Archivum Mathematicum

Pavol Šoltés

On certain properties of the solutions of a nonlinear differential equation of the second order

Archivum Mathematicum, Vol. 7 (1971), No. 2, 47--63

Persistent URL: http://dml.cz/dmlcz/104739

Terms of use:

© Masaryk University, 1971
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON CERTAIN PROPERTIES OF THE SOLUTIONS OF A NON LINEAR DIFFERENTIAL EQUATION OF THE SECOND ORDER

P. Soltés, Košice

(Received June 17, 1968)
The first part of this paper is a presentation of some results concerning the boundedness of solutions of a non-linear differential equation of the second order together with their first derivatives. A theorem is proved which is a generalization of a theorem of Kiguradze [1] and some results from [2], [3] and [4] are generalized and extended.

The second part deals with the oscillatory properties of solutions.

1. THE BOUNDEDNESS OF SOLUTIONS AND THEIR FIRST DERIVATIVES

Consider a non-linear differential equation of the second order o the form

$$
\begin{equation*}
a(t) u^{\prime \prime}+b(t) g\left(u, u^{\prime}\right)+f(t, u)=0 \tag{1}
\end{equation*}
$$

Let $F(t, x)=\int_{0}^{x} f(t, s) \mathrm{d} s$. In some theorems we shall postulate the following conditions:
$\alpha) f(t, x)$ and $\frac{\partial f(t, x)}{\partial t}$ are continuous for $t \geqq t_{0} \geqq 0,|x|<\infty$;
β) $g(x, y)$ is continuous for all x and y and there exists a non-negative constant k such that $y g(x, y) \geqq k y^{2}$ for all x and y;
$\gamma) a(t), b(t)$ are continuous non-negative functions for $t \geqq t_{0} \geqq 0$ and $2 k b(t) \geqq a^{\prime}(t)$.
Theorem 1: Suppose that α), β) and γ) hold. Suppose further that for any continuously differentiable function $x(t)$ on ($\left.t_{0}, t\right)$ where $t_{0}<t \leqq \infty$ which is unbounded for $t \rightarrow t_{-}$, there exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that, for $t_{i} \rightarrow t_{-}$,

$$
\begin{gather*}
\frac{\partial F(t, x(t))}{\partial t} \leqq \frac{\partial F\left(t, x\left(t_{i}\right)\right)}{\partial t}, t_{0} \leqq t \leqq t_{i}, \tag{2}\\
\lim _{i \rightarrow \infty} F\left(t_{0}, x\left(t_{i}\right)\right)=F
\end{gather*}
$$

with $F \leqq \infty$ independent of $x(t)$.
Then every solution $u(t)$ of (1) defined for $t \geqq t_{0}$, for which

$$
\begin{equation*}
F\left(t_{0}, u\left(t_{0}\right)\right)+\frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)<F, \text { is bounded for all } t \geqq t_{0} \tag{4}
\end{equation*}
$$

Prooi: Let the solution $u(t)$ exist on $\left\langle t_{0}, t\right)$ and suppose that it satisfies the condition (4). Suppose that $\lim \sup |u(t)|=+\infty$ for $t_{0}<t \leqq \infty$. By multiplying (1)

$$
t \rightarrow \overline{t_{-}}
$$

by $u^{\prime}(t)$ we get

$$
a(t) u^{\prime \prime} u^{\prime}+b(t) g\left(u, u^{\prime}\right) u^{\prime}+f(t, u) u^{\prime}=0
$$

and by integrating
(5) $\frac{1}{2} \int_{t_{0}}^{t} a(s) \frac{\mathrm{d}}{\mathrm{d} s} u^{\prime 2}(s) \mathrm{d} s+\int_{t_{0}}^{t} b(s) g\left(u, u^{\prime}\right) u^{\prime}(s) \mathrm{d} s+F(t, u(t))=F\left(t_{0}, u\left(t_{0}\right)\right)+$

$$
+\int_{i_{0}}^{t} \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s
$$

Since

$$
\begin{gathered}
\frac{1}{2} \int_{i_{0}}^{t} a(s) \frac{\mathrm{d}}{\mathrm{~d}_{8}} u^{\prime 2}(s) \mathrm{d} s+\int_{t_{0}}^{t} b(s) g\left(u, u^{\prime}\right) u^{\prime}(s) \mathrm{d} s=\frac{1}{2} a(t) u^{\prime 2}(t)- \\
-\frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+\int_{i_{0}}^{t}\left[b(s) g\left(u, u^{\prime}\right) u^{\prime}(s)-\frac{1}{2} a^{\prime}(s) u^{\prime 2}(s)\right] \mathrm{d} s \geqq \\
\geqq \frac{1}{2} a(t) u^{\prime 2}(t)-\frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right),
\end{gathered}
$$

we obtain, using (5), the inequality

$$
\begin{gather*}
\frac{1}{2} a(t) u^{\prime 2}(t)+F(t, u(t)) \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F t_{0},\left(u\left(t_{0}\right)\right)+ \tag{6}\\
+\int_{i_{0}}^{t} \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s
\end{gather*}
$$

Since $u(t)$ is unbounded in ($t-\partial, t$), there exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}, t_{i} \rightarrow t_{-}$, which satisfies the assumptions (2) and (3) (if we put $x(t)=u(t)$). The last inequality then yields

$$
\begin{aligned}
& F\left(t_{i}, u\left(t_{i}\right)\right) \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right)+\int_{t_{0}}^{t_{4}} \frac{\partial F\left(s, u\left(t_{i}\right)\right)}{\partial s} \mathrm{~d} s= \\
& \quad=\frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right)+F\left(t_{i}, u\left(t_{i}\right)\right)-F\left(t_{0}, u\left(t_{i}\right)\right),
\end{aligned}
$$

or

$$
F\left(t_{0}, u\left(t_{i}\right)\right) \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right) .
$$

For $i \rightarrow \infty$ we get

$$
F \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right)
$$

which is contradictory to (4).
Lemma: Let $\varphi(t)$ and $\varphi^{\prime}(t)$ be continuous on $\left\langle t_{0}, t\right)$ where $t<\infty$ and suppose that $\lim \varphi(t)$ does not exist. Then $t \rightarrow \bar{t}_{-}$

$$
\lim _{t \rightarrow \overline{t_{-}}} \sup \varphi^{\prime}(t)=+\infty
$$

and

$$
\lim _{t \rightarrow \bar{t}_{-}} \inf \varphi^{\prime}(t)=-\infty
$$

Proof: Let $\lim \sup \varphi(t)=A$ and $\lim \inf \varphi(t)=B$. This means that there exist

$$
t \rightarrow \bar{t}_{-} \quad t \rightarrow \bar{t}_{-}
$$

sequences $\left\{t_{i}\right\}_{i=1}^{\infty},\left\{\tilde{t}_{i}\right\}_{i=1}^{\infty}$, such that for $i \rightarrow \infty, t_{i} \rightarrow t_{-}, \tilde{t}_{i} \rightarrow \bar{t}_{-}$and that $\lim _{i \rightarrow \infty} \varphi\left(t_{i}\right)=A$ and $\lim _{i \rightarrow \infty} \varphi\left(\tilde{t_{i}}\right)=B$. By the mean value theorem by Langrange there exists a point $\xi_{i} \in\left(t_{i}, \tilde{t}_{i}\right)$ such that

$$
\begin{equation*}
\frac{\varphi\left(t_{i}\right)-\varphi\left(\check{t}_{i}\right)}{t_{i}-\check{t}_{i}}=\varphi^{\prime}\left(\xi_{i}\right) . \tag{*}
\end{equation*}
$$

