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ON CERTAIN PROPERTIES OF THE SOLUTIONS OF
A NON LINEAR DIFFERENTIAL EQUATION OF
THE SECOND ORDER

P. Sovrks, Kosice
(Received June 17, 1968)

The first part of this paper is a presentation of some results concerning the
boundedness of solutions of a non-linear differential equation of the second order
together with their first derivatives. A theorem is proved which is a generalization
of a theorem of Kiguradze [1] and some results from [2], [3] and [4] are generalized
and extended.

The second part deals with the oscillatory properties of solutions.

1. THE BOUNDEDNESS OF SOLUTIONS AND THEIR FIRST
DERIVATIVES

Consider a non-linear differential equation of the second order o the form

(1) a(t) u” + b(t) g(u, w') + f(t, u) = 0
@z

Let F(¢, ) = [ f(t, s) ds. In some theorems we shall postulate the following conditions:
0

o) f(t, ) and M are continuous for ¢t > % =2 0, |2 | < o0;
B) g(x, y) is continuous for all x and y and there exists a non-negative constant k
such that yg(z, y) = ky? for all  and y; ‘ ‘
y) a(t), b(t) are continuous non-negative functions for ¢ 2 ¢ = 0 and 2kb(t) 2 a’(t).
Theorem 1: Suppose that &), B) and ) hold. Suppose further that for any continuously

differentiable function x(t) on (fo, I) where to < § < 00 which is unbounded for t —1i_,
there exists a sequence {ti};~, such that, for t; —~1_,

F(t, x(t )
2 2 (atx< ) éamtaa: (t))
(3) lim F(to, 2(t:)) = F

with F £ o mdependent Of x(t).
Then e every solution u(t Of (1) defined for ¢t = t,, for whlch

ylo St Sty

4) F(to, u(to) ) + —Q—a(to) uw'2(ty) < F, is bounded for all t = t.

Prooa: Let, the solution u(t) exist on (f,,f) and suppose that it satisfies the-con-
dition (4). Suppose that lim sup | u(t) | = 4 oo for tp < { £ co. By multiplying (1)
t—1— .
by u'(t) we get
alt) w'e’ + b(t) g(u, w') w’ + f (¢, u) w =0,
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and by integrating

t

t
d .,
©) g [ a5 w3 ds [ 80 ou, w)) ds + Bt wt) = Fto uto) +
to

to
t
0 F(s, u(s))
+ j T TR ds
Since

¢
N | d
7 f a(s) O u'2(s) ds + fb(s) g(u, w') u' (s) ds = %a(t) u'2(t) —
"%

. t
——-;—a(to) u'2(to) + f [b(s) glu, w') u'(s) —% a’(s)'u’z(s)] ds >
t )

K
> 3 alt) w20 — 5 alto) w2(o),

we obtain, using (5), the inequality

() %a(t) w'2(t) + F(¢, u(t)) < %a(to) u'2(ty) + Fto, (ulto)) +

¢
0 F(s, u(s))
+ f————a——a———— ds.

Since u(t) is unbounded in (! — 8, {), there exists a sequence {t;}:,, t; — {_, which
satisfies the assumptions (2) and (3) (if we put x(f) = u(t)). The last inequality then
yields

t
Fit ut) S  alt) wil) + P, ute) + [ 250 g

— L alt) w2lto) + Fito, ulte)) + Fles, ulte)) — Fito, u(t),

or
1

F(to, ulty)) = 2 a(to) u'2(to) + F(to, ulto))-

For i — o0 we get

F = -l— afto) u'%(to) + F(to, u(to)),

which is contradictory to (4).
Lemma: Let (t) and ¢'(t) be oontmuous on (o, t) where { < oo and suppose that
hm @(t) does not exist. Then
t>1_
lim sup Q'(t)= 4 oo

t—>t—
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and

lim inf ¢'(t) = — oo.
t—>t_
Proof: Let lim sup @(f) = 4 and lim inf ¢(t) = B. This means that there exist
t—>t t>1. ’
sequences {1}, {£1}2,, such that for i — oo, t; — &, & — i and that lim @(t;) = 4

P )
and lim (p(t;) = B. By the mean value theorem by Langrange there exists a point
i —>
&€ (i, £4) such that
pt) — o) _

* < = .

