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SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS, ARCH. MATH. 2, 
VII: 47—63, 1971 

ON CERTAIN PROPERTIES OF THE SOLUTIONS OF 
A NON LINEAR DIFFERENTIAL EQUATION OF 

THE SECOND ORDER 

P. SOLTYS, KoSioe 

(Received June 17, 1968) 

The first part of this paper is a presentation of some results concerning the 
boundedness of solutions of a non-linear differential equation of the second order 
together with their first derivatives. A theorem is proved which is a generalization 
of a theorem of K i g u r a d z e [1] and some results from [2], [3] and [4] are generalized 
and extended. 

The second part deals with the oscillatory properties of solutions. 

1. THE BOUNDEDNESS OF SOLUTIONS AND THEIR FIRST 
DERIVATIVES 

Consider a non-linear differential equation of the second order o the form 

(1) a(t) u" + b(t) g(u, u') + f(t, u) = 0 

Let F(t, x) = $f(t, s) &s. In some theorems we shall postulate the following conditions: 
o 

df (t x) 
<*) /(*>x) awd a a r e continuous for t ;> t0 ^ 0, \x \ < oo; 

ot 

P) 9(x> y) ig continuous for all x and y and there exists a non-negative constant k 
such that yg(x, y) *> ky2 for all x and y; 

y) a(t),b(t) are continuous non-negative functions for t ^ t0 2> 0a>n&2kb(t) "> a'(t). 

Theorem 1: Suppose that oc), /8) and y) hold. Suppose further that for any continuously 
differentiable function x(t) on (t0,1) where t0 < I S oo which is unbounded for t ->L , 
there exists a sequence {h}iLi such that, for U -> L, 

m 3F(t,x(t)) 3J%xJM) 

(3) lim F{t0, x(tt)) = F, 
i -> oo 

with F ^ oo independent of x(t). 
Then every solution u(t) of (I) defined for t ^ t0, for which 

(4) F(t0, u(t0)) + -z-a(to) u'2(t0) < F, is bounded for all t ^ t0. 

Proo i : Let the solution u(t) exist on (t0,1) and supjpose that it satisfies the con­
dition (4). Suppose that lim sup | u(t) \ = + oo for t0 < ^ o o . By multiplying (1) 

t - * t-

by u'(t) we get 
a(t) u"u' + b(t) g(u, u') u' +f (t, u) u' = 0, 
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and by integratiflg 
t t 

(5) i j a(s) -^ *'*(€) ds + j b(s) g(u, u') u'(s) ds + F(t, u(t)) = F(t0, u(t0)) + 

t 

/ • 

* dF(s,u(s)) ^ 

Since 
t a 

" m 
i r u r i 
2" a ( ^ d«" w'2(5) d* + 6 (5) ^(w' *') *' (5) ds = 2"a(^ w'2 

t 

— ja(t0) u'2(t0) + j J6(5) g(u,u') u'(s)—~ a'(s)u'*(s)\ ds ^ 

^ja(t)u'2(t) — ja(t0)u'2(t0), 

we obtain, using (5), the inequality 

(6) i a(t) U'2(t) + F(t, u(t)) £ i a(fo) ̂ '2(*o) + Ho, (u(t0)) + 

дs 
/ • 

Since u(t) is unbounded in (£ — d, I), there exists a sequence {Ji}£Ll5 ^ -> 1-, which 
satisfies the assumptions (2) and (3) (if we put x(t) = u(t)). The last inequality then 
yields 

h 

F(th u(h)) ^ I a(t0) u'2(t0) + F(t0, u(t0)) + f dF(*£<M). d8 = 

to 

= ja(t0) u'*(t0) + F(t0, u(t0)) + F(U, U(ti))—F(t0, *(*,)), 

or 

F(t0, u(U)) % i a(lb) w'2(*o) + F(t0, u(t0)). 

For i -> oo we get 

F S - aft) ?*'2(*o) + -Fft, *(W), 

which is contradictory to (4), 
Lemma: Let q>(t) and q>'(t) be continuous on (t0, t) where I < oo and suppose that 

lim <p(t) does not exist. Then 
t -> L 

lim sup 9?'(0 = + oo 
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and 
lim inf q)'(t) = — oo. 
«->L 

Proof: Let lim sup <p(t) = A and lim inf <p(t) = B. This means that there exist 
«->L <-*L 

sequences {£*}£i, (ti}{Lv s u ch that for i —> oo, f* -> f__, f$ -> f- and that lim <p(U) = A 
i -*• oo 

and lim g?(f<) = J5. By the mean value theorem by Langrange there exists a point 
I -*• 00 

fte (<i,?<) such that 

H — ti 

Now let {^J|Li and { ^ J ^ be subsequences of {h}^ and {?<}£_.-_ respectively such 
that for great k tilc > tik, tijs-> f_, tik -> f_ for k -> oo. Using (*) for k -> oo, we have 

lim y'(f<fc) = + oo 
k-+oo 

where f<fc e (Uk, Uk)> 

Analogously we prove that lim inf (p'(t) = — oo. Here the subsequences {tik}^Lv 
t-+L. 