Now let $\left\{\breve{t}_{i_{k}}\right\}_{k=1}^{\infty}$ and $\left\{t_{i_{k}}\right\}_{k=1}^{\infty}$ be subsequences of $\left\{t_{i}\right\}_{i=1}^{\infty}$ and $\left\{\check{t}_{i}\right\}_{i=1}^{\infty}$ respectively such that for great $k t_{i_{k}}>\tilde{t}_{i_{k}}, t_{i_{k}} \rightarrow t_{-}, \tilde{t}_{i_{k}} \rightarrow t_{-}$for $k \rightarrow \infty$. Using (*) for $k \rightarrow \infty$, we have

$$
\lim _{k \rightarrow \infty} \varphi^{\prime}\left(\xi_{i_{k}}\right)=+\infty
$$

where $\xi_{i_{k}} \in\left(t_{i_{k}}, \tilde{t}_{i_{k}}\right)$.
Analogously we prove that $\lim _{t \rightarrow t} \inf \varphi^{\prime}(t)=-\infty$. Here the subsequences $\left\{t_{i_{k}}\right\}_{k=1}^{\infty}$, $\left\{\tilde{t}_{i_{k}}\right\}_{k=1}^{\infty}$ are chosen so that $t_{i_{k}}<\tilde{t}_{i_{k}}, t_{i_{k}} \rightarrow t_{-} \check{t}_{i_{k}} \rightarrow t_{-}$for $k \rightarrow \infty$. Again we use (*) to get

$$
\frac{\varphi\left(t_{i_{k}}\right)-\varphi\left(\check{t}_{i_{k}}\right)}{\check{t}_{i_{k}}-t_{i_{k}}}=-\varphi^{\prime}\left(\xi_{i_{k}}\right),
$$

where $\xi_{i_{k}} \in\left(\tilde{t}_{i_{k}}, t_{i_{k}}\right)$. Therefore

$$
\lim _{k \rightarrow \infty} \varphi^{\prime}\left(\xi_{i_{k}}\right)=+\infty,
$$

which completes the proof.
Theorem 1a: Suppose that, in addition to the hypotheses of Theorem 1, a(t)>0 for $t \geqq t_{0}$. Then any solution of (1) satisfying (4) is defined and bounded on $\left\langle t_{0}, \infty\right)$.

Proof: Let $u(t)$ be a solution of (1) satisfying (4). According to Theorem $1 u(t)$ is bounded for $t \geqq t_{0}$. It is therefore sufficient to prove that the solution exists on $\left\langle t_{0}, \infty\right)$.

Let $u(t)$ exist on $\left\langle t_{0}, t\right), t<\infty$. We can distinguish two cases:
I. $\lim _{t \rightarrow \bar{t}_{-}} u(t)=Y$ and either $\lim _{t \rightarrow \bar{t}_{-}}\left|u^{\prime}(t)\right|=+\infty$ or $\lim _{t \rightarrow \bar{t}_{-}} u^{\prime}(t)$ does not exist. Let $\lim _{t \rightarrow \bar{t}_{-}}\left|u^{\prime}(t)\right|=+\infty$. For any sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$, such that for $i_{i} \rightarrow \infty t_{i} \rightarrow t_{-}$we get, using $t \rightarrow t_{-}$

$$
\begin{gather*}
\frac{1}{2} a\left(t_{i}\right) u^{\prime 2}\left(t_{i}\right)+F\left(t_{i}, u\left(t_{i}\right)\right) \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right)+ \tag{6a}\\
+\int_{i_{0}}^{t_{4}} \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s
\end{gather*}
$$

Owing to α) and the fact $u(t)$ is continuous for $t \in\left\langle t_{0}, t\right), \int_{t_{0}}^{\bar{t}} \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s$ is convergent. Then, since $a(t)>0$, from (6a) we can see that $F\left(t_{i}, u\left(t_{i}\right)\right) \rightarrow-\infty$ for $i \rightarrow \infty$, which contradicts the continuity of $F(t, x)$ for $t \geqq t_{0},|x|<\infty$.

Now suppose that $\lim u^{\prime}(t)$ dies not exist. Let $\lim \sup u^{\prime}(t)=A$ and $\lim \inf u^{\prime}(t)=$ $t \rightarrow \bar{t}-$ $t \rightarrow \bar{t}$ $t \rightarrow \bar{t}_{-}$
$=B$. The assumptions $A=+\infty$, or $B=-\infty$ again lead to contradiction (using (6a)). Suppose therefore that both A and B are finite. Since $u^{\prime}(t)$ and $u^{\prime \prime}(t)$ are continuous for $t \in\left\langle t_{0}, t\right)$, we can use the lemma to show that $\lim \sup u^{\prime \prime}(t)=+\infty$ $t \rightarrow \bar{t}$
and $\lim \inf u^{\prime \prime}(t)=-\infty$. This gives us - for the numbers of a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such $t \rightarrow \vec{t}_{-}$
that $t_{i} \rightarrow t_{-}$for $i \rightarrow \infty$ and $\lim u^{\prime}\left(t_{i}\right)=+\infty$ - the following equation (by substitut. ing into (1)): $a\left(t_{i}\right) u^{\prime \prime}\left(t_{i}\right)+b\left(t_{i}\right) g\left(u\left(t_{i}\right), u^{\prime}\left(t_{i}\right)\right)+f\left(t_{i}, u\left(t_{i}\right)\right)=0$. Since $a(t)>0$ and $b(t), g\left(u, u^{\prime}\right)$ and $f(t, u)$ remain finite for $t_{i} \rightarrow t_{-}$, this equation leads to contradiction if $i \rightarrow \infty$.
II. $\lim _{t \rightarrow t} u(t)$ does not exist. Since $u(t)$ is bounded and continuous for $t \in\left\langle t_{0}, t\right)$ and $u^{\prime}(t)$ is likewise continuous for $t \in\left\langle t_{0}, t\right)$, it is a consequence of the lemma that $\lim _{t \rightarrow t_{-}}$sup $u^{\prime}(t)=+\infty$ and $\lim \inf u^{\prime}(t)=-\infty$. Analogously as in I., a contradiction can be $\overrightarrow{t \rightarrow t}$ deduced from (6a).

We have therefore proved that it is necessary that $\lim u(t)=Y$ and $\lim u^{\prime}(t)=Y_{1}$ $t \rightarrow \bar{t}$
where both Y and Y_{1} are finite. Therefore the solution $u(t)$ passing through the point ($t_{0}, u\left(t_{0}\right), u^{\prime}\left(t_{0}\right)$) can be extended to pass through the point (t, Y, Y_{1}). By the appropriate existence theorem there exists a solution $u_{1}(t)$ of (1) which is defined for $t \in\left\langle\bar{t}, t_{i}\right.$) and $u_{1}(t)=Y, u_{1}^{\prime}(t)=Y_{1}$. Define a function $\tilde{u}(t)$ as follows:

$$
\tilde{u}(t)= \begin{cases}u(t) & \text { for } t \in\left\langle t_{0}, t\right) \\ u_{1}(t) & \text { for } t \in\left\langle t, \bar{t}_{1}\right) .\end{cases}
$$

Now $\tilde{u}(t)$ is an extension of $u(t)$ to $\left(t_{0}, t_{1}\right)$ which satisfies the condition (4) and is therefore bounded. If $t_{1}<\infty$, then the extension can be repeated. This proves the theorem.

Remark 1: The assumption that $a(t)>0$ for $t \geqq t_{0}$ is essential. The following example will demonstrate that for $a(t) \geqq 0$ not every solution can be extended.

