Archivum Mathematicum

Jan Hanák
Simultaneous nondeterministic games. III

Archivum Mathematicum, Vol. 7 (1971), No. 3, 123--144
Persistent URL: http://dml.cz/dmlcz/104746

Terms of use:

© Masaryk University, 1971
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

SIMULTANEOUS NONDETERMINISTIC GAMES (III)

Jan Hanák, Brno

(Received June 7, 1971)

REMARKS

The preceding two parts ($\S \S 0-3 ; \S \S 4,5$) of this discourse appeared in this journal in T5 (1969), 29-60, and T6 (1970), 115-144. The third part contains the introduction of some special aims and of certain properties of aims ($\S 6 \mathrm{a}, \mathrm{b}$), and the most important general min-max results for aims (§ $6 \mathrm{c} / 1-3$). These min-max results are very strong [as they guarantee that plain strategies (excepting the case of the passive player in § $6 \mathrm{c} / 3$, where somewhat "stronger" kinds of strategies must be used) are sufficient for in some sense optimal playing at aims belonging to certain important sizable classes of aims], and involve significant particular cases investigated formerly in [1] (and other Berge's works), [4], [5], [18], as we shall show in § 6e, where the connections among the corresponding results of the quoted references and those of this article will be presented, too. Remarks to § $6 \mathrm{a}-\mathrm{c}$ will be contained in § $6 d$, in the fourth part. The results of § 6 c will serve for deriving theorems on pay-off functions (mainly on the so-called Bergean ones, cf. [18], and § 10 of [4]) in § 9, on topological games (cf. [7], [8]) in § 8, and for proving theorems belonging to the so-called descriptive point of view (cf. § 9 in [4], and [11]) in § 7.

[^0]Thus, one may conclude that investigating SN-games (and their special subclasses, mainly antagonistic complete games) not only is advantageous from the mathematical point view (cf. § 0), but also leads to the introduction of quite new actually playable games being in principle better than the games known till now.

§6. THE FUNDAMENTAL MIN-MAX RESULTS

0. Convention (for § 6). In § 6, let (P, P_{0}) be a type (§ 1.1); the basic aims (§6.6), the r-aims (§6.13.2), the properties in § 6.1 etc. will be introduced to the given type. Of course, also the sets $Z:=P-P_{0}, Z, P$, memory relations (cf. §§ 1.1-2) etc. are considered as defined to (P, P_{0}).

Further, in § 6a, b A denotes an aim (§ 1.1), \mathfrak{A} means an aim-collection (§ 3.4), $\Gamma \in \operatorname{Corr}(P, P)$ is some (fixed) P_{0}-ended graph (§§ 2.16, 2.18.2), $X:=X_{\Gamma}$ (§ 2.26.2).

Remark. In contradistinction to the preceding two parts, we shall always use the denotations $\boldsymbol{u}_{1}, \boldsymbol{u}_{i}, \boldsymbol{v}_{\mathfrak{l}}, \mathfrak{u}_{j}, \mathfrak{B}_{2}$ (etc.) instead of $\boldsymbol{u}_{1}, \boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{v}_{\mathfrak{t}}, \mathfrak{l}_{j}, \mathfrak{B}_{2}$ (cf. §§ 3.2, 3.3), respectively, as the composition of the thick indices in the latter expressions would be too laborious for the printing house. (That replacement does not lead to ambiguity.)
a) The properties $(I, \Gamma),\left(I^{\circ}, \Gamma\right),\left(I_{0}, \Gamma\right),\left(I_{0}^{\circ}, \Gamma\right)$