(tik}£L1 are chosen so that tik < tik, tik -> L £4 -> L for & -> oo. Again we use (*) 
to get 

<P(hk)— <P(hk) 

th — ii* 

where |*fc e (f<fc, f<J. Therefore 

= - ^ ' ( f * * ) , 

— lim <p'{£ik) = + oo, 

which completes the proof. 

Theorem la : Suppose that, in addition to the hypotheses of Theorem 1, a(t) > 0 
for t ^ t0. Then any solution of (I) satisfying (4) is defined and bounded on (t0, oo). 

Proof: Let u(t) be a solution of (1) satisfying (4). According to Theorem 1 u(t) is 
bounded for t _: t0 . I t is therefore sufficient to prove that the solution exists on 
<fo, oo). 

Let u(t) exist on <f0, f)» f < °0- We can distinguish two cases: 

I. lim u(t) = Y and either lim \u'(t) | = + oo or lim u'(t) does not exist. Let 
t-*L t-+T- *->L 

lim \u'(t)\ = + oo. For any sequence {U}fBl, such that for * -> oo U -> f_ we get, using 

(6): 

(6a) -_«(*,)«'»(«,) + F(t{,u(k)) < i«(fc)w'-(*o) + #('0,u{t0)) + 

+ [ щ^m á8. 
H 

/ • 
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t 

Owing to oc) and the fact u(t) is continuous for te (t0, i), I ~ ds is conver-

gent . Then, since a(t) > 0, from (6a) we can see t h a t F(ti, u(U)) -> —co for i -> oo, 
which contradicts t he cont inui ty of F(t, x) for t ^ t0, \x\ < oo. 

Now suppose t h a t Jim u'(t) dies not exist. Let lim sup u (t) = A and lim inf u'(t) = 
t-+L f-+7_ t-+L 

==- B. The assumptions _t = + co, or U = — oo again lead to contradiction (using 
(6a)). Suppose therefore t h a t both A and B are finite. Since u'(t) and u"(t) are con­
t inuous for t e <$o> i), we can use the lemma t o show t h a t lim sup u"(t) = + oo 

t->4-

and lim inf u"(t) = — co. This gives us — for t he numbers of a sequence {ti}f=l such 
t~»L 

t h a t ti -> L_ for i ->,co and lim w'(^) = + oo — the following equation (by subst i tut­
ing into (1)): a(U) uff(ti) + b(ti)g(u(ti),u'(ti))+f(ti,u(ti)) = 0. Since a(t) > 0 
and 6(f), g(u, u') and /(£, w) remain finite for ti -> L., this equation leads to contra­
diction if i —> oo. 

I I . lim w(£) does not exist. Since u(t) is bounded and continuous for te (t0, t) and 
t-+t„ 

u'(t) is likewise continuous for te (t0, i), it is a consequence of the lemma tha t lim sup 
t->t-

u' (t) = + oo and lim inf u'(t) = —oo. Analogously as in I . , a contradiction can be 
7^71 

deduced from (6a). 
We have therefore proved t h a t it is necessary t h a t lim u(t) = Y and lim u'(t) = Yi 

t-+L- t->L 
where both Y and Yi are finite. Therefore t he solution u(t) passing through the point 
(t0, u(t0), u'(t0)) can be extended to pass through the point (t, Y, Yt). By the appro­
priate existence theorem there exists a solution ux(t) of (1) which is defined for te(i, U) 
and Ui(i) = F , u[(t) = Y\. Define a function u(t) as follows: 

_ (u(t) for te(t0J) 
u(t) ={ 

\ ux(t) for te(i,h). 

Now u(t) is an extension of u(t) to (t0i ti) which satisfies the condition (4) and is there­
fore bounded. If it < oo, then the extension can be repeated. This proves the theorem. 

Remark 1: The assumption that a(t) > 0 for t ^ t0 is essential. The following 
example wiU demonstrate that for a(t) ^ 0 not every solution can be extended. 

Example: The differential equation 

(l-tyu" +\l-t\u' + ~u = Q, 
* . • . • * 

satisfies the assumptions of Theorem 1 with F = + oo. Therefore every solution is 
bounded on its domain. I t is easily demonstra ted t h a t u(t) =]fl — t is a solution 
which cannot be extended beyond t = 1. 