*) r— ¥'(&0)
Now let {f;,}i, and {t,,}i, be subsequences of {#;}3>, and {{;};>., respectively such
that for great k t;, > tq,, ts,—~ i, t;, — I_ for k — oo. Using (*) for &£ — oo, we have

lim @'(&;,) = + o
k—>o0
where &, € (ti,, ti,)-
Analogously we prove that lim inf ¢'(f) = — oo. Here the subsequences {1}z,

t—t..

{hk}k"’:l are chosen so that f;, < fg,‘, b, —> I Zik —1_ for k£ — c0. Again we use (¥)
to get

where &;, € (s, t;,). Therefore
“_'Lhm w’(&ik) = + o0,

which completes the proof.

Theorem 1a: Suppose that, in addition to the hypotheses of Theorem 1, a(t) > 0
for t 2 to. Then any solution of (1) satisfying (4) is defined and bounded on (to, 00).
Proof: Let u(t) be a solution of (1) satisfying (4). According to Theorem 1 u(t) is
bounded for ¢ = #,. It is therefore sufficient to prove that the solution exists on

<to, M))
Let u(t) exist on <{ty, f), f < c0. We can distinguish two cases:
I. lim u(f) = Y and either lim |u’(f) | = + oo or lim «’(f) does not exist. Let
t->t_ 1 t—>t_

lilfl |u'(t)] = + oo. For any sequence {#;} ,, such that for ; — oo t; — {_ we get, using

>t

(6):
(6a) %a(m w2(ty) + F(t, ult)) < %a(to) w(to) + F(to, ulto)) +

4
OF (s, u(s))
+ f e ds.
to
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8F(8 u(s))

Owing to «) and the fact u(t) is continuous for ¢ € (%o, {), ds is conver-

gent. Then, since a(t) > 0, from (6a) we can see that F(ti, u(ty)) - —oo for ¢ — o0,
which contradicts the contmmty of F(t, ) for t = &y, |x| < o0.
Now suppose that lim «’(¢) dies not exist. Let lim sup #'(t) = 4 and lim inf %'(t) =
t~1- -1 i
= B. The assumptions 4 = + o0, or B = — oo again lead to contradiction (using
(8a)). Suppose therefore that both 4 and B are finite. Since u'(t) and »"(t) are con-
tinuous for ¢ € (¢, {), we can use the lemma to show that lim sup %"'(f) = + oo

t—>t-
and lim inf w"(f) = — o0. This gives us — for the numbers of a sequence {t;}7., such
t—t
that t; — {_ for s — oo and lim u'(t;) = + oo — the following equation (by substitut-
>0

ing into (1)): a(t;) w"(t:;) + b(t:) g(u(ts), w'(t:)) + f(ts, w(t:)) = 0. Since a(f) > 0
and b(¢), g(u, »’) and f(¢, ») remain finite for #; — f_, this equation leads to contra-
diction if ¢ — o0.

II. lim %(t) does not exist. Since u(t) is bounded and continuous for ¢ € {#y, {) and

>t
u'(t) is likewise continuous for ¢ € (%, f), it is a consequence of the lemma that lim sup
t—>1-
u' () = + oo and lim inf %'(#) = —o0. Analogously as in I., a contradiction can be
>

deduced from (6a).

We have therefore proved that it is necessary that lim u(t) = Y and lim »'(t) = Y,

t—>t- t—t_

where both Y and Y, are finite. Therefore the solution u(?) passing through the point
(to, u(to), u'(to)) can be extended to pass through the point (¢, ¥, Y,). By the appro-
priate existence theorem there exists a solution u,(¢) of (1) which is defined for te(?, #;)
and u,(f) = Y, ui(t) = Y. Define a function () as follows:

) :{ ut) forte (to,—t)
uy(t) forte (i, t,).

Now #%(t) is an extension of «(¢t) to (¢, £;) which satisfies the condition (4) and is there-

fore bounded. If{; < oo, then the extension can be repeated. This proves the theorem.
Remark 1: The assumption that a(t) > 0 for t = t, is essential. The following

example will demonstrate that for a(t) = 0 not every solution can be extended.
Example The differential equation