The important (cf. §3.10-11) property (I, Γ) was introduced in §3.9.2. Now we define several other usable properties at aims.
1.1. Definition. We say that A has the property (K, Γ) where $K \in\left\{\mathrm{I}_{0}, \mathrm{I}^{\circ}, \mathrm{I}_{0}^{\circ}\right\}$ (three-symbol set), iff for each $\mathbf{x} \in \boldsymbol{X}$ and each k with $0 \leq k<1+l(\mathbf{x})$ there holds the corresponding statement $[K, \Gamma]$ (depending on x, k), where

$$
\begin{aligned}
& {\left[\mathrm{I}_{0}, \Gamma\right]:=x \in \mathbf{A} \Rightarrow \mathbf{x}^{[k]} \in \mathbf{A}} \\
& {\left[\mathrm{I}^{\circ}, \Gamma\right]:=x \in \boldsymbol{A} \Leftarrow \mathbf{x}^{[k]} \in \mathbf{A}} \\
& {\left[\mathrm{I}_{0}^{\mathrm{o}}, \Gamma\right]:=\boldsymbol{x} \in \mathbf{A} \Leftrightarrow \mathbf{x}^{[k]} \in \mathbf{A}}
\end{aligned}
$$

1.2. Definition, remark. For $x, y \in X, 0 \leq k<1+\min (l(x), l(y))$ we define (cf. 1.1, § 3.9.2):

$$
[I, \Gamma]:=\left[x \in A \wedge\left(x_{0}, \ldots, x_{k}\right)=\left(y_{0}, \ldots, y_{k}\right) \wedge\left(x^{[k]} \notin A \vee y^{[k]} \in A\right)\right] \Rightarrow y \in A
$$