Theorem 2 : Suppose that oc), ft) and y) hold and that there exists a sequence {#$}?_ 1 
such that (—Ifxi > 0 for i = 1, 2, . . . , lim |a?* | = oo and 

i-*-ao 

/ - . 8 J ( , , x) ^ dF (t, XJ) , , ^ , 
(7) — ^ ^ -^ ,\x\ S \xt\,t ^ t0, 
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(8) Urn F(t0,Xi) = F % + oo. 
*->oo 

Then every solution u(t) of (1) which satisfies the condition (4) is bounded for all 
t i_ Jo from its domain. 

Proof: Let x(t) be a function which is continuous on (t0, t) and unbounded for 
t -> L.. Evidently there exists a sequence {tk}k~i such that, for k -> oo, $* -> !_ and 
that a^jt) = #**, | x(t) \ -£\xik\iov t0 <>t < t^, where { a ^ } ^ is a subsequence of 
{*}<-.• 
Now (7) and (8) imply (2) and (3) with F independent of x(t). Therefore under the 
assumptions of Thoerem 2, the hypotheses of Theorem 1 hold and so does its con­
clusion which is also a conclusion of Theorem 2. 

Theorem 3: Suppose that in the hypothesis of Theorem 1 the conditions (2) and (3) 
are replaced by 

(9) o ^ ^ = - ^ p ^ ) , > 0 > ^ ^ 0 

and 

(10) lim sup F(t0, x) = + oo. 
|.r|-*oo 

Then all solutions of (I) are bounded for t ^ t0from their domain. 
Proof: Let u(t) be defined on (t0, i). Using (9), we find that 

dt — dt 

Owing to (10), there exists a sequence {xt}^ such that (—1) <a?< > 0, | x% \ < \ a?<+i | 
(i = 1, 2, . . . ) and lim F(t0, xt) = + oo. Thus the hypotheses of Theorem 2 are 

£-*-oo 

satisfied. Since in addition to that, F == + oo, every solution of (1) is bounded on 
its domain. 

Remark 2: If a(t) == l,b(t)g(x, y)=0 for t > 10 *> 0 and \ x | + | y | < oo, 
Jfte?i owr Theorem 1 becomes Theorem 1 of [1]. 

Theorem: 4 Suppose that the assumptions a), /8) and y) hold. Moreover, suppose that 
for t ^ t0 ^ 0, | x | < oo, 

and that for any sequences {h}%Lv {xi}T-i 8uch that for i —> oo, U ~> oo and | a?i | -> oo 

(12) lim ^(fi, xt) -= J1 g oo. 

-Fften every solution of (I) which satisfies the inequality 

(13) F(t0, u (t0)) + 1 a(t0) u'*(t0) < F, 

is bounded for t £ to from its domain. 
If in addition a(t) _: a > 0 for t ^ *0 «?*4 

(14) f(t,x)sgnx > Oforx^Oandt £ *0, 
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then the first derivative of any solution u(t) of (1) is bounded for t >. t0from the domain 
of u(t) which, if u(t) satisfies the inequality (13), is for t e <t0, oo). 

Proof: The method is analogous to that used in proving Theorem 1. Suppose 
that, although a solution u(t) of (1) is defined on <t0, t) and satisfies the condition (13), 
lim sup | u(t) | = + oo. By multiplying (1) by u'(t) and integrating over (t0,t), 
t-+T~ 

where t < i, we get the following modification of (6): 

(15) 1 a(t) u'*{t) + F(t, u(t)) £ j a(t0) u'*(t0) + F(t0, u(t0)) + 

+ / ^ % ^ d s , i 
from which, using (11), we get 

(16) F(t, u(t)) £ j a(t0) u't (to) u'*(t0) + F(t0, u(t0)). 

Let I = + oo. Since lim sup | u (t) | = + oo, there exists a sequence {ti}^i such 
t-+t~ 

that for i -> oo both U and \u(U) \ tend to infinity. Thus (16) leads to a contradiction 
with (13). 

If the domain of u(t) is a finite interval, i.e. i < oo and u(t) is unbounded at I, there 
exists a sequence {ti}^t such that for i -> oo ^-> I- while | u(h) | —> oo. Define 
a sequence (tt}fs=sl such that for all * U < tt and lim tt = oo. Using (11), we get from 

(16): 

F(ii,u(tt)) £ F(ti,u(ti)) S ja(to) u'*(t0) + F(t0, u(t0)), 

so that, for i -> oo, we have 

F sS j a(lo) u'2 (t^ + F(t0, u(t0)) 

which contradicts the assumption (13). 
Furthermore, using (11) and (14), from (15) we get 

- i au'Ht) £ i a(t0) u'Ht0) + F(t0, u(t0)), 

so that u'(t) is bounded. 
The proof that the domain of u(t) is <£0, oo)iia(t) *> a > Oforf >. f0 and provided 

(14) holds, follows from the proof of Theorem la. 

