relations on U_k and $U'_{k'}$ respectively and \varkappa and \varkappa' are C-relations on K and K', respectively) In the sequel we shall assume that f is an isomorphism of (U, λ_U) onto (S, σ) (that is f is a bijection such that $(g^a)_{a \in A} \in \lambda_U$ iff $(fg^a)_{a \in A} \in \sigma), f'$ is an isomorphism of $(U', \lambda_{U'})$ onto (S, σ) and fm = f'm' = n.

If this holds then $(S, (U_k)_{k \in K}, f, n)$ and $(S, (U'_k)_{k' \in K'}, f', n)$ are admissible quadruples in the sense of [3] 1.1 and the mappings q_k and $q'_{k'}$ can be defined as in [3] 1.2. The following conditions are equivalent (see [3] 4 and [4] th. 1):

(
$$\alpha$$
): $q_k q'_{k'} = q'_{k'} q_k$ for all $k \in K$ and $k' \in K'$,

(b) There exist sets $U_{kk'}$ and bijections $f'_k \colon X \hspace{0.1cm} U_{kk'} \to U_k$ and bijections $f_{k'} \colon X \hspace{0.1cm} U_{kk'} \to U_k$ and bijections $f_{k'} \colon X \hspace{0.1cm} U_{kk'} \to U'_{k'}$ for every $k \in K, \hspace{0.1cm} k' \in K'$ such that $f(f'_k)_{k \in K} = f'(f_{k'})_{k' \in K'}$,

where $f(f'_k)_{k \in K}$ and $f'(f_{k'})_{k' \in K'}$ are defined in [3] 3.5.

We shall prove now that if (α) holds, then there exist A-relations $\xi_{kk'}$ on $U_{kk'}$ such that the bijections $f(f'_k)_{k \in K}$ and $f'(f_{k'})_{k' \in K'}$ are isomorphisms of the L-product $X = \prod_{k \in K} (\prod_{k' \in K'} U_{kk'})$ and the L-product $Y = \prod_{k' \in K'} (\prod_{k' \in K} U_{kk'})$ onto (S, σ) , respectively. The proof is based on several $k' \in K' \in K$

lemmas. Throughout k and k' are elements of K and K', respectively. We shall assume that (α) holds. We define $U_{kk'}$ as in [3] 3.8 (proof part 5) by

(2)
$$U_{kk'} = q_k q'_{k'} S = q'_{k'} q_k S (= q_k S \cap q'_{k'} S).$$

Further let

(3)
$$X_k = \prod_{k' \in K'} U_{kk'}, \qquad Y_{k'} = \prod_{k \in K} U_{kk'}.$$

From [3] 1.7 and 1.5(i) it follows:

2.3. Lemma. If (α) holds and $u_{kk'} \in U_{kk'}$, then

(4)
$$q_k u_{kk'} = u_{kk'}, q_j u_{kk'} = n(j \in K, j \neq k),$$

(5)
$$q_{k'}u_{kk'} = u_{kk'}, q'_{l'}u_{kk'} = n(l \in K', l' \neq k').$$

2.4. Lemma. If $t \in q_l S$, then for every $k \in K$, $k \neq l$, we have

(6)
$$p_k f^{-1} t = p_k f^{-1} n = n_k$$

Proof: By [3] 1.2 and 1.5 (i) $t = q_l t$, hence $f^{-1}t = f^{-1}q_l t = f^{-1}fo_l p_l f^{-1}t = o_l p_l f^{-1}t$ and the lemma follows.