Then A has the property (I, Γ) iff $[I, \Gamma]$ holds for all those x, y, k.
1.3. Definition, remark. We put $\bar{K}:=\left\{\begin{array}{l}\mathrm{I}_{0} \\ \mathrm{I}_{0} \text { if } K \\ K\end{array}\left\{\begin{array}{l}=\mathrm{I}_{0} \\ =\mathrm{I}^{\circ} \\ \in\left\{\mathrm{I}, \mathrm{I}_{0}^{\circ}\right\}\end{array} ; \quad\right.\right.$ thus $\overline{\bar{K}}=K .(K, \Gamma)$ (where $K \in\left\{\mathrm{I}^{\circ}, \mathrm{I}_{0}, \mathrm{I}_{0}^{\circ}, \mathrm{I}\right\}$) is said to be an aim basic Γ-property (or only: a basic property), and (\bar{K}, Γ) is called its dual one. Instead of (K, L) we shall write (K), too.
1.4. Definition. We say that \mathfrak{H} has the property (K, Γ) iff each $A \in \mathfrak{A}$ has this basic property. (Cf. § 3.9.3.) We say that an aim function f [an aim correspondence $\left.p^{\ell}\right]$ (§ 5.8) has the property (K, Γ) iff the collection $\operatorname{im} f(:=\{f(a) \mid a \in \operatorname{dom} f\})$ [$\left.\left\{p^{\varepsilon} A \mid A \subset P\right\}\right]$ has this property.
2.0. Definition. A collection \mathfrak{U} is said to be \cup-directed $[n$-directed] iff to each $A_{1}, A_{2} \in \mathfrak{U}$ there exists $A \in \mathfrak{U}$ such that $A_{1} \cup A_{2} \subset A\left[A \subset A_{1} \cap A_{2}\right]$.
2.1. Theorem. Let (K, Γ) be a basic property. There holds:
(o) $\quad A$ has $(K, \Gamma) \Leftrightarrow A \cap X$ has (K, Γ)
(i) \quad A has $\left(\mathrm{I}_{0}^{\circ}, \Gamma\right) \Leftrightarrow \boldsymbol{A}$ has the properties $\left(\mathrm{I}^{\circ}, \Gamma\right),\left(\mathrm{I}_{0}, \Gamma\right)$
(ii) \quad Ahas $\left(\mathrm{I}_{0}^{\circ}, \Gamma\right) \Rightarrow A$ has (I, Γ)
(iii) $\quad \mathbf{A}$ has $(\boldsymbol{K}, \Gamma) \Leftrightarrow \mathbf{P}-\mathbf{A}$ has $(\bar{K}, \Gamma) \Leftrightarrow \mathbf{X}-\mathbf{A}$ has (\bar{K}, Γ)
(iv) $\quad \mathbf{A}$ has $(K) \Rightarrow A$ has (K, Γ)
(v) $\quad \emptyset$ and \mathbf{P} have the property $\left(\mathrm{I}_{0}^{\circ}\right)$
X has the properties $\left(\mathrm{I}_{0}\right),(\mathrm{I}),\left(\mathrm{I}_{0}^{\circ}, \mathrm{\Gamma}\right)$
$\mathbf{P}-\mathbf{X}$ has the properties $\left(\mathrm{I}^{\circ}\right),(\mathrm{I}),\left(\mathrm{I}_{0}^{\circ}, \Gamma\right)$
(vi/1) $\quad \mathbf{A}$ has $\left(\mathrm{I}_{0}, \Gamma\right) \Leftrightarrow \mathbf{A} \cap \boldsymbol{X}$ has $\left(\mathrm{I}_{0}\right)$
(vi/2) $\quad \boldsymbol{A}$ has $\left(\mathrm{I}^{\circ}, \Gamma\right) \Leftrightarrow \boldsymbol{A} \cup(\mathrm{P}-\mathrm{X})$ has $\left(\mathrm{I}^{\circ}\right)$
(vii) $\quad \mathfrak{H}$ has $(K, \Gamma) \wedge K \neq \mathrm{I} \Rightarrow \bigcup_{A \in \mathscr{C}} A$ and $\bigcap_{A \in \mathscr{R}} A$ have (K, Γ)
(viii/1) \mathfrak{A} has $(\mathrm{I}, \Gamma) \wedge \mathfrak{A}$ is U -directed $\Rightarrow \bigcup_{\mathrm{A} \in \mathscr{A}} \mathbf{A}$ has (I, Γ)
(viii/2) \mathfrak{A} has $(\mathrm{I}, \Gamma) \wedge \mathfrak{Y}$ is \cap-directed $\Rightarrow \bigcap_{A \in \mathfrak{A}} A$ has (I, Γ)
(Here we put $\bigcap_{A \in Q} \boldsymbol{A}:=\boldsymbol{P}$.)
Proof.
(o): Let $\mathbf{x} \in \boldsymbol{X}, 0 \leq k<1+l(\mathbf{x})$. Then, of course, $\mathbf{x} \in \boldsymbol{A}$ iff $\mathbf{x} \in \boldsymbol{A} \cap \boldsymbol{X}$, and the same may be said about $\boldsymbol{x}^{[k]}$, for evidently $\boldsymbol{x}^{[k]} \in X$. By means of this trivial remark the assertion (o) can be obtained immediately from 1.1, 1.2.
(i) is trivial, since $\left[\mathrm{I}_{0}^{\circ}, \Gamma\right] \Leftrightarrow\left[\mathrm{I}^{\circ}, \Gamma\right] \wedge\left[\mathrm{I}_{0}, \Gamma\right]$ (for all $\boldsymbol{A} \subset \boldsymbol{P}, \mathbf{x} \in \boldsymbol{X}, 0 \leqslant k<$ $<1+l(\mathbf{x})$).
(ii): Let A have the property $\left(I_{0}^{\circ}, \Gamma\right)$. If $\boldsymbol{x}, \mathbf{y} \in \boldsymbol{X}, 0 \leqslant k<1+\min (l(\boldsymbol{x}), l(\boldsymbol{y}))$, then $x \in A \wedge\left(x^{[k]} \notin A \vee y^{[k]} \in A\right) \Leftrightarrow\left(x \in A \wedge x^{[k]} \notin A\right) \vee\left(x \in A \wedge y^{[k]} \in A\right) \Rightarrow y^{[k]}$ $\in A \Rightarrow y \in A\left(x \in A \wedge x^{[k]} \notin A\right.$ cannot occur, etc. $)$; consequently, A has the property (I, Γ).
(iii): Let $\mathbf{x} \in \mathbf{X}, 0 \leq k<1+l(\mathbf{x})$. If \mathbf{A} has the property $\left(\mathrm{I}^{\circ}, \Gamma\right)$, then $\mathbf{x} \in \mathbf{P}-\mathbf{A}$ implies $x^{[k]} \in \boldsymbol{P}-\boldsymbol{A}$; thus $\boldsymbol{P}-\boldsymbol{A}$ has $\left(\mathrm{I}_{0}, \Gamma\right)$. If \boldsymbol{A} has $\left(\mathrm{I}_{0}, \Gamma\right)$, then $x^{[k]} \in \boldsymbol{P}-\mathbf{A}$ implies $\boldsymbol{x} \in \mathbf{P}-\mathbf{A}$; thus $\mathbf{P}-\mathbf{A}$ has (I°, Γ). Consequently, if \mathbf{A} has $\left(I_{0}^{\circ}, \Gamma\right)$, then $P-A$ has $\left(I_{0}^{\circ}, \Gamma\right)$ (cf. (i)).