Theorem 5: Let the hypotheses of Theorem 4 hold and suppose that in (12) F =-= 
CO 

= + oo. If c(t) is absolutely integrable, i.e. J | c(£) | At S K < oo, then every solution 
u(t) of the equation 

52 



(17) a(t) u" + b(t) g(u, u') + f(t, u) = c(t) 

together with its first derivative is bounded for all t ^. t0 from its domain. 
If in addition c(t) and c'(t) are continuous, then the same holds for (to, <x>)-
Proof: By multiplying (17) by u'(t) and integrating over («0, t) (where t0 i t < t, 

(t0l) being the domain of u(t)), we get 

(18) i a(t) u'*(t) + F(t,u (t)) <> ~ a(t0) u'*(t0) + F(t0i u(t0)) + 

+ / ^ ^ d , + (c(s)u'(s)As, 

t0 \0 

from which, using (11) and (14), we have 
t 

jau'*(t) SK0+ {\c(s)\\u'(s)\ds 

to 

and therefore 

e 

a | u'(t) \ ^ -J ( | u' | ^ + 1) S K0 + - + J | c (s) \ \u'(s) \ &s, 

to 

where 
K0 = ~a(t0) u'*(t0) + F(t0, u(t)). 

By Bel lman's lemma in [5] we have 

| u'(t) | S Kx exp I— f | c(s) \ As\ š K2 < oo, 

to 

where 

K\ == Ko + 7T • 

From (18) we have further 

t 

F(t, u(t)) S K0 + f c(s) u'(s) As, 

to 

and since | u'(t) \ ^ K2 and c(t) is absolutely integrable, we have 

F(t, u(t)) ^ K0 + K2K < oo for t ^ «0. 

Using (12) with K = + oo, we see that u(t) is also bounded. 
The last assertion of the theorem may be proved by the fact that the functions 

/(*,x) = f(t, x)~c(t) and df(t'x) = ^ ^ — c'(t) satisfy the condition a). 
ot ct 



In connection with (1), let us consider the equation 

(19) a(t) u" + b(t) g(u, u') + (1 + y>(t))f(t,u) == 0. 

Theorem 6: Suppose that the hypotheses of Theorem 4 hold, with F in (12) equal 
to+ oo.J/ 

00 

(20) Km <p(t) = 0 and j | y>'(t) \ dt < oo, 

to 

then there exists h .=. t0 such that every solution of (19) together with its first derivative is 
bounded for all t ^ h from its domain. 

If in addition \p'(t) is also continuous, than this holds for te(ti, oo). 
Proof: (20) implies the existence of h >. *o such that, for t ^h,l + y>(t) *> hi > 0. 

Now if h £ t < t, where (h, I) is the domain of u(t), the equation (19) yields the 
inequality 

~ a(t) u'2(t) + (1 + y>(t)) F(t, u(t)) £ ~a(h) u'*(h) + (1 + y>(h)) F(h, u(h)) + 

t t 

+ f y>'(s) F(s, u(s)) ds + j (1 + y>(s)) ^ ^ ) l - d 8 

tx tx 

and therefore 
t 

(21) jau'*(t) + ktF(t, u(t)) £K0+ f y>'(s) F(s, u(s)) ds, 

tx 

where 

K0 = ja(h) u'*(h) + F(h, u(h)) (1 + y>(h)). 

From (14) we see that F(t, u) 2> 0 for te (h, t) and therefore if we omit the term 

-~au'2(t) in (21) and use Be l lman ' s lemma, we get 

F{t, u(t)) ^ #oexp \ ~ f | y,'(8) | d s l á K < 00 

ix 
and also 

t 

jau'*(t) £ K0 + K f | y>'(s) | ds ^ Kx < oo. 

tx 

But this means, owing to (12), that, u(t) and u'(t) are bounded on (tl9 i). The last 
part of the theorem again follows from the proof of Theorem la. 

Theorem 7: Suppose that the hypotheses of Theorem 4 hold with F in (12) equal 
to + oo. Suppose further that I + %p(t) j> *i > 0 and y*'(t) g 0 for t >. t0 > 0. Then 
every solution u(t) of (19) together with its first derivative is bounded for t g; t0 from its 
domain. If in addition ip'(t) is continuous, then this holds for <t0, oo). 
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Proof: The proof is a direct consequence of the proof of Theorem 6. In fact (21) 
yields 

and also 

jau'Ht) £ K0, 

which completes the proof. 
Theorem 8: Suppose that all hypotheses of Theorem 6 except (20) hold and that 

instead of satisfying the condition (20), \p(t) is such that for t *> t0 .= 0 

QO 

JV( 1 + y>(t) *> kx > 0 and | tp'(t) \ dt < oo. 