Example: The differential equation

$$
(1-t)^{2} u^{\prime \prime}+|1-t| u^{\prime}+\frac{3}{4} u=0
$$

satisfies the assumptions of Theorem 1 with $F=+\infty$. Therefore every solution is bounded on its domain. It is easily demonstrated that $u(t)=\sqrt{1-t}$ is a solution which cannot be extended beyond $t=1$.

Theorem 2: Suppose that α), β) and γ) hold and that there exists a sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ such that $(-1)^{i} x_{i}>0$ for $i=1,2, \ldots, \lim _{i \rightarrow \infty}\left|x_{i}\right|=\infty$ and

$$
\begin{equation*}
\frac{\partial F(t, x)}{\partial t} \leqq \frac{\partial F\left(t, x_{i}\right)}{\partial t},|x| \leqq\left|x_{i}\right|, t \geqq t_{0} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{i \rightarrow \infty} F\left(t_{0}, x_{i}\right)=F \leqq+\infty \tag{8}
\end{equation*}
$$

Then every solution $u(t)$ of (1) which satisfies the condition (4) is bounded for all $t \geqq t_{0}$ from its domxin.

Proof: Let $x(t)$ be a function which is continuous on ($\left.t_{0}, t\right)$ and unbounded for $t \rightarrow t_{-}$. Evidently there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that, for $k \rightarrow \infty, t_{k} \rightarrow \bar{t}_{-}$and that $x\left(t_{k}\right)=x_{i_{k}},|x(t)| \leqq\left|x_{i_{k}}\right|$ for $t_{0} \leqq t \leqq t_{k}$, where $\left\{x_{i_{k}}\right\}_{k=1}^{\infty}$ is a subsequence of $\left\{x_{i}\right\}_{i=1}^{\infty}$.
Now (7) and (8) imply (2) and (3) with F independent of $x(t)$. Therefore under the assumptions of Thoerem 2, the hypotheses of Theorem 1 hold and so does its conclusion which is also a conclusion of Theorem 2.

Theorem 3: Suppose that in the hypothesis of Theorem 1 the conditions (2) and (3) are replaced by

$$
\begin{equation*}
0 \leqq \frac{\partial f(t, x)}{\partial t}=-\frac{\partial f(t,-x)}{\partial t}, x>0, t \geqq t_{0} \geqq 0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \sup F\left(t_{0}, x\right)=+\infty \tag{10}
\end{equation*}
$$

Then all solutions of (1) are bounded for $t \geqq t_{0}$ from their domain.
Proof: Let $u(t)$ be defined on $\left\langle t_{0}, t\right)$. Using (9), we find that

$$
\frac{\partial F(t, x)}{\partial t} \leqq \frac{\partial F(t, \bar{x})}{\partial t} \text { for }|x| \leqq|\bar{x}|, t \geqq t_{0}
$$

Owing to (10), there exists a sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ such that (-1) ${ }^{i} x_{i}>0,\left|x_{i}\right|<\left|x_{i+1}\right|$ $(i=1,2, \ldots)$ and $\lim _{i \rightarrow \infty} F\left(t_{0}, x_{i}\right)=+\infty$. Thus the hypotheses of Theorem 2 are satisfied. Since in addition to that, $F=+\infty$, every solution of (1) is bounded on its domain.

Remark 2: If $a(t) \equiv 1, b(t) g(x, y) \equiv 0$ for $t \geqq t_{0} \geqq 0$ and $|x|+|y|<\infty$, then our Theorem 1 becomes Theorem 1 of [1].

Theorem: 4 Suppose that the assumptions α), β) and γ) hold. Moreover, suppose that for $t \geqq t_{0} \geqq 0,|x|<\infty$,

$$
\begin{equation*}
\frac{\partial F(t, x)}{\partial t} \leqq 0 \tag{11}
\end{equation*}
$$

and that for any sequences $\left\{t_{i}\right\}_{i=1}^{\infty},\left\{x_{i}\right\}_{i=1}^{\infty}$ such that for $i \rightarrow \infty, t_{i} \rightarrow \infty$ and $\left|x_{i}\right| \rightarrow \infty$

$$
\begin{equation*}
\lim _{i \rightarrow \infty} F\left(t_{i}, x_{i}\right)=F \leqq \infty \tag{12}
\end{equation*}
$$

Then every solution of (1) which satisfies the inequality

$$
\begin{equation*}
F\left(t_{0}, u\left(t_{0}\right)\right)+\frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)<F, \tag{13}
\end{equation*}
$$

is bounded for $t \geqq t_{0}$ from its domain.
If in addition $a(t) \geqq a>0$ for $t \geqq t_{0}$ and

$$
\begin{equation*}
f(t, x) \operatorname{sgn} x>0 \text { for } x \neq 0 \text { and } t \geqq t_{0}, \tag{14}
\end{equation*}
$$

then the first derivative of any solution $u(t)$ of (1) is bounded for $t \geqq t_{0}$ from the domain of $u(t)$ which, if $u(t)$ satisfies the inequality (13), is for $t \in\left\langle t_{0}, \infty\right)$.

Proof: The method is analogous to that used in proving Theorem 1. Suppose that, although a solution $u(t)$ of (1) is defined on $\left\langle t_{0}, t\right)$ and satisfies the condition (13), $\lim \sup |u(t)|=+\infty$. By multiplying (1) by $u^{\prime}(t)$ and integrating over ($\left.t_{0}, t\right)$, $t \rightarrow \bar{t}_{-}$
where $t<t$, we get the following modification of (6):

$$
\begin{gather*}
\frac{1}{2} a(t) u^{\prime 2}(t)+F(t, u(t)) \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right)+ \tag{15}\\
+\int_{i_{0}}^{t} \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s
\end{gather*}
$$

from which, using (11), we get

$$
\begin{equation*}
F(t, u(t)) \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right) \tag{16}
\end{equation*}
$$

Let $t=+\infty$. Since $\lim \sup |u(t)|=+\infty$, there exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such $t \rightarrow \bar{t}_{-}$
that for $i \rightarrow \infty$ both t_{i} and $\left|u\left(t_{i}\right)\right|$ tend to infinity. Thus (16) leads to a contradiction with (13).

If the domain of $u(t)$ is a finite interval, i.e. $t<\infty$ and $u(t)$ is unbounded at t, there exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that for $i \rightarrow \infty t_{i} \rightarrow t_{-}$while $\left|u\left(t_{i}\right)\right| \rightarrow \infty$. Define a sequence $\left\{\tilde{t}_{i}\right\}_{i=1}^{\infty}$ such that for all $i t_{i} \leqq \tilde{t}_{i}$ and $\lim _{i \rightarrow \infty} \tilde{t}_{i}=\infty$. Using (11), we get from (16):

$$
F\left(\tilde{t}_{i}, u\left(t_{i}\right)\right) \leqq F\left(t_{i}, u\left(t_{i}\right)\right) \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right),
$$

so that, for $i \rightarrow \infty$, we have

$$
F \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right)
$$

which contradicts the assumption (13).
Furthermore, using (11) and (14), from (15) we get

$$
\frac{1}{2} a u^{\prime 2}(t) \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right)
$$

so that $u^{\prime}(t)$ is bounded.
The proof that the domain of $u(t)$ is $\left\langle t_{0}, \infty\right)$ if $a(t) \geqq a>0$ for $t \geqq t_{0}$ and provided (14) holds, follows from the proof of Theorem la.