Now let A have the property (I, Γ). Let $\mathbf{x}, \boldsymbol{y} \in \mathbf{X}, 0 \leqslant k<1+\min (l(\boldsymbol{x}), \boldsymbol{l}(\mathbf{y})$). Let $\mathbf{x} \in \mathbf{P}-\mathbf{A},\left(x_{0}, \ldots, x_{k}\right)=\left(y_{0}, \ldots, y_{k}\right)$, and let either $\boldsymbol{x}^{[k]} \notin \mathbf{P}-\mathbf{A}$ or $\boldsymbol{y}^{[k]} \in \mathbf{P}-\mathbf{A}$. If $\boldsymbol{y} \notin \mathbf{P}-\boldsymbol{A}$, i.e. $\boldsymbol{y} \in \boldsymbol{A}$, then this and the above suppositions imply:

$$
\mathbf{y} \in \mathbf{A} \wedge\left(x_{0}, \ldots, x_{k}\right)=\left(y_{0}, \ldots, y_{k}\right) \wedge\left(\boldsymbol{y}^{[k]} \notin \mathbf{A} \vee \mathbf{x}^{[k]} \in \mathbf{A}\right)
$$

consequently (cf. 1.2 with $x:=y, y:=x) x \in A$, but this is a contradiction for we have supposed $x \in P-A$. Therefore $y \in P-A$. Hence $P-A$ has the property ($1, \Gamma$).