to 

Then every solution of (19) together with its first derivative is bounded for t "> t0 

from its domain. If in addition y>'(t) is also continuous, then this is true for (t0, oo). 
The proof of this theorem realizes the condition (21) and the method is analogous 

to that used in proving Theorem 6. 
The conditions of boundedness in these theorems will be considerably simplified 

if we put a(t) = 1 in (1), (17) and (19). We have 

Theorem 9: Let the hypotheses (2) and (3) of Theorem 1 hold an suppose that 

oc') f(t, x) and — are continuous for t *> t0 >. 0, | x | < oo; 
dt 

f}') g(x, y) is continuous and g(x, y) sgn y *> 0 for all x and y; 
y) a(t) = 1, b(t) ^ 0 is a continuous function for t "̂  t0 ^ 0. 
Then every solution u(t) of (I) for which 

F(to,u(t0))+ju'*(t0) < F, 

is bounded on (t0, oo). 
Proof: Let a solution u(t) of (1) be defined on <t0, *)•)• By multiplying (1) by 

u'(t) we get 
u'u" + b(t) g(u, u') u' +f(t, u) u' = 0, 

from which by integrating we get the following form of (6): 
t 

j u'Ht) + F(t, u(t)) <, I u'*(t0) + F (t0, u(t0)) + [ dF (S
d

9
s
U(8)) ds. 

tQ 

Now we proceed as we did in proving Theorem 1. From the proof of Theorem la 
it is obvious that any solution can be extended to <t0, oo). 

Remark 3: If a(t) = 1, then in Theroems 2—8 it suffices to postulate the conditions 
a'), /}') and y') instead of the ,,undashed" conditions. 

dflt x y) 
Theorem 10: Suppose thatf(t, x, y) and J-~~\, are continuous for t J> t0 *> 0, 

dt 
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X 

\x I + I y I < oo; let that F(t, x , y) j =f(t, s , y) &s and suppose that -^~f(t, x , y) ^ 0, 
J °y 
o 

for t ^ t0 > 0, \x\ + \y\ < oo. If for any continuously differentiable function x(t) 
on (t0, t) which is unbounded for t —>- L , t0 < I % oo, there exists a sequence {h}°l^i 
such that if tt -> L for i ->• oo, then 

(22) dF(ttx(t),x'(t)) ^ BF(t, x(h), x'(tt)) ^ <t^h 

dt ~~ dt ' ~* — 

and 

(23) lim [inf F(t0, x(tt), y)] = F 
«->oo \y\<£ao 

with F £ oo independent of x(t), then every solution of the equation 

(24) u"+f(t,u,u') = 0, 

for which 

(25) K0 = ju'2(t0) + F(t0, u(t0), u'(t0)) < F, 

is bounded for t *> t0 from its domain. 
Proof: Suppose that a solution u(t) of (24) is defined on (t0,t) and satisfies(25) 

and that lim sup | u(t) | = + oo. By multiplying (24) by u'(t) and integrating over 
< - • « -

(to, t) w i th tf0 £ t < I, we ob ta in t h e equa t ion 

or 

t 

j v'2(t) + \f(s,u(s),n'(s))u'(s)&s = ~u'*(to) 

to 

t 

J«'2W + j i F ( * ' u ( s ) ' M ' ( s » dB=jM'2('°> + 
to 

. rdF(s,u(s),u'(s)) CdF 
+ ~ ^ Si J 'dy M(S)' U ^ 

to to 

dF 
with ~z— taken in the point (s, u(s), u'(s)). Therefore 

dy 

(26) y «•'*(*) + *(*> « W . «'(*)) 2 |~^'2(*o) + -F(«o, « ( « . « ' ( « ) + 

+ hF(s,u(s),u'(s))d3 í 
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Owing to (22), we have further 

* * « s i , + |эғ(.,.w,.,-w)đaa 
to 

^ Ko + F(tu u(h), u'(ti)) — F(t0, u(h), u'(ti)), 
so that 

F(t0, u(tt), u'(t()) £ K0. 

Since inf F(t0,u(U),y) g .*%, tt(t<), *'(*«)) g #o, 
|iV|<oo 

we get from (23) 
F = lim [inf F(t0, u(tt), y)] £ K0, 

i~+ao |y|<oo 

which contradicts the fact that u(t) satisfies (25). 
This proof is the source of a further theorem. 
Theorem 11: Letf(t, x, y) be continuous for t^to^0, \x\ + \y\ < oo. Suppose 

X 

further that F(t, x, y) = \ f(t, s, y) &s is such that — ( ' *' y> g 0, -j-~ f(t, x, y) £ 0 

o 

fort ^ t0 Z 0,\x \ + \y \ < co. 
If for all sequences {{.}*rl such that lim << = oo cmd ai7 sequences {xt}^lt such that lim 

| ж < l = = oo we h ve 
(27) lim [inf FЏt, xt, y)] = F 

І->00 |;y|<ao 

w&A F ^ + oo, 2.%e/& even/ solution of (24) w&icA satisfies (25) is bounded on its domain. 
1/ iw addition for t ^ t0, \ x \ -{- \ y \ < oo 

(28) f(t,x,y)Bgnx > 0, # # 0, 

JAew £&e derivative u'(t) of any solution u(t) is also bounded. 
Proof: Suppose that u(t) is a solution of (24) defined on (t0, I), I ££ + oo which 

satisfies (25) and let lim sup | u(t) | = -f- oo. Using (26) and the asumption-^r- S 0, 
. 7 at 
t->t 

we get 
F(t, u(t), u'(t)) <> K0. 