A—tru + |1 —¢t|w +—~—u—0

~

satisfies the assumptions of Theorem 1 with F = + oo. Therefore every solution is

bounded on its domain. It is easily demonstrated that u(f) = Vl —t is a solution
which cannot be extended beyond ¢ = 1.
Theorem 2: Suppose that o), f) and y) hold and that there exists a sequence {;}7_,
such that (—1)tz; > 0 for ¢ =1, 2, hm |2; | = o0 and
oF(t, x) _ OF (t, ()
(7) at é 8‘ !le§lx1|5tgt0,~
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8) lim F(ty, %) = F £ + 0.
1~
Then every solution u(t) of (1) which satisfies the condition (4) is bounded for all
t =ty from its domain.
Proof: Let «(t) be a function which is continuous on (fo, {) and unbounded for
t — {_. Evidently there exists a sequence {fx};., such that, for ¥ — oo, ty —{_ and
that z(tx) = x4, | 2(t) | £ |24, | for ¢y < ¢t < g, where {x;,};., is & subsequence of
X 9’;1 .
%Io%r (7) and (8) imply (2) and (3) with F independent of x(t). Therefore under the
assumptions of Thoerem 2, the hypotheses of Theorem 1 hold and so does its con-
clusion which is also a conclusion of Theorem 2.
Theorem 3: Suppose that in the hypothesis of Theorem 1 the conditions (2) and (3)
are replaced by :

(9) 0§—T—~—T,x>0,tgt°;0
and
(10) lim sup F(ty, ) = + 0.

|| >

Then all solutions of (1) are bounded for t = to from their domain.
Proof: Let u(t) be defined on (fy, {). Using (9), we find that

oF(t, ) _ oF(t, i)
a =y o

Owing to (10), there exists a sequence {z;};2, such that (—1) tz; > 0, | z¢ | < | %441 |
(t=1,2,...) and lim F(f, ;) = + co. Thus the hypotheses of Theorem 2 are

1>

EIESEINEDS

satigfied. Since in addition to that, F = + oo, every solution of (1) is bounded on
its domain. .

Remark 2: If a(t)= 1,b(¢) gz, y)=0 for t 24,20 and |z| 4+ |y| < o0,
then our Theorem 1 becomes Theorem 1 of [1].

Theorem: 4 Suppose that the assumptions a), B) and y) hold. Moreover, suppose that
f‘”tZto_Z.O, lxI < @,

a1 BF(att, x) <0
and that for any sequences {t;};",, {i};~, such that for i — oo, t; — 0 and | 2| - ©
(12) lim F(t, ;) = F £ .

1>

Then every solution of (1) which satisfies the inequality

(13) Fa, u (o)) + - alfo) w3to) < ,

is bounded for t = to from its domain.
If in addition a(t) Z a@ > 0 for t = toand

(14) Jt, x)sgnx > Oforx£0andt 2 i,
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then the first derivative of any solution u(t) of (1) ts bounded for t = to from the domain
of u(t) which, if u(t) satisfies the inequality (13), is for t € {to, o).

Proof: The method is analogous to that used in proving Theorem 1. Suppose
that, although a solution u(¢) of (1) is defined on (to, {) and satisfies the condition (13),
lim sup |u(f) | = 4 oo. By multiplying (1) by «'(t) and integrating over (fo,?),

t-i-
where ¢t < I, we get the following modification of (6):

1
(15) ;— alt) w(t) 4 F(t, u(t) = 5 alto) u'*(to) + F(to, u(to)) +

t
" OF (s, u (s))
+ j —y s
from which, using (11), we get
(16) F(t, ut)) < —;—a(to) u'2 (to) u'2(to) + F(to, u(to)).

Let { = 4 oo. Since lim sup | % () | = + oo, there exists a sequence {;};~, such

t—>t-

that for s — oo both ¢; and |u (¢) | tend to infinity. Thus (16) leads to a contradiction
with (13).
If the domain of u(¢) is a finite interval, i.e. f < co and %(t) is unbounded at {, there
exists a sequence {t:}:2, such that for i — oo #;— . while |u(t;) | — co. Define
a sequence {f;}, such that for all i t; < I; and lim #; = oo. Using (11), we get from

(16) >
Pl u(t0) S Flb, uit)) S 5 all) w2(to) + Fo, ulto)

8o that, for ¢ — oo, we have
1
F < ga(tO) u'2 (f) + F(to, ulto))

which contradicts the assumption (13).
Furthermore, using (11) and (14), from (15) we get

%au'z(t) é ‘;—“(to) u'2(to) + F(to, ulto)),

so that «’(t) is bounded. '
The proof that the domain of u(¢) is {fp, o) if a(t) = a > 0 for¢ = £, and provided
(14) holds, follows from the proof of Theorem la.