Thus, if \mathbf{A} has a basic property (K, Γ), then $P-A$ has (\bar{K}, Γ). Hence, if $P-A$ has the property (\bar{K}, Γ), then $A=P-(P-A)$ has $(\overline{\bar{K}}, \Gamma)=(K, \Gamma)$. Finally, $\boldsymbol{X}-\boldsymbol{A}=(\boldsymbol{P}-\mathbf{A}) \cap \boldsymbol{X}$, hence (see (o)) $\boldsymbol{P}-\mathbf{A}$ has (\bar{K}, Γ) iff $\boldsymbol{X}-\mathbf{A}$ has (\bar{K}, Γ).
(iv): This follows immediately from 1.1, $1.2\left(X=X_{\Gamma} \subset P=X_{L}\right)$.
(v) : Evidently, \emptyset has the property (I_{0}°), X has the properties (I_{0}) and ($\mathrm{I}_{0}^{\circ}, \Gamma$). If $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{P}, 0 \leqslant k<1+\min (l(\boldsymbol{x}), l(\boldsymbol{y})), \mathbf{x} \in \boldsymbol{X}$, then $\boldsymbol{x}^{[k]} \notin \boldsymbol{X}$ cannot occur, and if moreover $\boldsymbol{y}^{[k]} \in \mathbf{X},\left(x_{0}, \ldots, x_{k}\right)=\left(y_{0}, \ldots, y_{k}\right)$, then, clearly, $\boldsymbol{y} \in \mathbf{X}$, too. Thus X has
the property (I). The other assertions in (v) follow, e.g., from the above proved ones by means of (iii).
(vi/l): If $A \cap X$ has the property $\left(I_{0}\right)$, then $A \cap X$ has $\left(I_{0}, \Gamma\right)$ (see (iv) with $A:=$ $:=A \cap X$), hence (cf. (o)) A has (I_{0}, Γ). On the other hand, if A has $\left(I_{0}, \Gamma\right)$, then $A \cap X$ has (I_{0}, Γ), hence if some $\boldsymbol{x} \in \mathbf{P}$ belongs to $A \cap X$ and if $0 \leqslant k<1+l(x)$, then ($x \in X$ and hence) $x^{[k]} \in A \cap X$; thus $A \cap X$ has the property (I_{0}).
(vi/2): This follows from (vi/1) and (iii).
(vii): This assertion follows immediately from the definition 1.1.
(viii/1): Let \mathfrak{A} have (I, Γ) and be \cup-directed. Let B be the union of \mathfrak{A}. Let $x, y \in X$, $0 \leqslant k<1+\min (l(\mathbf{x}), l(\mathbf{y}))$. Let $\mathbf{x} \in \mathbf{B},\left(x_{0}, \ldots, x_{k}\right)=\left(y_{0}, \ldots, y_{k}\right)$ and either $\mathbf{x}^{[k]} \notin \mathbf{B}$ or $\boldsymbol{y}^{[k]} \in B$. There exists $\boldsymbol{A}_{1} \in \mathscr{A}$ such that $\boldsymbol{x} \in \boldsymbol{A}_{1}$; if $\boldsymbol{x}^{[k]} \notin \mathbf{B}$, then $\boldsymbol{x}^{[k]} \notin \boldsymbol{A}_{1}$, hence $\boldsymbol{y} \in \boldsymbol{A}_{1} \subset B$ (since A_{1} has (I, Γ)), if $\boldsymbol{y}^{[k]} \in B$, then $\boldsymbol{y}^{[k]} \in \boldsymbol{A}_{\mathbf{2}}$ for some $A_{2} \in \mathfrak{A}$, but \mathfrak{H} is U-directed, hence there exists $A \in \mathfrak{A}$ such that $A_{1} \cup A_{2} \subset A$, hence $x \in A, y^{[k]} \in A$, $y \in A \subset B$. Thus always $y \in B$. Therefore, B has the property (I, Γ).
(viii/2): If \mathfrak{A} has (I, Γ) and is \cap-directed, then $\mathfrak{B}:=\{\boldsymbol{P}-\boldsymbol{A} \mid \boldsymbol{A} \in \mathfrak{A}\}$ has (I, Γ) (see (iii)) and, clearly, is U-directed. Hence the union \boldsymbol{C} of \mathfrak{B} has the property (I, Γ) (see (viii/l)), thus $\boldsymbol{P}-\boldsymbol{C}$ has the property (I, Г) (again (iii)), but $\boldsymbol{P}-\boldsymbol{C}$ is the intersection of \mathfrak{A}.
Q. E. D.
2.2. Counter-Examples. Let $P:=\{1,2\}, P_{0}:=\emptyset$, let Γ be such that $\Gamma x=\{x\}$ for each $x \in P$. Hence $X=\{(1,1,1, \ldots),(2,2,2, \ldots)\}$. Clearly, X has not $\left(I^{\circ}\right)$, consequently (2.2 (iii)) P - X has not (I_{0}); cf. 2.2 (v). Nevertheless, X and $P-X$ have (I) (2.2 (v)); cf. 2.2 (ii).

Let $\boldsymbol{A}:=\{(1,1,1, \ldots),(1,2,2,2, \ldots)\}$. Then $\boldsymbol{A} \cap \boldsymbol{X}=\{(1,1,1, \ldots)\}$, hence \boldsymbol{A} has the property ($\mathrm{I}_{0}^{\circ}, \Gamma$) and thus also the other three basic Γ-properties (2.2 (o), (i), (ii)). On the other hand, A has no basic L-property (K) [in fact: if $\boldsymbol{x}:=(1,2,2,2, \ldots)$, $\mathbf{y}:=(1,2,1,1,1, \ldots)$, then $\mathbf{x} \in \boldsymbol{A},\left(x_{0}, x_{1}\right)=\left(y_{0}, y_{1}\right), \boldsymbol{x}^{[1]} \notin \mathbf{A}$, but $\boldsymbol{y} \notin \boldsymbol{A}$, hence \boldsymbol{A} has not (I); clearly, A has not any other basic L-property]; cf. 2.2 (iv).