From [3] 3.8 (proof part 5), 3.6 and 1.2 it follows that f'_k is given by

(7)
$$f'_{k}(u_{kk'})_{k'\in K'} = p_{k}f^{-1}f'(p'_{k'}f'^{-1}u_{kk'})_{k'\in K'}.$$

Thus,

(8)
$$f(f'_k)_{k \in K}(u_{kk'})_{(k,k') \in K \times K'} = f(p_k f^{-1}(f'(p'_{k'} f'^{-1} u_{kk'})_{k' \in K'})_{k \in K})$$

Further from [3] 3.2 and 1.2 we see that

(9)
$$f(f'_k)_{k \in K} = gog'.$$

In that what follows $u_{kk'}^a$, will be elements of $U_{kk'}(a \in A)$. We put

$$(10) t^a_k = (u^a_{kk'})_{k' \in K'}$$

(11)
$$v_k^a = (p_{k'}^{\prime} f^{\prime - 1} u_{kk'}^a)_{k' \in K'}.$$

Thus $t_k^a \in X_{k'}$ $v_k^a \in U'$, and

(12)
$$f(f'_k)_{k\in K}(u^a_{kk'})_{(k, k')\in K\times K'} = f(p_k f^{-1} f' v^a_k)_{k\in K}$$

2.5. Lemma. $f'v_k^a \in q_k S$, *i.e.*

$$(13) q_k f' v_k^a = f' v_k^a.$$

Proof: As $u_{kk'}^a \in U_{kk'} = q_k S \cap q'_{k'}S$, it follows that $gog'(u_{kk'}^a)_{(k,k')\in \epsilon K \times K'}$ is defined ([3] 3.3, proof part 1). From [3] 3.3, proof part 1 we obtain also that $g'(u_{kk'}^a)_{k'\in K'} \in q_k S$. But $g'(u_{kk'}^a)_{k'\in K'} = f'v_k^a$ ((11) and [3] 1.2) and (13) now follows by [3] 1.5 (i).

We note that $U_{kk'} \subseteq S$ and therefore the A-relations $\xi_{kk'}$ on $U_{kk'}$ can be defined as the restrictions of σ to $U_{kk'}$ (i.e. $\xi_{kk'} = \{g \in \sigma \mid g(A) \in U_{kk'}\}$.

2.6. Lemma. The following conditions are equivalent:

- (i) $(u^a_{kk'})_{a \in A} \in \xi_{kk'}$,
- (ii) $(p_k f^{-1} u^a_{kk'})_{a \in A} \in \varrho_k$,
- (iii) $(p'_{k'}f'^{-1}u^a_{kk'})_{a\in A} \in \varrho_{k'}$.

Proof: It follows from 2.3, (C_m) , $(C_{m'})$, $\xi_{kk'} \subseteq \sigma$, and from the fact that f and f' are isomorphisms.

2.7. Lemma. If R is one of the atomic predicates and $k \in K$, then

(14)
$$R(t_k^a)_{a \in A} \Leftrightarrow R(v_k^a)_{a \in A}$$

Proof: By the definition in the section 1 we have to consider the following three cases:

1) Let $R = E_{a'a''l'}(a', a'' \in A, l' \in K')$. Assume that $R(v_k^a)_{a \in A}$ holds. By (11) $R(v_k^a)_a \in A$ means $p'_l f'^{-1} u_{kl'}^a = p'_l f'^{-1} u_{kl'}^{a''}$. In view of (5) we have $u_{kl'}^a = q'_{l'} u_{kl'}^a = f'o_l p'_l f'^{-1} u_{kl'}^a = f'o_l p'_l f'^{-1} u_{kl'}^{a''} = q'_l u_{kl'}^{a''} = u_{kl'}^{l''}$; thus by (10) $R(t_k^a)_{a \in A}$ holds. Conversely $u_{kl'}^a = u_{kl'}^{a''}$ obviously implies $p'_l f'^{-1} u_{kl'}^{a''} = p'_l f'^{-1} u_{kl'}^{a''}$ and (14) holds.

2) Let $R = P v_{l'}(l' \in K', v: A \to A)$. Then $R(t_k^a)_a \in A$ means $(u_{kl'}^a)_{a \in A} \in \xi_{kl'}$ and $R(v_k^a)_{a \in A}$ means $(p'_l f'^{-1} u_{kl'}^a)_{a \in A} \in \varrho_{l'}$ and the assertion follows from 2.6.