Theorem 5: Let the hypotheses of Theorem 4 hold and suppose that in (12) F =

= + oo. If c(t) ts absolutely mtegmble, i.e. j' |c(t) |dt £ K < 0, then ebery solution
u(t) of the equation
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() alt) w” + be) glu, w') + fit, w) = ct)

together with its first derivative is bounded for all t = to from its domain.

If in addition c(t) and c'(t) are continuous, then the same holds for {to, ©)-

Proof: By multiplying (17) by %’(t) and integrating over (o, t) (where to = ¢ < 2
(tot) being the domain of u(t)), we get

a8) 500 w20) + Fu (1) S 5-alo) w2to) + Flto, ulto) +

. t
+ f 21'1—(83’.guﬂds+ f c(s) w'(s) ds,
4 to

from which, using (11) and (14), we have

t
3000 S Koot [ 1oe) |1 )| s
to
and therefore

alw(®)| =

ro| &

t
(\u’\2+1)§KO+%+j\c(s)\\w(s)xds,
t

where

KO = -;—a(to) 'u’z(to) + F(t09 u(t))'

By Bellman’s lemma in [5] we have

t
|w'(t) | £ K,y exp[%f\c(s) | ds] £ K; < o,
to

where
K, =Ko+ 22— .
From (18) we have further

t
F(¢, ut)) < Ko+ fc(s) u'(8) ds,
to

and since | 4'() | £ K, and c(t) is absolutely integrable, we have
F(t, u(t)) s Ko + KzK < oo fort 2 to.

Using (12) with F = 4 oo, we see that u(t) is also bounded. ' ;
The last assertion of the theorem may be proved by the fact that the functions

1t 2) = 1t 9) — ot and TED. _FED _ ) oty tho condition o).




In connection with (1), let us consider the equation
(19) a(t) u” + b(t) g(u, w') + (1 + () f(¢, u) = 0.

Theorem 6: Suppose that the hypotheses of Theorem 4 hold, with F in (12) equal
to + oo.If

(20) lim p(t) =0 andf [9'(t) | dt < oo,
t—>00
to
then there exists t, = to such that every solution of (19) together with its first derivative is
bounded for all t 2 t, from its domain.

If in addition y'(t) ts also continuous, than this holds for te(t,, o).

Proof: (20) implies the existence of #; > ¢, such that,fort = #;,1 + y(t) = &, > 0.
Now if t; £ t <-{, where {#;, ) is the domain of u(t), the equation (19) yields the
inequality

1 1

5 o) w2(t) + (1 + () Fit, u(t)) = 5 alt) w2(t) + (1 + (1)) F(t, ultr)) +

¢ t
+ f p'(s) F(s, u(s)) ds + f (1 + v(3) ﬂ’_(sésu(a)) ds
t Y

and therefore
¢
(21) —;—au’2(t) + ki F (8, u(t)) < Ko + j p'(8) F(s, u(s)) ds,
A
where
Ko = %“(tl) uw'3(t) -+ F(t1, w(t)) (1 + w(t)).

From (14) we see that F(t, ) = 0 for te (¢, {) and therefore if we omit the term

—;-au'z(t) in (21) and use Bellman’s lemma, we get

¢
F(t, ut)) < Koexp [—kl—f | '(8) | ds] S K<
1
4
and also

t
%au'z(t) < K, + thp’(s) |ds £ K; < 0. -
4L

But this means, owing to (12), tﬁat, u(t) and u'(t) are bounded on (¢, ). The last
part of the theorem again follows from the proof of Theorem 1la.

~ Theorem 7: Suppose that the hypotheses of Theorem 4 hold with F in (12) equal
to + oo. Suppose further that 1 + y(t) = k1 > 0 and y'(t) < 0 for t = ¢, = 0. Then
every solution u(t) of (19) together with its first derivative is bounded for t = to from its
domain. If in addition y'(t) is continuous, then this holds for {to, c0).
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Proof: The proof is a direct consequence of the proof of Theorem 6. In fact (21)
yields

F(t, u(t)) < %
ky
and also
1
—Q—au'l(t) é Ko,

which completes the proof.
Theorem 8: Suppose that all hypotheses of Theorem 6 except (20) hold and that
instead of satisfying the condition (20), y(t) is such that for t = &, 2 0

1—|—1p(t)2k,>0andj|w(t)|dt< 0.

Then every solution of (19) together with its first derivative is bounded for t = to
from its domain. If in addition ¢’ (t) is also continuous, then this is true for {t, o). '

The proof of this theorem realizes the condition (21) and the method is analogous
to that used in proving Theorem 6.