Let $\boldsymbol{A}_{1}:=\{(1,2,1,2, \ldots), \quad(2,1,2,1, \ldots)\}, \quad \boldsymbol{A}_{2}:=\{(1,1,1, \ldots)\}, \quad \boldsymbol{B}_{m}:=\mathbf{P}-\boldsymbol{A}_{m}$ ($m=1,2$). It can be simply verified that A_{1} and A_{2} have the property (I) (and (I_{0}), too), hence (2.2 (iii)) B_{1} and B_{2} have (I), $A_{1} \cup A_{2}$ has not (I) [in fact, if $x:=(1,1,1, \ldots)$, $\mathbf{y}:=(1,1,2,1,2, \ldots)$, then $\mathbf{x} \in \boldsymbol{A}_{1} \cup \boldsymbol{A}_{2}, \quad\left(x_{0}, x_{1}\right)=\left(y_{0}, y_{1}\right), \quad \boldsymbol{y}^{[1]} \in \boldsymbol{A}_{1} \cup \boldsymbol{A}_{2}$, but $\left.y \notin A_{1} \cup A_{2}\right]$, hence $B_{1} \cap B_{2}\left(=P-\left(A_{1} \cup A_{2}\right) ; 2.2\right.$ (iii)) has not (I); cf. 2.2 (vii) (viii).
b) The basic aims, the r-aims, and their properties
3.1. Convention. If some $x=\left(x_{k}\right)_{0<k<1+l(x)} \in P$ is considered, then we shall use also the denotation $x=\left(x_{k}\right)$, and, moreover, if $l(x)<k_{0}<\omega_{0}$, then we introduce formally $x_{k_{0}}:=x_{l(x)}$ and $x^{\left[k_{0}\right]}:=\left(x_{l(x)}\right)$. Thus, if $\mathbf{x}=\left(x_{k}\right) \in P$, then we have defined x_{n} for each integer $n \geqslant 0$.
3.2. Convention. In the following $\mathbf{\Lambda}(\mathrm{V})$ means the universal (existential) logical quantifier applied to non-negative integers. E.g., $\widehat{m>k} \boldsymbol{P}(m, k)$ means: "for all integers m being greater than (fixed non-negative integer) $k P(m, k)$ is valid", while e.g. $\bigwedge_{k<m} \boldsymbol{P}(m, k)$ means: "for all non-negative integers k being lesser than (fixed non-negative integer) $m P(m, k)$ is valid". Similarly, the short denotations as $\bigcup_{k}, \bigcap_{k>n}$ etc. will concern non-negative integers.
\neg will be used as the symbol of negation.
4. Definition, remarks. For $A, B \subset P$ we put

$$
\mathbf{L}_{A}^{B}:=(B \times A, P, P)
$$

i.e., $\mathbf{L}_{A}^{B}(\in \operatorname{Corr}(P, P))$ is a graph (§ 2.18.1) such that

$$
\mathbf{L}_{A}^{B} x=\left\{\begin{array} { l }
{ B } \\
{ \emptyset }
\end{array} \quad \text { if } \quad x \in \left\{\begin{array}{l}
A \\
P-A
\end{array}\right.\right.
$$

Further we introduce

$$
\mathbf{L}_{A}:=\mathbf{L}_{A}^{P}, \quad \mathbf{L}^{B}:=\mathbf{L}_{P}^{B}
$$

Evidently, there holds:

$$
\begin{align*}
\mathbf{L} & =\mathbf{L}_{Z}^{P} \tag{0}\\
\mathbf{L}_{P}^{P} & =\mathbf{L}_{P}=\mathbf{L}^{P} \tag{1}\\
\mathbf{L}_{\emptyset}^{\emptyset} & =\mathbf{L}_{\emptyset}=\mathbf{L}^{\emptyset} \tag{2}\\
\mathbf{L}_{A}^{B} & =\mathbf{L}_{A} \cap \mathbf{L}^{B} \tag{3}\\
\mathbf{L}_{P-A}^{P-B} & =\left(\mathbf{L}_{P}-\mathbf{L}_{A}\right) \cap\left(\mathbf{L}^{P}-\mathbf{L}^{B}\right) \tag{4}\\
\mathbf{L}_{P-A} & =\mathbf{L}_{P}-\mathbf{L}_{A}, \mathbf{L}^{P-B}=\mathbf{L}^{P}-\mathbf{L}^{B}
\end{align*}
$$