Theorem 5: Let the hypotheses of Theorem 4 hold and suppose that in (12) $F=$ $=+\infty$. If $c(t)$ is absolutely integrable, i.e. $\int^{\infty}|c(t)| \mathrm{d} t \leqq K<\infty$, then every solution $u(t)$ of the equation

$$
\begin{equation*}
a(t) u^{\prime \prime}+b(t) g\left(u, u^{\prime}\right)+f(t, u)=c(t) \tag{17}
\end{equation*}
$$

together with its first derivative is bounded for all $t \geqq t_{0}$ from its domain.
If in addition $c(t)$ and $c^{\prime}(t)$ are continuous, then the same holds for $\left\langle t_{0}, \infty\right)$.
Proof: By multiplying (17) by $u^{\prime}(t)$ and integrating over (t_{0}, t) (where $t_{0} \leqq t<t$, $\left\langle t_{0} t\right)$ being the domain of $\left.u(t)\right)$, we get

$$
\begin{gather*}
\frac{1}{2} a(t) u^{\prime 2}(t)+F(t, u(t)) \leqq \frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right)+ \tag{18}\\
\quad+\int_{i_{0}}^{t} \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s+\int_{i_{0}}^{t} c(s) u^{\prime}(s) \mathrm{d} s
\end{gather*}
$$

from which, using (11) and (14), we have

$$
\frac{1}{2} a u^{\prime 2}(t) \leqq K_{0}+\int_{i_{0}}^{t}\left|c(s) \| u^{\prime}(s)\right| \mathrm{d} s
$$

and therefore

$$
a\left|u^{\prime}(t)\right| \leqq \frac{a}{2}\left(\left|u^{\prime}\right|^{2}+1\right) \leqq K_{0}+\frac{a}{2}+\int_{t_{0}}^{t}|c(s)|\left|u^{\prime}(s)\right| \mathrm{d} s
$$

where

$$
K_{0}=\frac{1}{2} a\left(t_{0}\right) u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u(t)\right)
$$

By Bellman's lemma in [5] we have

$$
\left|u^{\prime}(t)\right| \leqq K_{1} \exp \left[\frac{1}{a} \int_{t_{o}}^{t}|c(s)| \mathrm{d} s\right] \leqq K_{2}<\infty
$$

where

$$
K_{1}=K_{0}+\frac{a}{2}
$$

From (18) we have further

$$
F(t, u(t)) \leqq K_{0}+\int_{i_{o}}^{t} c(s) u^{\prime}(s) \mathrm{d} s
$$

and since $\left|u^{\prime}(t)\right| \leqq K_{2}$ and $c(t)$ is absolutely integrable, we have

$$
F(t, u(t)) \leqq K_{0}+K_{2} K<\infty \text { for } t \geqq t_{0}
$$

Using (12) with $F=+\infty$, we see that $u(t)$ is also bounded.
The last assertion of the theorem may be proved by the fact that the functions

$$
\left.\tilde{f}(t, x)=f(t, x)-c(t) \text { and } \frac{\partial \tilde{f}(t, x)}{\partial t}=\frac{\partial f(t, x)}{\partial t}-c^{\prime}(t) \text { satisfy the condition } \alpha\right) .
$$

In connection with (1), let us consider the equation

$$
\begin{equation*}
a(t) u^{\prime \prime}+b(t) g\left(u, u^{\prime}\right)+(1+\psi(t)) f(t, u)=0 . \tag{19}
\end{equation*}
$$

Theorem 6: Suppose that the hypotheses of Theorem 4 hold, with F in (12) equal to $+\infty$. If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \varphi(t)=0 \text { and } \int_{t_{0}}^{\infty}\left|\psi^{\prime}(t)\right| \mathrm{d} t<\infty \tag{20}
\end{equation*}
$$

then there exists $t_{1} \geqq t_{0}$ such that every solution of (19) together with its first derivative is bounded for all $t \geqq t_{1}$ from its domain.

If in addition $\psi^{\prime}(t)$ is also continuous, than this holds for $t \in\left\langle t_{1}, \infty\right)$.
Proof: (20) implies the existence of $t_{1} \geqq t_{0}$ such that, for $t \geqq t_{1}, 1+\psi(t) \geqq k_{1}>0$. Now if $t_{1} \leqq t<t$, where $\left\langle t_{1}, t\right)$ is the domain of $u(t)$, the equation (19) yields the inequality

$$
\begin{gathered}
\frac{1}{2} a(t) u^{\prime 2}(t)+(1+\psi(t)) F(t, u(t)) \leqq \frac{1}{2} a\left(t_{1}\right) u^{\prime 2}\left(t_{1}\right)+\left(1+\psi\left(t_{1}\right)\right) F\left(t_{1}, u\left(t_{1}\right)\right)+ \\
+\int_{i_{1}}^{t} \psi^{\prime}(s) F(s, u(s)) \mathrm{d} s+\int_{i_{1}}^{t}(1+\psi(s)) \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s
\end{gathered}
$$

and therefore

$$
\begin{equation*}
\frac{1}{2} a u^{\prime 2}(t)+k_{1} F(t, u(t)) \leqq K_{0}+\int_{i_{1}}^{t} \psi^{\prime}(s) F(s, u(s)) \mathrm{d} s \tag{21}
\end{equation*}
$$

where

$$
K_{0}=\frac{1}{2} a\left(t_{1}\right) u^{\prime 2}\left(t_{1}\right)+F\left(t_{1}, u\left(t_{1}\right)\right)\left(1+\psi\left(t_{1}\right)\right)
$$

From (14) we see that $F(t, u) \geqq 0$ for $t \in\left\langle t_{1}, t\right)$ and therefore if we omit the term $\frac{1}{2} a u^{\prime 2}(t)$ in (21) and use Bellman's lemma, we get

$$
F(t, u(t)) \leqq K_{0} \exp \left[\frac{1}{k_{1}} \int_{i_{1}}^{t}\left|\psi^{\prime}(s)\right| \mathrm{d} s\right] \leqq K<\infty
$$

and also

$$
\frac{1}{2} a u^{\prime 2}(t) \leqq K_{0}+K \int_{t_{1}}^{t}\left|\psi^{\prime}(s)\right| \mathrm{d} s \leqq K_{1}<\infty
$$

But this means, owing to (12), that, $u(t)$ and $u^{\prime}(t)$ are bounded on $\left\langle t_{1}, t\right)$. The last part of the theorem again follows from the proof of Theorem la.

Theorem 7: Suppose that the hypotheses of Theorem 4 hold with F in (12) equal to $+\infty$. Suppose further that $1+\psi(t) \geqq k_{1}>0$ and $\psi^{\prime}(t) \leqq 0$ for $t \geqq t_{0} \geqq 0$. Then every solution $u(t)$ of (19) together with its first derivative is bounded for $t \geqq t_{0}$ from its domain. If in addition $\psi^{\prime}(t)$ is continuous, then this holds for $\left\langle t_{0}, \infty\right)$.

Proof: The proof is a direct consequence of the proof of Theorem 6. In fact (21) yields

$$
F(t, u(t)) \leqq \frac{K_{0}}{k_{1}}
$$

and also

$$
\frac{1}{2} a u^{\prime 2}(t) \leqq K_{0}
$$

which completes the proof.
Theorem 8: Suppose that all hypotheses of Theorem 6 except (20) hold and that instead of satisfying the condition $(20), \psi(t)$ is such that for $t \geqq t_{0} \geqq 0$

$$
1+\psi(t) \geqq k_{1}>0 \text { and } \int_{t_{0}}^{\infty}\left|\psi^{\prime}(t)\right| \mathrm{d} t<\infty
$$

Then every solution of (19) together with its first derivative is bounded for $t \geqq t_{0}$ from its domain. If in addition $\psi^{\prime}(t)$ is also continuous, then this is true for $\left\langle t_{0}, \infty\right)$.

The proof of this theorem realizes the condition (21) and the method is analogous to that used in proving Theorem 6.