The conditions of boundedness in these theorems will be considerably simplified
if we put a(f)= 1 in (1), (17) and (19). We have

Theorem 9: Let the hypotheses (2) and (3) of Theorem 1 hold an suppose that
F (t, x)

o) ft, x) and - d-——{»—r are continuous for t = to =2 0, | x| < o0;
0

B') g(x, y) is continuous and g(x, y) sgn y = 0 for all x and y;
y') a(t) = 1, b(¢) = 0 is a continuous function for t = t, = 0.
Then every solution u(t) of (1) for which :

1
F(to, u(to)) + Eu@(t,,) <F,
is bounded on (ty, o0).
Proof: Let a solution u(t) of (1) be defined on {#, {).). By multiplying (1) by
u’(t) we get
wu" + bt) glu, w') w’ + f¢, u)w’ =0,

from which by integrating we get the following form of (6):

S + F(t,ut) S 5 wio) + F (o, ulte) + f O (5, w6 g,

Now we proceed ag we did in proving Theorem 1. From the proof of Theorem la
it is obvious that any solution can be extended to (fp, o).

Remark 3: If a(t) = 1, then in Theroems 2—8 it suffices to postulate the conditions
«’), §') and y') instead of the ,undashed‘ conditions.

oft, =, y)

Theorem 10: Suppose that f(t, z, y) and — 3

are continuous for t = to = 0,
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12| 4 |y | < oo; let that F(t, ,y) J. = f(¢, 8, y) ds and suppose that %s—f(t, z,y) 20,

fort =t 20, lz|+ 1y | < oo. If for any continuously differentiable function x(t)
on (to, £) which is unbounded for t —f_, ty < £ < 0o, there exists a sequence {t:}5-1
such that if t; — t_ for i — oo, then

oF(t, z(t), x'(t)) aF(t, x(ts), ' (84))
(22) o5 o St
and
(23) lim [inf F(f, 2(t:), y)] = F

>0 |y|<o

with F < oo independent of x(t), then every solution of the equation

(24) u" + f(t, u, w') =0,
Jor which
(25) Ko = 302(t) + Fllo ulto), (i) < F,

8 bounded for ¢t > to from its domain.

Proof: Suppose that a solution u(t) of (24) is defined on (t,, {) and satisfies(25)
and that lim sup | %(t) | = + oo. By multiplying (24) by u’'(¢) and integrating over
[
(to, t) With ¢, < t < [, we obtain the equation

t
390 + f o, o), ' (6) /o) ds = w3

or

¢
%u'i t) + I%F(s u(s), u'(s)) ds =%u’1(to) +

f oF (s, u(s) OF (s, u(s), w'(s)) ; %5_ f(s, u(s), w'(s)) ds
to

with %%taken in the point (s, u(s), #'(s)). Therefore

@6) 2w + Bt ut), w ) S 5 o) + Fll, uto) ) +

OF (s, u(s), u'(s))
+ f ——-—T-——- ds.

to
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Owing to (22), we have further
b
Fliy, uits), o' () < Ko + J' %—"%—’ﬂ”—”d& -

t
é KO + F(t‘s u(tl)y u’(ti)) - F(tO) u(t‘)» u’(t‘)),
so that
F(to, ults), w'(t:)) < Ko.

Since inf F(tOv u(tf)7 y) é F(t01 u(ti)r u’(ti)) é K()y
lyl<<oo
we getyfrom (23)

F = lim [inf F(to, u(t:), y)] £ Ko,
—>00 |y|<loo
which contradicts the fact that u(t) satisfies (25).
This proof is the source of a further theorem.
Theorem 11: Let f(t, , y) be continuous fort Z 8, 2 0, |z | + |y | < o0. Suppose

oF(t, z,y)

oF
at éo) —ayf(t,x,?/)go

SJurther that F(t, x, y) = ff(t, 8, y) ds is such that

Jort 2t 20,|x|+ |y| < oo.
If for all sequences {t:};" | such that lim t; = co and all sequences {x;};", such that lim
| ;| = oo we have
(27) lim [inf F(t, 2, 9)] = F,
> |y|<<o
with F £ -+ 00, then every solution of (24) which satisfies (25) is bounded on its domain .
If in addition for t = to, |z | 4+ |y | < o

(28) f& z,y)sgnae > 0,z £ 0,

then the derivative u'(t) of any solution u(t) vs also bounded.
Proof: Suppose that «(t) is a solution of (24) defined on <to, f),#{ £ + oo which
satisfies (25) and let lim sup | u(t) | = + co. Using (26) and the asumption%ﬁi‘— < 0,
t—>t

we get
F(t, u(t), u'(¢)) £ Ko.