If i = -f. oo, then there must exist a sequence {ti}^t such that tt -> oo for i ~> oo 
and | u(h) | -> oo for i -> oo. If we put t = t< in the last inequality, we get a contra­
diction with (25). 

If if < oo, then there must exist a sequence {ti}^t such that lim | u(U) | = + oo. 
t->00 

If {^}^=i is a sequence such that tt -> oo for t ~-> oo and f< ^ ?* for any i then, using 
(28), we have again 

F(ti, u(tt), u'(ti)) $ K0 

and therefore 
F= lim [inf ^ ( l i , ^ ) ^ ) } ^ lim [inf F(thu(U),y)] & K0 

i-+co |y|<oo i-*co |yj<oo 

which again contradicts (25). 
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From (26) and (28) we see that if u(t) is defined on < t0,i), then for any t from 
this interval we have 

ju'Ht) £ K0. 

Thus u'(t) is also bounded. 
Considerations similar to those which have led to Theorems 10, 11 and same 

proceeding theorems eould now be used to prove the following theorems: 
Theorem 12: Assume the validity of the hypotheses of Theorem 10 and the conditions 

ft and y \ If 
dF 

(29) ~d^g^y) = °f°rt ^to^O,\x\ + \y\ < ao 

then any solution of the equation 

(30) • u" + b(t) g(u, u') + f(t, u, u') = 0 

which satisfies (25) is bounded for t j> t0 from its domain. 
Theorem 13: Assume the validity of the hypotheses of Theorem 11 and the condi­

tions /}' and y'. If (29) holds, then any solution of (30) which satisfies (25) and the deriva­
tive of any solution are bounded for t >, t0 from their domain. 

Theorem 14: Make the same assumptions as in the proceeding theorem with F in (27) 
equal to + oo. If c(t) is absolutely integrable, then all solutions of the equation 

u" + b(t) g(u, u') + f(t, u, u') = c(t) 

are bounded, together with their first derivatives, for t >. t0 from their domain. 
Theorem 15: Assume the validity of the hypotheses of Theorem 11 and the conditions 

fi' and y' with F in (27) equal to + oo. Ifyi(t) satisfies (20), then there exists t\ >. t0 such 
that all solutions of the equation 

(31) W + b(t) g(u, u') + (1 + W(t))f(t, u, u') = 0 

together with their first derivatives are bounded for t >. h from their domains. 
Theorem 16: Replace in the assumptions of Theorem 15 the condition (20) by the 

following one: 
1 + y) (t) *> k\ > 0 and f'(t) ^ 0 for t *> t0 >. Q. Then all solutions of (31) together 
with their first derivatives are bounded for t *> t0 from their domains. 

Theorem 17: Replace in the assumptions of Theorem 15 the condition (20) by the 
following one: 

1 + \p(t) *> ki > 0 for any t *> t0 *> 0 and i | y)'(t) \ át < co. Jlv'( 
to 

Then all solutions of (31) together with their first derivatives are bounded for t 2; t0 

from their domains. 
In [3] we find sufficient conditions for the lottndedness of all solutions of the 

equation 

(32) W + a(t)f(u)g(u')^0, 

together with their first derivatives. 
Let us investigate the boundedness of a more general equation. 
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In the following theorems we shall use the following assumptions: 
a) f(x) is continuous for all x and f(x) sgn x > 0 for x ^ 0; 
^) 9(y) is continuous and g(y) > 0 for all y; 

c) lim F(x) = + oo, lim 0(y) = + oo, where F(x) = f(s) ds, 
|*|«*oo |y|->oo J 

o 

Vt-lw*-
o 

Theorem 18: Suppose thatf(t, x)-^—z—are continuous for t >̂ t0 2> 0, \x | < oo 

and Je£ F(£, a;) satisfy the conditions (2) cmc? (3) o/ Theorem 1. J / 6) Aoftfo, Jfte^ any 
solution of the equation 

(33) « ' + / ( * , - ) t 7 ( - ' ) - = 0 , 

wfticfc satisfies the condition 

(34) #o = G(u'(t0)) + *•(«„, «(«o)) < F, 

is bounded for t ^ t0from its domain. 
Proof: From (33) we obtain 

"'"%+/(*> ")»'=<> 
?(«') 

and therefore 

>„,,,,+ >,«(.,,-^™=o. 
By integrating over (t0, t) with t0 £ t.< I where <£0, £) is the domain of u(t) we obtain 

t 

(35) (?(«'(*)) + F(t, u(t)) -= K0 + f dF(*>£W ds 

to 

and further * 

!•«, mo) < *<» + J 8 * y ) } *. 
Analogously as in the proof of Theorem 1, the boundedness of u(t) is proved using 
(2) and (3). 