The conditions of boundedness in these theorems will be considerably simplified if we put $a(t) \equiv 1$ in (1), (17) and (19). We have

Theorem 9: Let the hypotheses (2) and (3) of Theorem 1 hold an suppose that
$\left.\alpha^{\prime}\right) f(t, x)$ and $\frac{\partial F(t, x)}{\partial t}$ are continuous for $t \geqq t_{0} \geqq 0,|x|<\infty$;
$\left.\beta^{\prime}\right) g(x, y)$ is continuous and $g(x, y) \operatorname{sgn} y \geqq 0$ for all x and y;
$\left.\gamma^{\prime}\right) a(t) \equiv 1, b(t) \geqq 0$ is a continuous function for $t \geqq t_{0} \geqq 0$.
Then every solution $u(t)$ of (1) for which

$$
F\left(t_{0}, u\left(t_{0}\right)\right)+\frac{1}{2} u^{\prime 2}\left(t_{0}\right)<F,
$$

is bounded on $\left\langle t_{0}, \infty\right)$.
Proof: Let a solution $u(t)$ of (1) be defined on $\left\langle t_{0}, t\right)$.). By multiplying (1) by $u^{\prime}(t)$ we get

$$
u^{\prime} u^{\prime \prime}+b(t) g\left(u, u^{\prime}\right) u^{\prime}+f(t, u) u^{\prime}=0
$$

from which by integrating we get the following form of (6):

$$
\frac{1}{2} u^{\prime 2}(t)+F(t, u(t)) \leqq \frac{1}{2} u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right)\right)+\int_{t_{0}}^{t} \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s
$$

Now we proceed as we did in proving Theorem 1. From the proof of Theorem 1a it is obvious that any solution can be extended to $\left\langle t_{0}, \infty\right)$.

Remark 3: If $a(t) \equiv 1$, then in Theroems 2-8 it suffices to postulate the conditions $\left.\alpha^{\prime}\right), \beta^{\prime}$) and γ^{\prime}) instead of the ,,undashed" conditions.

Theorem 10: Suppose that $f(t, x, y)$ and $\frac{\partial f(t, x, y)}{\partial t}$ are continuous for $t \geqq t_{0} \geqq 0$,
$|x|+|y|<\infty$; let that $F(t, x, y) \int_{0}^{x}=f(t, s, y) \mathrm{d}$ s and suppose that $\frac{\partial F}{\partial y} f(t, x, y) \geqq 0$, for $t \geqq t_{0} \geqq 0,|x|+|y|<\infty$. If for any continuously differentiable function $x(t)$ on (t_{0}, t) which is unbounded for $t \rightarrow t_{-}, t_{0}<t \leqq \infty$, there exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that if $t_{i} \rightarrow t_{-}$for $i \rightarrow \infty$, then

$$
\begin{equation*}
\frac{\partial F\left(t, x(t), x^{\prime}(t)\right)}{\partial t} \leqq \frac{\partial F\left(t, x\left(t_{i}\right), x^{\prime}\left(t_{i}\right)\right)}{\partial t}, t_{0} \leqq t \leqq t_{i} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left[\inf _{|y|<\infty} F\left(t_{0}, x\left(t_{i}\right), y\right)\right]=F \tag{23}
\end{equation*}
$$

with $F \leqq \infty$ independent of $x(t)$, then every solution of the equation

$$
\begin{equation*}
u^{\prime \prime}+f\left(t, u, u^{\prime}\right)=0 \tag{24}
\end{equation*}
$$

for which

$$
\begin{equation*}
K_{0}=\frac{1}{2} u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right), u^{\prime}\left(t_{0}\right)\right)<F \tag{25}
\end{equation*}
$$

is bounded for $t \geqq t_{0}$ from its domain.
Proof: Suppose that a solution $u(t)$ of (24) is defined on $\left\langle t_{0}, t\right)$ and satisfies(25) and that $\lim \sup |u(t)|=+\infty$. By multiplying (24) by $u^{\prime}(t)$ and integrating over $t \rightarrow \bar{i}$
($\left.t_{0}, t\right)$ with $t_{0} \leqq t<t$, we obtain the equation

$$
\frac{1}{2} u^{\prime 2}(t)+\int_{t_{0}}^{t} f\left(s, u(s), u^{\prime}(s)\right) u^{\prime}(s) \mathrm{d} s=\frac{1}{2} u^{\prime 2}\left(t_{0}\right)
$$

or

$$
\begin{aligned}
& \frac{1}{2} u^{\prime 2}(t)+\int_{t_{0}}^{t} \frac{\mathrm{~d}}{\mathrm{~d} s} F\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s=\frac{1}{2} u^{\prime 2}\left(t_{0}\right)+ \\
& +\int_{t_{0}}^{t} \frac{\partial F\left(s, u(s), u^{\prime}(s)\right)}{\partial s} \mathrm{~d} s-\int_{i_{0}}^{t} \frac{\partial F}{\partial y} f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s
\end{aligned}
$$

with $\frac{\partial F}{\partial y}$ taken in the point $\left(s, u(s), u^{\prime}(s)\right)$. Therefore

$$
\begin{gather*}
\frac{1}{2} u^{\prime 2}(t)+F\left(t, u(t), u^{\prime}(t)\right) \leqq \frac{1}{2} u^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, u\left(t_{0}\right), u^{\prime}\left(t_{0}\right)\right)+ \tag{26}\\
+\int_{i_{0}}^{t} \frac{\partial F\left(s, u(s), u^{\prime}(s)\right)}{\partial s} \mathrm{~d} s
\end{gather*}
$$

Owing to (22), we have further

$$
\begin{aligned}
& F\left(t_{i}, u\left(t_{i}\right), u^{\prime}\left(t_{i}\right)\right) \leqq K_{0}+\int_{t_{0}}^{t_{4}} \frac{\partial F\left(s, u(s), u^{\prime}(s)\right)}{\partial s} \mathrm{~d} s \leqq \\
& \leqq K_{0}+F\left(t_{i}, u\left(t_{i}\right), u^{\prime}\left(t_{i}\right)\right)-F\left(t_{0}, u\left(t_{i}\right), u^{\prime}\left(t_{i}\right)\right),
\end{aligned}
$$

so that

$$
F\left(t_{0}, u\left(t_{i}\right), u^{\prime}\left(t_{i}\right)\right) \leqq K_{0}
$$

Since $\inf _{|y|<\infty} \boldsymbol{F}\left(\boldsymbol{t}_{0}, u\left(t_{i}\right), y\right) \leqq \boldsymbol{F}\left(\boldsymbol{t}_{0}, u\left(t_{i}\right), u^{\prime}\left(\boldsymbol{t}_{i}\right)\right) \leqq K_{0}$,
we get from (23)

$$
F=\lim _{i \rightarrow \infty}\left[\inf _{|y|<\infty} F\left(t_{0}, u\left(t_{i}\right), y\right)\right] \leqq K_{0}
$$

which contradicts the fact that $u(t)$ satisfies (25).
This proof is the source of a further theorem.
Theorem 11: Let $f(t, x, y)$ be continuous for $t \geqq t_{0} \geqq 0,|x|+|y|<\infty$. Suppose further that $F(t, x, y)=\int_{0}^{x} f(t, s, y) \mathrm{d} s$ is such that $\frac{\partial F(t, x, y)}{\partial t} \leqq 0, \frac{\partial F}{\partial y} f(t, x, y) \geqq 0$ for $t \geqq t_{0} \geqq 0,|x|+|y|<\infty$. If for all sequences $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that $\lim _{i \rightarrow \infty} t_{i}=\infty$ and all sequences $\left\{x_{i}\right\}_{i=1}^{\infty}$ such that $\lim _{i \rightarrow \infty}$ $\left|x_{i}\right|=\infty$ we have