If £ = 4 oo, then there must exist a sequence {t;};~, such that #; — oo for¢ — o0
and | u(l;) | - oo for 4 — oo. If we put ¢ = #; in the Jast inequality, we get a contra-
diction with (25).

If { < oo, then there must exist a sequence {#;};~, such that lim | u(t;) | = + oo.

If{f;}; , is a sequence such that {; — oo for ; — o0 and #; < ¥ for any i then, using
(28), we have again '
F(t;, uts), w'(t)) < Ko
and therefore
F = lim [inf F(;, u(t:), )] £ lim [inf F(t;, u(t), )] £ Ko
i~ |yl<o i+ |y|<o

which again contradicts (25).
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From (26) and (28) we see that if u(t) is defined on < #,, {), then for any ¢ from
this interval we have

1
—2~u'2(t) hY Ko.

Thus %’'(t) is also bounded.

Considerations similar to those which have led to Theorems 10, 11 and same
proceeding theorems eould now be used to prove the following theorems :

Theorem 12: Assume the validity of the hypotheses of Theorem 10 and the conditions
p' and y'. If
(29) %g—'g(x,y);_Ofort;togo,\x|+|y!<oo
then any solution of the equation
(30) ’ u” + b(t) g(u, u') + f(t, u, w') =0

which satisfies (25) is bounded for t = ty from its domain.

Theorem 13: Assume the validity of the hypotheses of Theorem 11 and the condsi-
tions B’ and y'. If (29) holds, then any solution of (30) which satisfies (25) and the deriva-
tive of any solution are bounded for t = to from their domain.

Theorem 14: Make the same assumptions as in the proceeding theorem with F in (27)
equal to + oo. If c(t) is absolutely integrable, then all solutions of the equation

w” + b(t) glu, u') + f(t, u, w') = c(t)

are bounded, together with their first derivatives, for t = to from their domain.

Theorem 15: Assume the validity of the hypotheses of Theorem 11 and the conditions
B’ and y’ with F in (27) equal to + oo. If y(t) satisfies (20), then there exists t; = to such
that all solutions of the equation

(31) w’ 4 b(t) gu, w') + (1 + () f6, w, w') =0

together with their first derivatives are bounded for t > t, from their domains.
Theorem 16: Replace in the assumptions of Theorem 15 the condition (20) by the
JSollowing one:
14+ 9@ 2k >0and p'(t) <0 fort =t = 0. Then all solutions of (31) together
with their first derivatives are bounded for t = to from their domains.
Theorem 17: Replace in the assumptions of Theorem 15 the condition (20) by the
Jollowing one:

-~

14+ (t) 2 &k > 0 for an,yt;tOZOaﬂdjlw’(t)ldt< 0.

Then all solutions of (31) together with their jirst derivatives are bounded for t = 1,
from their domains.

In [3] we find sufficient conditions for the toundedness of all solutions of the
equation

(32) u" + a(t) f(u) g(u
together with their first derivatives.
Let us investigate the boundedness of a more general equation.
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In the fo]lowmg theorems we shall use the following assumptions:
a) f(x) is continuous for all x and f(x) sgn x > 0 for x # 0;
b) g(y) is continuous and g(y) > O for all y;

¢) lim F(x) = + o0, lim G(y) = + oo,whereF(x):ff(s) ds,

|@| >0 |y|—>o0

Yy
Qy) = f——————ds.

¢
Theorem 18: Supgose that f(¢, x) 8f( 2) are continuous for t = t, =0, Ix} < oo

and let F(t, x) satisfy the conditions (2) ami (3) of Theorem 1. If b) holds, then any
solution of the equation

(33) u + ft, w) glw') =0,
which satisfies the condition
(34-) Ko = G(u'(to)) + F(to, u(to)) < F,

18 bounded for t = t, from its domain.
Proof: From (33) we obtain
w'u' ,
'm +ft,u)u’ =0
and therefore
oF (¢, u(t))
ot

By integrating over (fo, t) with to < ¢ < { where (fo, {) is the domain of u(t) we obtain

d ., d
5 O ©) + o Ft, u(t) — —o.

t
(35) WWW+F@W»=m+fQ%%@LM

and further ¢
F&w»§m+fjﬂ%ﬁ&®

Analogously as in the proof of Theorem 1, the boundedness of u(t) is proved using
(2) and (3).