Theorem 19: Let f(t, x) be continuous for t [> t0 *> 0, | x | < oo and suppose that 
the conditions (11), (12) am? (14) of/Theorem 4 ftofef. 1/ 6) holds and if 0(y) satisfies c), 
then any solution of (33) which satisfies (34) id bounded together with its first derivative, 
for t > t0 from their domain. 

Proof: Let (t0,1) be the domain of u(t). Owing to (11), we obtain from (35) 

(36) 0(u'(t)) + F(t, u(t)) <> K0 

and further, using (14), we see that G(u'(t)) S K0 so that u'(t) is bounded for te (t0f t). 
The boundedness of u(t) is proved using (36) and (12). In fact F({ttu(t)) <; K0 

for te <t0,1) and, owing to (12), F & K0 which contradicts (34). 
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Theorem 20: Let f(t,x) be continuous for t >. t0 >. 0, | x \ < oo and suppose that 
all hypotheses of Theorem 4 are valid with the exception of a), ft), y) and with F in (12) 
equal to + oo. Further assume the validity of b) and that part of c) which concerns G(y). 
Ify>(t) satisfies (20), then there exists T >. T0 such that any solution of the equation 

(37) u" + (A + y>(t))f(t, u) g(u') - 0, 

with A a positive constant is bounded together with its first derivative for t ^ T from 
its domain. 

Proof: From (37) we get 

u"u' 
(A + f(t))f(t,u)u'=0 

and therefore 

-^€f{u'(t)) + (A + f(t))-^F(t, u(t)) = (A + f(t))-~ • 

By integrating and using (11) we get 

t 

G(u'(t)) + (A+ tp(t)) F(t, u(t)) g K0 + f y/(s) F(s, u(s)) ds, 

to 

with K0 = G(u'(t0)) + (A + ip(t0)) F(to, u(t0)). 
From (20) we deduce the existence of T ;> t0 such that A + tp(t) >. ki > 0 for 

t >. J1 and therefore 
t 

(38) G(u'(t)) + kxF(t, u(t)) <K0+ f | yj'(s) \ F(s, u(s)) ds. 

T 

From this, using Bel lman's Lemma, we get 
t 

F(t,u(t)) 5 K0exp \±- f | tp'(s) \ds] S Kx 

so that u(t) is bounded. 
A further consequence of (38) is 

LI < 00, 

0(u'(t)) ^Ko + Ki f | y>'(s) \ đs < K2 L2 < 0 0 , 

f 
and therefore u'(t) is also bounded for te < T, I). 

Analogously we prove 
Theorem 21: Assume the validity ofull hypotheses of Theorem 20 with the exception 

of (20) instead of which we assume for t >. 10 *> 0 the validity of the following condition: 
U U 

0 and I | tp'( A + y>(t) > i i > 0 o«i | tp'(t) | dt < oo. 

Tftew. any solution of (37) t* bounded, together with its first derivative, for t >. t0from 
its domain. 
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2. OSCILLATION OF THE SOLUTION 

Theorem 22: Assume the validity of the hypotheses a), b) and let F(x) satisfy c). 
If a(t) ^ a > 0 for t *> t0 ^ 0, then every solution of (32) which is defined on <!T, oo) 
with T ^ t0 is oscillatory. 

Proof: Suppose that a solution u(t) of (32) is defined on <2\ oo) and does not 
oscillate. For example, let u(t) > 0 for t *> T. From (32) we see that in that case 
we have, for t ^ T 

u»(t) = — a(t)f(u(t)) g(uf(t)) < 0 

so that uf(t) is a decreasing function for t ^ T. Two cases may occur: 
1. There exist h ^ T such that u'(tx) <; 0, or 
2. u'(t) > 0 for all t ^ T. 

In the first case there must exist a number S > h such that u(£) = 0 which contra­
dicts the hypothesis. Therefore it is necessary that uf(t) > 0 for t ^ T and u(t) must 
be a monotonous increasing function of t. For t ^ T we have further 

0 ^ Hm w'(f) ^ *'(*) g «'(5P). 
t-*oo 

This means that uf(i) it bounded. It is now easy to prove that so is u(t). In fact, 
since g(y) > 0,(32) yields 

u,f(t) u'(t) 

~Wm 
and therefore 

(39) ~ 0(uf(t)) + a(t) -JL F(u(t)) = 0. 