(the operations \cap, - on the right sides of (3), (4), (4') are used in the sense introduced in § 2.5.2).
5. Definition, remark. Under a parameter we shall mean an ordered pair $\gamma=$ $=\left(\Gamma^{\mathrm{I}}, \Gamma^{I I}\right) \in \operatorname{Corr}(P, P) \times \operatorname{Corr}(P, P) ; \bar{\gamma}:=\left(\mathbf{L}_{P}-\Gamma^{\mathrm{I}}, \mathbf{L}_{P}-\Gamma^{\mathrm{II}}\right)$ is said to be the complementary parameter (to γ). Evidently then

$$
\begin{equation*}
\overline{\bar{\gamma}}=\gamma \tag{5}
\end{equation*}
$$

6. Definition. (The basic aims.) Let $\gamma=\left(\Gamma^{I}, \Gamma^{I I}\right)$ be a parameter. For $\varepsilon \in\{\Delta, \square$, $0,1,2, \ldots\}$ we shall introduce the aims $\boldsymbol{q}^{\varepsilon}(\gamma)=\boldsymbol{q}^{\varepsilon}\left(\Gamma^{I}, \Gamma^{I I}\right), \boldsymbol{q}_{\varepsilon}(\gamma)=\boldsymbol{q}_{\varepsilon}\left(\Gamma^{\mathrm{I}}, \Gamma^{\mathrm{II}}\right)$:

$$
\begin{aligned}
& \boldsymbol{q}^{k}(\gamma):=\left\{\mathbf{x} \mid \boldsymbol{x} \in \mathbf{P}, \quad x_{k+1} \Gamma^{\mathrm{I}} x_{k} \wedge \widehat{m}_{m<k} x_{m+1} \Gamma^{\amalg 1} x_{m}\right\}, \\
& \boldsymbol{q}_{k}(\gamma):=\left\{\mathbf{x} \mid \mathbf{x} \in \mathbf{P}, \quad x_{k+1} \Gamma^{\mathrm{I}} x_{k} \vee \underset{m<k}{\mathbf{V}} x_{m+1} \Gamma^{\amalg} x_{m}\right\}, \\
& \boldsymbol{q}^{\Delta}(\gamma):=\bigcup_{k} \boldsymbol{q}^{k}(\gamma), \\
& \boldsymbol{q}_{\Delta}(\gamma):=\bigcap_{k} \boldsymbol{q}_{\boldsymbol{k}}(\gamma), \\
& \boldsymbol{q} \square(\gamma):=\bigcap_{n} \bigcup_{k \geq n} \boldsymbol{q}^{k}(\gamma), \\
& q_{\square}(\gamma):=\bigcup_{n} \bigcap_{k>n} q_{k}(\gamma), \\
& \mathfrak{M}:=\left\{\boldsymbol{q}^{\varepsilon}(\gamma) \mid \gamma \in \operatorname{Corr}(\boldsymbol{P}, \boldsymbol{P}) \times \operatorname{Corr}(\boldsymbol{P}, \boldsymbol{P}),{ }^{\varepsilon} \in\left\{\Delta,{ }_{\Delta}, \square, \square\right\}\right\},
\end{aligned}
$$

(where, and also in the following, the ε-symbolism is used in the same manner as in $\S 5.8)$. Elements of \mathfrak{M} will be called the basic aims.
7. Theorem. Let γ be a parameter, $\varepsilon \in\{\Delta, \square, 0,1, \ldots, \Delta, \square, 0,1, \ldots\}$.