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left[\inf _{|y|<\infty} F\left(t_{i}, x_{i}, y\right)\right]=F \tag{27}
\end{equation*}
$$

with $F \leqq+\infty$, then every solution of (24) which satisfies (25) is bounded on its domain.
If in addition for $t \geqq t_{0},|x|+|y|<\infty$

$$
\begin{equation*}
f(t, x, y) \operatorname{sgn} x>0, x \neq 0 \tag{28}
\end{equation*}
$$

then the derivative $u^{\prime}(t)$ of any solution $u(t)$ is also bounded.
Proof: Suppose that $u(t)$ is a solution of (24) defined on $\left\langle t_{0}, t\right), t \leqq+\infty$ which satisfies (25) and let $\lim _{t \rightarrow \bar{t}} \sup |u(t)|=+\infty$. Using (26) and the asumption $\frac{\partial F}{\partial t} \leqq 0$, we get

$$
F\left(t, u(t), u^{\prime}(t)\right) \leqq K_{0}
$$

If $t=+\infty$, then there must exist a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that $t_{i} \rightarrow \infty$ for $i \rightarrow \infty$ and $\left|u\left(t_{i}\right)\right| \rightarrow \infty$ for $i \rightarrow \infty$. If we put $t=t_{i}$ in the last inequality, we get a contradiction with (25).

If $t<\infty$, then there must exist a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that $\lim _{i \rightarrow \infty}\left|u\left(t_{i}\right)\right|=+\infty$. If $\left\{\breve{t}_{i}\right\}_{i=1}^{\infty}$ is a sequence such that $\bar{t}_{i} \rightarrow \infty$ for ${ }_{i} \rightarrow \infty$ and $\boldsymbol{t}_{i} \leqq \check{t}_{i}$ for any i then, using (28), we have again

$$
F\left(t_{i}, u\left(t_{i}\right), u^{\prime}\left(t_{i}\right)\right) \leqq K_{0}
$$

and therefore

$$
F=\lim _{i \rightarrow \infty}\left[\inf _{|y|<\infty} F\left(\tilde{t}_{i}, u\left(t_{i}\right), y\right)\right] \leqq \lim _{i \rightarrow \infty}\left[\inf _{|y|<\infty} F\left(t_{i}, u\left(t_{i}\right), y\right)\right] \leqq K_{0}
$$

which again contradicts (25).

From (26) and (28) we see that if $u(t)$ is defined on $\left.<t_{0}, t\right)$, then for any t from this interval we have

$$
\frac{1}{2} u^{\prime 2}(t) \leqq K_{0}
$$

Thus $u^{\prime}(t)$ is also bounded.
Considerations similar to those which have led to Theorems 10,11 and same proceeding theorems could now be used to prove the following theorems:

Theorem 12: Assume the validity of the hypotheses of Theorem 10 and the conditions β^{\prime} and γ^{\prime}. If

$$
\begin{equation*}
\frac{\partial F}{\partial y} g(x, y) \geqq 0 \text { for } t \geqq t_{0} \geqq 0,|x|+|y|<\infty \tag{29}
\end{equation*}
$$

then any solution of the equation

$$
\begin{equation*}
u^{\prime \prime}+b(t) g\left(u, u^{\prime}\right)+f\left(t, u, u^{\prime}\right)=0 \tag{30}
\end{equation*}
$$

which satisfies (25) is bounded for $t \geqq t_{0}$ from its domain.
Theorem 13: Assume the validity of the hypotheses of Theorem 11 and the conditions β^{\prime} and γ^{\prime}. If (29) holds, then any solution of (30) which satisfies (25) and the derivative of any solution are bounded for $t \geqq t_{0}$ from their domain.

Theorem 14: Make the same assumptions as in the proceeding theorem with F in (27) equal to $+\infty$. If $c(t)$ is absolutely integrable, then all solutions of the equation

$$
u^{\prime \prime}+b(t) g\left(u, u^{\prime}\right)+f\left(t, u, u^{\prime}\right)=c(t)
$$

are bounded, together with their first derivatives, for $t \geqq t_{0}$ from their domain.
Theorem 15: Assume the validity of the hypotheses of Theorem 11 and the conditions β^{\prime} and γ^{\prime} with F in (27) equal to $+\infty$. If $\psi(t)$ satisfies (20), then there exists $t_{1} \geqq t_{0}$ such that all solutions of the equation

$$
\begin{equation*}
u^{\prime \prime}+b(t) g\left(u, u^{\prime}\right)+(1+\psi(t)) f\left(t, u, u^{\prime}\right)=0 \tag{31}
\end{equation*}
$$

together with their first derivatives are bounded for $t \geqq t_{1}$ from their domains.
Theorem 16: Replace in the assumptions of Theorem 15 the condition (20) by the following one:
$1+\psi(t) \geqq k_{1}>0$ and $\psi^{\prime}(t) \leqq 0$ for $t \geqq t_{0} \geqq 0$. Then all solutions of (31) together with their first derivatives are bounded for $t \geqq t_{0}$ from their domains.

Theorem 17: Replace in the assumptions of Theorem 15 the condition (20) by the following one:

$$
1+\psi(t) \geqq k_{1}>0 \text { for any } t \geqq t_{0} \geqq 0 \text { and } \int_{t_{0}}^{\infty}\left|\psi^{\prime}(t)\right| \mathrm{d} t<\infty .
$$

Then all solutions of (31) together with their first derivatives are bounded for $t \geqq t_{0}$ from their domains.

In [3] we find sufficient conditions for the koundedness of all solutions of the equation

$$
\begin{equation*}
u^{\prime \prime}+a(t) f(u) g\left(u^{\prime}\right)=0 \tag{32}
\end{equation*}
$$

together with their first derivatives.
Let us investigate the boundedness of a more general equation.

In the following theorems we shall use the following assumptions:
a) $f(x)$ is continuous for all x and $f(x) \operatorname{sgn} x>0$ for $x \neq 0$;
b) $g(y)$ is continuous and $g(y)>0$ for all y;
c) $\lim _{|x| \rightarrow \infty} F(x)=+\infty, \lim _{|y| \rightarrow \infty} G(y)=+\infty$, where $F(x)=\int_{0}^{x} f(s) \mathrm{d} s$,
$G(y)=\int_{0}^{y} \frac{s}{g(s)} \mathrm{d} s$.
Theorem 18: Suppose that $f(t, x) \frac{\partial f(t x)}{\partial}$ are continuous for $t \geqq t_{o} \geqq 0,|x|<\infty$ and let $F(t, x)$ satisfy the conditions (2) and (3) of Theorem 1. If b) holds, then any solution of the equation

$$
\begin{equation*}
u^{\prime \prime}+f(t, u) g\left(u^{\prime}\right)=0 \tag{33}
\end{equation*}
$$

which satisfies the condition

$$
\begin{equation*}
K_{0}=G\left(u^{\prime}\left(t_{0}\right)\right)+F\left(t_{0}, u\left(t_{0}\right)\right)<F, \tag{34}
\end{equation*}
$$

is bounded for $t \geqq t_{0}$ from its domain.
Proof: From (33) we obtain

$$
\frac{u^{\prime \prime} u^{\prime}}{g\left(u^{\prime}\right)}+f(t, u) u^{\prime}=0
$$

and therefore

$$
\frac{\mathrm{d}}{\mathrm{~d} t} G\left(u^{\prime}(t)\right)+\frac{\mathrm{d}}{\mathrm{~d} t} F(t, u(t))-\frac{\partial F(t, u(t))}{\partial t}=0
$$

By integrating over $\left(t_{0}, t\right)$ with $t_{0} \leqq t<t$ where $\left\langle t_{0}, t\right)$ is the domain of $u(t)$ we obtain

$$
\begin{equation*}
G\left(u^{\prime}(t)\right)+F(t, u(t))=K_{0}+\int_{i_{0}}^{t} \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s \tag{35}
\end{equation*}
$$

and further

$$
F(t, u(t)) \leqq K_{0}+\int_{i_{0}}^{t} \frac{\partial F(s, u(s))}{\partial s} \mathrm{~d} s
$$

Analogously as in the proof of Theorem 1 , the boundedness of $u(t)$ is proved using (2) and (3).