3) Let $R = W_{\mu}(\mu: C \to K')$. Since $t_k^a \in X_k$ and $v_k^a \in U'$ and both X_k and U' are products over the same set (K', \varkappa') , both sides of (14) mean simply $(\mu c)_{c \in C} \in \varkappa'$ and (14) is trivially satisfied.

2.8. Lemma. If $k \in K$, then

(15)
$$(t_k)_{a\in A}\in\lambda_{Xk}\Leftrightarrow(v_k^a)_{a\in A}\in\lambda_{U'}.$$

Proof: L is a formula constructed from the atomic predicates. Since \checkmark , &, \sim , \exists , and \forall preserve the equivalence \Leftrightarrow , it follows from (14), that $L(t_k^a)_{a\in A}$ holds iff $L(v_k^a)_{a\in A}$ holds, hence (15) holds.

232

2.9. Lemma. If R is one of the atomic predicates then

(16)
$$R((t_k^a)_{k\in K})_{a\in A} \Leftrightarrow R((p_k f^{-1} f' v_k^a)_{k\in K})_{a\in A}$$

Proof: According to the definition of R we have to consider the following three cases:

1. Let $R = E_{a'a''t'}(a', a'' \in A, l \in K)$. Then the left and right side of (16) mean $t_i^{a'} = t_i^{a''}$ and $p_l f^{-1} f' v_i^{a'} = p_l f^{-1} f' v_i^{a''}$, respectively. Since f^{-1} and f' are bijections and t_i^a determines completely v_i^a , we have $t_i^{a'} = t_i^{a''} \Rightarrow$ $\Rightarrow p_l f^{-1} f' v_i^{a''} = p_l f^{-1} f' v_i^{a''}$. Conversely let $p_l f^{-1} f' v_i^{a'} = p_l f^{-1} f' v_i^{a''}$. Then by 2.5 and by the definition of q_l we have $f' v_i^{a'} = q_l f' v_i^{a''} = f_{0l} p_l f^{-1} f' v_i^{a''} = f' v_i^{a'''}$. But f' is a bijection and therefore $v_i^{a'} = v_i^{b'''}$, By (11) we have $p_k f'^{-1} u_{lk'}^{a'} = p_{k'} f'^{-1} u_{lk''}^{a''}$ for any $k' \in K'$. Therefore by' (5) and the definition of q'_k if or each $k' \in K'$ we obtain $u_{lk'}^{a'} = q_k u_{lk'}^{a'} = f' o_k p_k f'^{-1} u_{lk'}^{a'} = f' o_k p' k' f'^{-1} u_{lk''}^{a''} = q_{k'} u_{lk''}^{a''}$, i.e. $t_i^{a''} = t_i^{a'''}$.

2. Let $R = P \nu_l (l \in K, \nu : A \to A)$. Then the left and right side of (16) mean $(t_l^a)_{a \in A} \in \lambda_{Xl}$ and $(p_l t^{-1} f' v_l^a)_{a \ni A} \in \varrho_l$. According to 2.8 and in view of the fact that f' and f^{-1} are isomorphisms we have: $(t_l^{ia})_{a \in A} \in \lambda_{Xl} \Leftrightarrow$ $\Leftrightarrow (v_l^{ia})_{a \in A} \in \lambda_{U'} \Leftrightarrow (f^{-1} f' v_l^a)_{a \in A} \in \lambda_U$. By 2.5, 2.4, and (C_m) we have $(f^{-1} f' v_l^{ia})_{a \in A} \in \lambda_U \Leftrightarrow (p_l t^{-1} f' v_l^{ia})_{a \in A} \in \varrho_l$ and (16) holds.

3. Let $R = W_{\mu}(\mu : C \to K)$. Since both X and U are products over (K, \varkappa) , both sides of (16) mean simply $(\mu c)_{c \in C} \in \varkappa$ and (16) is trivially satisfied.