Theorem 19: Let f(t, ) be continuous for t = to = 0, |z | < oo and suppose that
the conditions (11), (12) and (14) oi,Theorem 4 hold. If b) holds and if G(y) satisfies c),
then any solution of (33) which satisfies (34) is bounded together with its first derivative,
Jor t = to from their domain.

Proof: Let {to, ) be the domain of u(t). Owing to (11) we obtain from (35)

(36) G(w'(t)) + F(t, u(t)) =

and further, using (14), we see that G(u'(t)) < K, so that »'(t) is bounded for te (y, {).
The boundedness of u(t) is proved using (36) and (12). In fact F({¢, u(t)) § Ko
for te {ty, t) and, owing to (12), F £ K, which contradicts (34).
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Theorem 20: Let f(t, x) be continuous for t 2 4o 2 0, | | < 0o and suppose that
all hypotheses of Theorem 4 are valid with the exception of &), f), y) and with F in (12)
equal to 4+ oo. Further assume the validity of b) and that part of c) which concerns G(y).
If y(t) satisfies (20), then there exists T = T, such that any solution of the equation
(37) u" + (4 + b)) fit, w) g(u’) = 0,

with A a positive constant is bounded together with its first derivative for ¢ = T from
its domasin.
Proof: From (37) we get

”

uw"u’

(u)+(A+w(t))ftu =0

and therefore .
d
L0 + (4t ) g Pl ) = (4 + ) -

By integrating and using (11) we get
t

GU®) + (A + pO) Pl wt) < Kot [ /) Flo uto) s
to

with Ko = G(w(t)) + (4 + plte)) Flto, ulto)).

From (20) we deduce the existence of T = ¢, such that 4 + y(t) = k; > 0 for
t = T and therefore

(38) G (®) + =iF(t, ut) < Ko+ f | 9/(5) | F(s, u(s)) d.
T

From this,busing Bellman’s Lemma, we get

i t
F(t, u(t)) = Koexp [%f | w'(8) lds] <K, < oo,
1
T

so that u(t) is bounded.
A further consequence of (38) is

G(w'(t)) < Ko + Klf | 9'(s) |ds £ K, < o0,
T

and therefore u'(f) is also bounded for te < T, {).
Analogously we prove
Theorem 21: Assume the validity of all hypotheses of Theorem 20 with the exception
of (20) instead of which we assume for t 2 t, = 0 the validity of the following condition:

-

A+1p(t)>k1>0andf|1p(t)idt<oo

Then any solutwn of (37) is bounded, together with its first derivative, for t = to from
tts domain.
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2. OSCILLATION OF THE SOLUTION

Theorem 22: dssume the validity of the hypotheses a), b) and let F(x) satisfy c).
Ifa(t) = a > 0 fort 2 to = 0, then every solution of (32) which i3 defined on T, o0)
with T' = t, 18 oscillatory.

Proof: Suppose that a solution u(t) of (32) is defined on (7', o0) and does not
oscillate. For example, let u(t) > 0 for ¢ = T'. From (32) we see that in that case
we have, fort 2 T

u"(t) = — a(f) f(u(?)) g(u'(t)) < O
80 that ’(t) is a decreasing function for ¢ > 7. Two cases may occur:

1. There exist ¢; = T such that «'(,) < 0, or

2. w'(@t)>0forallt = T.

In the first case there must exist a number & > #; such that #(£) = 0 which contra-
dicts the hypothesis. Therefore it is necessary that «'(¢) > 0 for ¢ = 7" and () must
be a monotonous increasing function of ¢. For ¢ = T we have further

0 = lim «'(t) < w'(t) £ «'(T).

t— o

This means that »'(z) it bounded. It is now easy to prove that so is u(¢). In fact,
since g(y) > 0, (32) yields

w”(t) ' (t)

W0) + a(t) flu®)) »'(t) = 0

and therefore
39 L o) + at) - Fue) =0
(39) 4 G ) + alt) 4 Flu) =o0.
Since %(t) is an increasing function of ¢ for ¢ = T, we see from the condition c) that
so is F(u(t)). From (39) we get
G(w'(t)) + aF(u(t)) £ Qu'(T)) + aF(w(T)) = Ko,
so that
F(u@) 1 K,
a
and therefore, owing to c¢), u(t) is bounded on (T, c0). From the boundedness of