Theorem 19: Let $f(t, x)$ be continuous for $t \geqq t_{0} \geqq 0,|x|<\infty$ and suppose that the conditions (11), (12) and (14) of-Theorem 4 hold. If b) holds and if $G(y)$ satisfies c), then any solution of (33) which satisfies (34) is bounded together with its first derivative, for $t \geqq t_{0}$ from their domain.

Proof: Let $\left\langle t_{0}, t\right)$ be the domain of $u(t)$. Owing to (11), we obtain from (35)

$$
\begin{equation*}
G\left(u^{\prime}(t)\right)+F(t, u(t)) \leqq K_{0} \tag{36}
\end{equation*}
$$

and further, using (14), we see that $G\left(u^{\prime}(t)\right) \leqq K_{0}$ so that $u^{\prime}(t)$ is bounded for $t \in\left\langle t_{0}, t\right)$.
The boundedness of $u(t)$ is proved using (36) and (12). In fact $F\left((t, u(t)) \leqq K_{0}\right.$ for $t \in\left\langle t_{0}, t\right)$ and, owing to (12), $F \leqq K_{0}$ which contradicts (34).

Theorem 20: Let $f(t, x)$ be continuous for $t \geqq t_{0} \geqq 0,|x|<\infty$ and suppose that all hypotheses of Theorem 4 are valid with the exception of α), β), γ) and with F in (12) equal to $+\infty$. Further assume the validity of b) and that part of c) which concerns $G(y)$. If $\psi(t)$ satisfies (20), then there exists $T \geqq T_{0}$ such that any solution of the equation

$$
\begin{equation*}
u^{\prime \prime}+(A+\psi(t)) f(t, u) g\left(u^{\prime}\right)=0 \tag{37}
\end{equation*}
$$

with A a positive constant is bounded together with its first derivative for $t \geqq T$ from its domain.

Proof: From (37) we get

$$
\frac{u^{\prime \prime} u^{\prime}}{g\left(u^{\prime}\right)}+(A+\psi(t)) f(t, u) u^{\prime}=0
$$

and therefore

$$
\frac{\mathrm{d}}{\mathrm{~d} t} G\left(u^{\prime}(t)\right)+(A+\psi(t)) \frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{F}(t, u(t))=(A+\psi(t)) \frac{\partial F}{\partial t}
$$

By integrating and using (11) we get

$$
\begin{gathered}
G\left(u^{\prime}(t)\right)+(A+\psi(t)) F(t, u(t)) \leqq K_{o}+\int_{t_{0}}^{t} \psi^{\prime}(s) F(s, u(s)) \mathrm{d} s \\
\quad \text { with } K_{o}=G\left(u^{\prime}\left(t_{0}\right)\right)+\left(A+\psi\left(t_{0}\right)\right) F\left(t_{0}, u\left(t_{0}\right)\right)
\end{gathered}
$$

From (20) we deduce the existence of $T \geqq t_{0}$ such that $A+\psi(t) \geqq k_{1}>0$ for $t \geqq T$ and therefore

$$
\begin{equation*}
G\left(u^{\prime}(t)\right)+k_{1} F(t, u(t)) \leqq K_{0}+\int_{T}^{t}\left|\psi^{\prime}(s)\right| F(s, u(s)) \mathrm{d} s . \tag{38}
\end{equation*}
$$

From this, using Bellman's Lemma, we get

$$
F(t, u(t)) \leqq K_{0} \exp \left[\frac{1}{k_{1}} \int_{T}^{t}\left|\psi^{\prime}(s)\right| \mathrm{d} s\right] \leqq K_{1}<\infty,
$$

so that $u(t)$ is bounded.
A further consequence of (38) is

$$
G\left(u^{\prime}(t)\right) \leqq K_{0}+K_{1} \int_{T}^{t}\left|\psi^{\prime}(s)\right| d s \leqq K_{2}<\infty
$$

and therefore $u^{\prime}(t)$ is also bounded for $\left.t \in<T, t\right)$.
Analogously we prove
Theorem 21: Assume the validity of all hypotheses of Theorem 20 with the exception of (20) instead of which we assume for $t \geqq t_{0} \geqq 0$ the validity of the following condition:

$$
A+\psi(t) \geqq k_{1}>0 \text { and } \int_{i_{0}}^{\infty}\left|\psi^{\prime}(t)\right| \mathrm{d} t<\infty
$$

Then any solution of (37) is bounded, together with its first derivative, for $t \geqq t_{0}$ from its domain.

2. OSCILLATION OF THE SOLUTION

Theorem 22: Assume the validity of the hypotheses a), b) and let $F(x)$ satisfy c). If $a(t) \geqq a>0$ for $t \geqq t_{0} \geqq 0$, then every solution of (32) which is defined on $\langle T, \infty$) with $T \geqq t_{0}$ is oscillatory.

Proof: Suppose that a solution $u(t)$ of (32) is defined on $\langle T, \infty)$ and does not oscillate. For example, let $u(t)>0$ for $t \geqq T$. From (32) we see that in that case we have, for $t \geqq T$

$$
u^{\prime \prime}(t)=-a(t) f(u(t)) g\left(u^{\prime}(t)\right)<0
$$

so that $u^{\prime}(t)$ is a decreasing function for $t \geqq T$. Two cases may occur:

1. There exist $t_{1} \geqq T$ such that $u^{\prime}\left(t_{1}\right) \leqq 0$, or
2. $u^{\prime}(t)>0$ for all $t \geqq T$.

In the first case there must exist a number $\xi>t_{1}$ such that $u(\xi)=0$ which contradicts the hypothesis. Therefore it is necessary that $u^{\prime}(t)>0$ for $t \geqq T$ and $u(t)$ must be a monotonous increasing function of t. For $t \geqq T$ we have further

$$
0 \leqq \lim _{t \rightarrow \infty} u^{\prime}(t) \leqq u^{\prime}(t) \leqq u^{\prime}(T)
$$

This means that $u^{\prime}(t)$ it bounded. It is now easy to prove that so is $u(t)$. In fact, since $g(y)>0,(32)$ yields

$$
\frac{u^{\prime \prime}(t) u^{\prime}(t)}{g\left(u^{\prime}(t)\right)}+a(t) f(u(t)) u^{\prime}(t)=0
$$

and therefore

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} G\left(u^{\prime}(t)\right)+a(t) \frac{\mathrm{d}}{\mathrm{~d} t} F(u(t))=0 \tag{39}
\end{equation*}
$$