2.10. Lemma. $f(f'_k)_{k \in K}$ is an isomorphism of X onto S.

Proof: $f(f_k)$ is a bijection of X onto S. f is an isomorphism, hence in view of (8), (10), and (11) we have to prove only that

(17)
$$L((t_k^a)_{k\in K})_{a\in A} \Leftrightarrow L((p_k f^{-1} f' v_k^a)_{k\in K})_{a\in A}.$$

L is a formula constructed from atomic predicates. Since \checkmark , & \sim , \exists , and \forall preserve the equivalence \Leftrightarrow , (17) is a consequence of (16).

By symmetry we have a similar statement for $f'(f_{k'})_{k'\in K'}$. Thus we have

2.11. Theorem. Let S be a set, σ an A-relation on S, (U, λ_U) and $(U', \lambda_{U'})$ be an L_m -product of the sets (U_k, ϱ_k) over (K, \varkappa) and an L_m -product of the sets $(U_{k'}, \varrho_{k'})$ over (K', \varkappa') respectively (where ϱ_k and $\varrho_{k'}$ are A-relations on U_k and $U'_{k'}$ respectively and \varkappa and \varkappa' are C-relations on K and K' respectively). Further let f and f' be isomorphisms of (U, λ_U) and $(U', \lambda_{U'})$ onto (S, σ) respectively such that fm = f'm' = n. Then the following assertions are equivalent:

(a) For every $k \in K$ and $k' \in K'$ the mappings q_k and $q'_{k'}$ (determined by n) satisfy

$$q_k q_{k'} = q_{k'} q_k.$$

 $\begin{aligned} \delta^*) & \text{ For every } k \in K \text{ and } k' \in K' \text{ there exists a set } U_{kk'} \text{ and an } A\text{-relation} \\ \xi_{kk'} \text{ on } U_{kk'}; \text{ for every } k \in K \text{ there exists a bijection } f'_k : X & U_{kk'} \to U_k, \\ \text{and for every } k' \in K' \text{ there exists a bijection } f'_k : X & U_{kk'} \to U'_{k'} \text{ such that} \\ f(f'_k)_{k \in K} \text{ and } f'(f_{k'})_{k' \in K'} \text{ are isomorphisms of the } L\text{-product } \prod_{k \in K} (\prod_{k \in K'} U_{kk'}) \\ \text{and of the } L\text{-product } \prod_{k \in K} (\prod_{k \in K} U_{kk'}) \text{ onto } (S, \sigma) \text{ respectively.} \end{aligned}$

Let S be a set. Further let Ω be a set and let $\mathscr{A} = \{A_{\omega} \mid \omega \in \Omega\}$ be a system of nonempty sets. If σ^{ω} are any A_{ω} -relations on S, then the system $\{\sigma^{\omega} \mid \omega \in \Omega\}$ will be said to be an \mathscr{A} -relational structure on S. Let $\{\varrho_k^{\omega} \mid \omega \in \Omega\}$ be an \mathscr{A} -relational structure on U_k for each $k \in K$. If the L-product of $(U_k, \varrho_k^{\omega})$ over (K, \varkappa) is denoted by (U, λ_U^{ω}) for each $\omega \in \Omega$, then $\{\lambda_U^{\omega} \mid \omega \in \Omega\}$ is obviously an \mathscr{A} -relational structure on U. We say that f is an isomorphism of the \mathscr{A} -relational structure $\{\lambda_U^{\omega} \mid \omega \in \Omega\}$ onto the \mathscr{A} -relational structure $\{\sigma^{\omega} \mid \omega \in \Omega\}$ iff f is an isomorphism of the relation λ_U^{ω} onto the relation σ^{ω} for each $\omega \in \Omega$.

It is easy to see that 2.11 remains valid if we replace the relations σ , ρ_k , ρ'_k by \mathscr{A} -relational structures.