%(t) and u’'(¢) and the continuity of f(x) and g(y) we see that lim «'(f) = 0 and that
there exist numbers u; and »’y; such that for all £ = 7" we have

0 < flw) = (fu(®)), 0 < g(u1) = g(w'(t)),
with u,e (u(T), lim %(t)), i€ <0, »'(T)>. Then
t—>o

\

—u”(t) = a(t) f(u(t)) g(v'(t)) 2 af(u1) g(w1) = ¢ > 0,
so that . .

ut) < —%ct2 4+ cit + ¢z,

with ¢, and ¢, constants dependent on ¢, 7', (T') and «’(T'). Therefore for sufficiently
large ¢ we have u(f) < 0 which is a contradiction.
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Now new problems arige if (t) < O for ¢ = T'. For in that case we have fort 2 T
u'(t) = —a(t) f(u()) g(«' () > O,

so that «'(t) as a monotonous increasing function of ¢. The existence of a number
t; 2 T such that %'(f,) = 0 again leads to contradiction. It is therefore neccessary
that fort > T

w'(@) <0, (T) S u'(t) £ lim w'(t) £0
t—>o0

so that u(t) is & monotonous decreasing function which makes | () | a monotonous
increasing function. The conditions ¢) and (39) can be used again to prove that u(t)
is bounded. But in that case

—u'(t) = a(t) f(u(t)) g(w' () = a(t) fluz) gluz) < 0
with %, € (lim u(t), w(T)), w',€ <u'(T'), 0>. Therefore u'(t) — w'(T) — oo for t — o0

t—>00
so that u'(f) is unbounded for ¢ — co, giving a contradiction. This completes the
proof.

The 1em 23: Let f(t, x) be continuous, f(t, ) sgn x > 0 for x # 0, =20

of(t, x)
or

Jort 2t 20, |x| < . Suppose further that b) holds. Then any solution of (33)
which is defined on < T, o), T Z to and for which

(40) ff(s, u(T)) sgnu(T)ds = + o
T

has at least one zero on (T, ).

Proof: Suppose that a solution u(f) defined on <7, o) satisfies (40) and that
u(t) > 0 for t = 7. From (33) we get

u'(t) = —f(¢, u(t)) g(u'(t)) < O

so that «'(f) is decreasing function of ¢ for ¢ = T'. In the same way as before we prove
that »'(t) must be positive for ¢ 2 7. Therefore u(t) is an increasing function and its
values lie in the interval J = < %(T'), lim u(t)). Since %'(?) > 0 and decreases mono-

t—>o0

tonously, it is bounded for.{ = 7'. Thus there exists a constant w’, €  lim %'(t), »'(T))
t—~m

such that fort > T
0 < g(u;) < g(w'(t)).

But in that case, since f(f, z) is in J a non-decreasing function of x, we have

—u'(t) = f(t, u(t)) g(w'(t)) 2 g(u's) (2, w(T))

and thus (40) implies that «'(t) —u'(T') - —oo0, which is a contradiction with the
assumption that «’(t) is bounded for ¢t > T'.

The method is analogous if we assume that u() < O for ¢ = 7. Again we prove
that the necessity of '(!) < 0 for ¢ = T and the fact that u’'(f) is a monotonous
increasing function of #. There exists thus a contant u,e (u'(T), lim #'(¢)) such

¢

—»00
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that for all ¢ 2 7' we have g(u'(t)) = g(u'z). Since f(t, ) is an increasing funotion
of z, we have

—u'(t) = f(¢£, u(t)) g(u'(t)) = g(u'2) f(¢, w(T)) < O

and again, using (40), w'(t) — /() - + oo for t — oo. This completes the proof.
It is easy to prove the following

Theorem 24: Suppose that the hypotheses of Theorem 23 are valid and that, for
t 2t 20,44 9(t) 2 &k > 0. Then any solution of u(t) of (37) which is defined
on (T, co) and satisfies (40) has at least one zero on (T, ).

Remark 4: Evidently if in Theorems 23 and 24 the relation (40) holds for uy = w(T),
then any solution of (32) or (37) defined on (T, oo) for which uy £ w(T) for u, > 0,
and u, = w(T) for uy, < 0 has at least one zero on (T, oo).
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