Since u(t) is an increasing function of t for t *£ T, we see from the condition c) that 
so is F(u(t)). From (39) we get 

0(uf(t)) + aKM*)) S Q(u'(T)) + aF(u(T)) = KQ, 
so that 

K(^)) ^ i K 0 a 

and therefore, owing to c), u(t) is bounded on <JP, OO). From the boundedness of 
u(t) and uf(t) and the continuity oif(x) and </(̂ ) we see that Urn uf(t) = 0 and that 
there exist numbers U\ and uf

x such that for all t > T we have 

+ «(()/(«(<)) «'(<) = 0 

0 < /(«!) ^ (/«(*)), 0 < ?(Mi) ^ g(M'(*)), 

[*(<)>, «ie <0, w'(T)>. Then 

_«"(«) = a(t)f(u(t)) g(u'(t)) Z a/(Ml) g(Ml) = c > 0, 

with w,e <«(T), lim «(<)>, %e <0, w'(T)>. Then 
£->00 

so that 

u(t)<L—1^cP + clt + c2, 

with C! and c2 constants dependent on c, I7, u(T) and «*'(!T). Therefore for sufficiently 
large t we have u(t) S 0 which is a contradiction. 
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Now new problems arise if u(t) < 0 for t *> T. For in that case we have for t >. T 

u"(t) = -a(t)f(u(t))g(u'(t)) > 0 , 

so that u'(t) as a monotonous increasing function of t. The existence of a number 
ti *> T such that u'(t\) >. 0 again leads to contradiction. I t is therefore neccessary 
that for t 2; T 

u'(t) < 0, u'(T) £ u'(t) S lim u'(t) ^ 0 
t->co 

so that u(t) is a monotonous decreasing function which makes | u(t) | a monotonous 
increasing function. The conditions c) and (39) can be used again to prove that u(t) 
is bounded. But in that case 

—u"(t) = a(t)f(u(t)) g(u'(t)) £ a(t)f(u2) g(u2) < 0 

with u2 6 <lim u(t), u(T)}, u'2 e (u'(T), 0>. Therefore u'(t) — u'(T) ~* co for t -> oo 

so that u'(t) is unbounded for t -> oo, giving a contradiction. This completes the 
proof. 

dfit x) 
The iem 23: Let f(t, x) be continuous, f(t, x) sgn x > Ofor x ^0, J\9 >. 0 

ox 

for t >. t0 ^ 0, | a? | < oo. Suppose further that b) holds. Then any solution of (33) 
which is defined on < T, co), T >. t0 and for which 

oo 

(40) f f(s, u(T)) sgn w(T) ds = + oo 

T 

has at least one zero on (T, oo). 
Proof: Suppose that a solution u(t) defined on <T, oo) satisfies (40) and that 

u(t) > 0 for t^ T. From (33) we get 

u"{t) = —f(t, u(t)) g(*(t)) < 0 

so that u'(t) is decreasing function of t for t >. T. In the same way as before we prove 
that u'(t) must be positive for t >. T. Therefore u(t) is an increasing function and its 
values lie in the interval J = < u(T), lim u(t)). Since u'(t) > 0 and decreases mono-

tonously, it is bounded fori ^ T. Thus there exists a constant u\e < lim %'(f), u'(T) > 
£->oo 

such that for t >. T 

0 < <K<) ^ g(W'(0). 

But in that case, since f(t, x) is in J a non-decreasing function of x, we have 

-* ' (* ) =f(ttu(t)) g(u'(t)) :> g(u\)f(t,u(T)) 
and thus (40) implies that u'(t)—u'(T) ->—oo, which is a contradiction with the 
assumption that u'(t) is bounded for i J> T. 

The method is analogous if we assume that u(t) < 0 for t ^ T. Again we prove 
that the necessity of u'(t) < 0 for t ^ T and the fact that u'(t) is a monotonous 
increasing function of t. There exists thus a contant u2e(u'(T), lim u'(t)} such 
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that for all t ^ T we have g(u'(t)) ;> g(u'2). Since f(t, x) is an increasing function 
of#, we have 

-*'(*) =f(t,u(t))g(u'(t)) £ g(u'2)f(t,u(T)) < 0 

and again, using (40), u'(t) — u'(T) -> + oo for t -> oo. This completes the proof. 
I t is easy to prove the following 
Theorem 24: Suppose that the hypotheses of Theorem 23 are valid and that, for 

t ^ t0 ^ 0, A -f y>(t) ^ h\ > 0. T&en any solution of u(t) of (37) wWcA is defined 
on <T, oo) and satisfies (40) Aas a£ least one zero on (T, oo). 

Remark 4: Evidently if in Theorems 23 am? 24 £Ae relation (40) holds for ux = -w(T), 
tten any solution of (32) or (37) defined on <T, oo) /or wWcfc % «£ %(T) /or % > 0, 
anrf t*i ^ %(T) for ur < 0 ftas a£ Jeas£ one zero on (T, oo). 
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