Let ϱ be an A-relation on M and let $a_0 \in A$. We say that ϱ is an operation on M iff for any $(f_a)_{a \in A} \in \varrho$ and $(g_a)_{a \in A} \in \varrho$ we have $: f_a = g_a$ for every $a \in A$, $a \neq a_0$ implies $f_{a_0} = g_{a_0}$. Hence a finitary *n*-ary operation is a special case of (n + 1)-ary relation. Our definition includes also partial and infinitary operations. From this it follows that universal algebras may be regarded as a special case of relational structures.

In the sequel we shall restrict ourselves to the ase of (full) direct product of algebras. A subalgebra with a single element $\{n\}$ is termed a *trivial subalgebra* (for reference see e.g. [1]). Obviously an isomorphism carries a trivial subalgebra onto a trivial subalgebra and (C_n) holds. Hence we have (see also [4] Theorem 2):

3.1. Theorem. Let Ω be an operator domain. Let S be an Ω -algebra with the trivial subalgebra $\{n\}$ and let $U_k(k \in K)$ and $U'_{k'}(k' \in K')$ be Ω -algebras. Further let f and f' be isomorphisms of the direct products $\prod_{k \in K} U_k$ and $\prod_{k' \in K'} U_{k' \in K'}$

onto S respectively. Then the following assertions are equivalent:

(a) For every $k \in K$ and $k' \in K'$ the mappings q_k and q_k' (determined by n) satisfy

$$q_{k}q_{k'}' = q_{k'}'q_{k}.$$

(δ') For every $k \in K$ and $k' \in K'$ there exists an Ω -algebra $U_{kk'}$; for every $k \in K$ there exists an isomorphism $f'_k : \prod_{\substack{k' \in K' \\ k' \in K'}} U_{kk'} \to U_k$ and for every

^{3.}

 $k' \in K'$ there exists an isomorphism $f_{k'} : \prod_{\substack{k \in K \\ k \in K'}} U_{kk'} \to U_{k'}$ such that $f(f_k)_{k \in K}$ and $f'(f_{k'})_{k' \in K'}$ are isomorphisms of $\prod_{\substack{(k,k') \in K \times K' \\ (k,k') \in K \times K'}} U_{kk'}$ onto S respectively.

3.2. Remark. Hashimoto has proved in [2] that if σ is a binary, reflexive, antisymmetric and connected relation on S, then the condition (α) is satisfied for eardinal products. This is not true for lexicographic products as the following very simple example shows.

Let h > 0 be an integer. By **h** we understand the chain 0 < 1 < ... < < h - 1. Let K = K' = 2, $U_0 = U'_1 = 2$, $U_1 = U'_0 = 3$. Then $U = \prod_{k \in K} U_k$ and $U' = \prod_{k' \in K'} U_k'$ are chains with 6 elements and hence both are isomorphic to S = 6. Let n = 0, s = 3 ($\in S$). Then $q_0 3 = fo_0 p_0(1,0) = f(1,0) = 3$ and similarly $q'_1 3 = f'o'_1 p'_1(1,1) = f'(0,1) = 1$. Thus $q'_1 q_0 3 = q'_1 3 = 1$ and $q_0 q'_1 3 = q_0 1 = fo_0 p_0(0,1) = f(0,0) = 0$, i.e. $q_0 q'_1 3 \neq q'_1 q_0 3$.

BIBLIOGRAPHY

- [1] Cohn P. M., Universal Algebras. Harper 8 Row 1965.
- [2] Hashimoto J., On Direct Products Decomposition of partially ordered Sets. Annals of Mathematics 54 (1951) 315-318.
- [3] Novotný M., On Cartesian Products.
- [4] Reimer O., On direct decompdsitons of algebras. Publ. Fac. Sci. Univ. J. E. Purkyně, Brno, No 437 (1962) p. 449-457.

Mathematical Department Technical Highschool Brno, Czechoslovakia