Since $u(t)$ is an increasing function of t for $t \geqq T$, we see from the condition c) that so is $F(u(t))$. From (39) we get

$$
G\left(u^{\prime}(t)\right)+a F(u(t)) \leqq G\left(u^{\prime}(T)\right)+a F^{\prime}(u(T))=K_{0}
$$

so that

$$
F(u(t)) \leqq \frac{1}{a} K_{0}
$$

and therefore, owing to c), $u(t)$ is bounded on $\langle T, \infty)$. From the boundedness of $u(t)$ and $u^{\prime}(t)$ and the continuity of $f(x)$ and $g(y)$ we see that $\lim u^{\prime}(t)=0$ and that there exist numbers u_{1} and $u^{\prime}{ }_{1}$ such that for all $t \geqq T$ we have

$$
0<f\left(u_{1}\right) \leqq(f u(t)), 0<g\left(u_{1}\right) \leqq g\left(u^{\prime}(t)\right)
$$

with $u_{1} \in\left\langle u(T), \lim _{t \rightarrow \infty} u(t)\right\rangle, u_{1} \in\left\langle 0, u^{\prime}(T)\right\rangle$. Then

$$
-u^{\prime \prime}(t)=a(t) f(u(t)) g\left(u^{\prime}(t)\right) \geqq a f\left(u_{1}\right) g\left(u_{1}\right)=c>0
$$

so that

$$
u(t) \leqq-\frac{1}{2} c t^{2}+c_{1} t+c_{2}
$$

with c_{1} and c_{2} constants dependent on $c, T, u(T)$ and $u^{\prime}(T)$. Therefore for sufficiently large t we have $u(t) \leqq 0$ which is a contradiction.

Now new problems arise if $u(t)<0$ for $t \geqq T$. For in that case we have for $t \geqq T$

$$
u^{\prime \prime}(t)=-a(t) f(u(t)) g\left(u^{\prime}(t)\right)>0
$$

so that $u^{\prime}(t)$ as a monotonous increasing function of t. The existence of a number $t_{1} \geqq T$ such that $u^{\prime}\left(t_{1}\right) \geqq 0$ again leads to contradiction. It is therefore neccessary that for $t \geqq T$

$$
u^{\prime}(t)<0, u^{\prime}(T) \leqq u^{\prime}(t) \leqq \lim _{t \rightarrow \infty} u^{\prime}(t) \leqq 0
$$

so that $u(t)$ is a monotonous decreasing function which makes $|u(t)|$ a monotonous increasing function. The conditions c) and (39) can be used again to prove that $u(t)$ is bounded. But in that case

$$
一 u^{\prime \prime}(t)=a(t) f(u(t)) g\left(u^{\prime}(t)\right) \leqq a(t) f\left(u_{2}\right) g\left(u_{2}\right)<0
$$

with $u_{2} \in\left\langle\lim _{t \rightarrow \infty} u(t), u(T)\right\rangle, u_{2}^{\prime} \in\left\langle u^{\prime}(T), 0\right\rangle$. Therefore $u^{\prime}(t)-u^{\prime}(T) \rightarrow \infty$ for $t \rightarrow \infty$ so that $u^{\prime}(t)$ is unbounded for $t \rightarrow \infty$, giving a contradiction. This completes the proof.

The ıem 23: Let $f(t, x)$ be continuous, $f(t, x) \operatorname{sgn} x>0$ for $x \neq 0, \frac{\partial f(t, x)}{\partial x} \geqq 0$
for $t \geqq t_{0} \geqq 0,|x|<\infty$. Suppose further that b) holds. Then any solution of (33) which is defined on $<T, \infty), T \geqq t_{0}$ and for which

$$
\begin{equation*}
\int_{T}^{\infty} f(s, u(T)) \operatorname{sgn} u(T) \mathrm{d} s=+\infty \tag{40}
\end{equation*}
$$

has at least one zero on (T, ∞).
Proof: Suppose that a solution $u(t)$ defined on $<T, \infty)$ satisfies (40) and that $u(t)>0$ for $t \geqq T$. From (33) we get

$$
u^{\prime \prime}(t)=-f(t, u(t)) g\left(u^{\prime}(t)\right)<0
$$

so that $u^{\prime}(t)$ is decreasing function of t for $t \geqq T$. In the same way as before we prove that $u^{\prime}(t)$ must be positive for $t \geqq T$. Therefore $u(t)$ is an increasing function and its values lie in the interval $\left.J=<u(T), \lim _{t \rightarrow \infty} u(t)\right)$. Since $u^{\prime}(t)>0$ and decreases monotonously, it is bounded for $t \geqq T$. Thus there exists a constant $u^{\prime}{ }_{1} \in\left\langle\lim _{t \rightarrow \infty} u^{\prime}(t), u^{\prime}(T)\right\rangle$ such that for $t \geqq T$

$$
0<g\left(u_{1}^{\prime}\right) \leqq g\left(u^{\prime}(t)\right)
$$

But in that case, since $f(t, x)$ is in J a non-decreasing function of x, we have

$$
-u^{\prime \prime}(t)=f(t, u(t)) g\left(u^{\prime}(t)\right) \geqq g\left(u^{\prime}{ }_{1}\right) f\left(t, u\left(T^{\prime}\right)\right)
$$

and thus (40) implies that $u^{\prime}(t)-u^{\prime}(T) \rightarrow-\infty$, which is a contradiction with the assumption that $u^{\prime}(t)$ is bounded for $t \geqq T$.

The method is analogous if we assume that $u(t)<0$ for $t \geqq T$. Again we prove that the necessity of $u^{\prime}(t)<0$ for $t \geqq T$ and the fact that $u^{\prime}(t)$ is a monotonous increasing function of t. There exists thus a contant $u_{2} \in\left\langle u^{\prime}(T), \lim _{t \rightarrow \infty} u^{\prime}(t)\right\rangle$ such
that for all $t \geqq T$ we have $g\left(u^{\prime}(t)\right) \geqq g\left(u^{\prime}{ }_{2}\right)$. Since $f(t, x)$ is an increasing function of x, we have

$$
-u^{\prime \prime}(t)=f(t, u(t)) g\left(u^{\prime}(t)\right) \leqq g\left(u^{\prime}{ }_{2}\right) f(t, u(T))<0
$$

and again, using (40), $u^{\prime}(t)-u^{\prime}(T) \rightarrow+\infty$ for $t \rightarrow \infty$. This completes the proof.
It is easy to prove the following
Theorem 24: Suppose that the hypotheses of Theorem 23 are valid and that, for $t \geqq t_{0} \geqq 0, A+\psi(t) \geqq k_{1}>0$. Then any solution of $u(t)$ of (37) which is defined on $\langle T, \infty)$ and satisfies (40) has at least one zero on (T, ∞).

Remark 4: Evidently if in Theorems 23 and 24 the relation (40) holds for $u_{1}=u(T)$, then any solution of (32) or (37) defined on $\langle T, \infty)$ for which $u_{1} \leqq u(T)$ for $u_{1}>0$, and $u_{1} \geqq u(T)$ for $u_{1}<0$ has at least one zero on (T, ∞).

REFERENCES

[1] Kiguradze, I. T.: Zametka ob ograničennosti rešenij differencialnych uravnenij. Trudy Tbilisskogo gosudarstvennogo universiteta, t. 110, 1965 (103-107).
[2] Wong, J. S.: Boundedness theorems for certain general second order non-linear differential equations. Monatshefte für Mathematik, 71 (1967) (80-86).
[3] Wong, J. S., Burton, T. A.: Some properties of solutions of $u^{\prime \prime}+a(t) f(u) g\left(u^{\prime}\right)=0$. Monatshefte für Mathematik, (69) 1965, (368-374).
[4] Waltman, P.: Some properties of solutions of $u^{\prime \prime}+a(t) f(u)=0$. Monatshefte für Mathematik, 67 (1963), (50-54).
[5] Bellman, R.: Stability theory of ordinary differential equations, McGraw-Hill, New York, 1953.
P. Šoltés

Department of mathematics
P. J. S̆afárik University

Košice, nám Febr. vítazstva 9, ČSSR
Czechoslovakia