Then
(i)

$$
\boldsymbol{q}^{\varepsilon}(\gamma)=\mathbf{P}-\boldsymbol{q}_{\varepsilon}(\bar{\gamma})
$$

Further (for any aim A)

$$
\begin{equation*}
A \in \mathfrak{M} \Leftrightarrow P-A \in \mathfrak{M} \tag{ii}
\end{equation*}
$$

Proof. For any $x, y \in P$ and an arbitrary $\Gamma^{\circ} \in \operatorname{Corr}(P, P)$ there holds: $7 y \Gamma^{\circ} x$ iff $y\left(\mathbf{L}_{P}-\Gamma^{\circ}\right) x$. This trivial remark shows that (i) is true with ${ }^{\varepsilon}:=k$ and ${ }^{\varepsilon}:=k$ ($k=0,1,2, \ldots$). Now the verity of (i) with the other ${ }^{\varepsilon}$ follows immediately from definition 5. (i) and the corresponding definitions 5,6 imply that (ii) holds. Q. E. D.
8. Theorem. For every parameter $\gamma=\left(\Gamma^{I}, \Gamma^{I I}\right)$ there holds:

$$
\begin{align*}
& \boldsymbol{q}^{\Delta}(\gamma)=\left\{\mathbf{x} \mid \mathbf{x} \in \mathbf{P},\left(\underset{k}{\mathbf{V}} x_{k+1} \Gamma^{\mathrm{I}} x_{k}\right) \wedge{\underset{k}{ }}_{\wedge}\left(x_{k+1} \Gamma^{\amalg} x_{k} \vee{ }_{m} \mathbf{V}_{k k} x_{m+1} \Gamma^{\mathrm{I}} x_{m}\right)\right\}, \tag{i/1}
\end{align*}
$$

$$
\begin{align*}
& \boldsymbol{q}_{\square}(\gamma)=\left\{\mathbf{x} \mid \mathbf{x} \in \mathbf{P},\left(\underset{k}{\mathbf{V}} x_{k+1} \Gamma \amalg x_{k}\right) \vee \underset{n}{V} \underset{k>n}{ } x_{k+1} \Gamma{ }^{\mathrm{I}} x_{k}\right\} . \tag{ii/l}
\end{align*}
$$

Proof. It will be sufficient to prove only e.g. (i/l), (ii/l) (cf. the preceding proof and 7 (i)). Let $x=\left(x_{k}\right) \in \mathbf{P}$ be fixed. We introduce (at \boldsymbol{x}) these four statements:

$$
\begin{aligned}
& \mathrm{V}_{1}:=\bigwedge_{k}\left(x_{k+1} \Gamma \mathrm{I} x_{k} \vee \underset{m<k}{V} x_{m+1} \Gamma \amalg x_{m}\right), \\
& \mathrm{V}_{2}:=\left(\bigwedge_{k} x_{k+1} \Gamma^{\mathrm{L}} x_{k}\right) \vee \underset{k}{\mathbf{V}}\left(x_{k+1} \Gamma^{\mathrm{I}} x_{k} \wedge_{m} \bigwedge_{\leqslant k} x_{m+1} \Gamma^{\mathrm{I}} x_{m}\right) \text {, } \\
& \mathbf{V}_{3}:=\widehat{n}_{k>n} \mathbf{V}_{k+1}\left(x_{k+1} \Gamma^{\mathrm{L}} x_{k} \wedge \bigwedge_{m<k} x_{m+1} \Gamma^{\amalg} x_{m}\right), \\
& \mathrm{V}_{4}:=\left(\bigwedge_{k} x_{k+1} \Gamma^{\mathrm{II}} x_{k}\right) \wedge \widehat{n}_{k>n} \mathrm{~V}_{\boldsymbol{k}+1} \Gamma^{\mathrm{I}} x_{k} .
\end{aligned}
$$

It is evident that if (for each x) there holds $V_{1} \Leftrightarrow V_{2}\left[V_{3} \Leftrightarrow V_{4}\right]$, then (i/1) [(ii/1)] is valid.

1. If $x_{r+1} \Gamma^{\amalg} x_{r} \wedge \bigwedge_{m<r} x_{m+1} \Gamma^{\mathrm{I}} x_{m}$ for some r, then $\left(\wedge_{k>r} \bigvee_{m<k} x_{m+1} \Gamma^{\amalg} x_{m}\right) \wedge \wedge_{k<r} x_{k+1} \Gamma^{\mathrm{I}} x_{k}$, hence $\widehat{k}_{k}\left(x_{k+1} \Gamma^{\mathrm{I}} x_{k}{ }^{m}{ }_{m<k}^{V} x_{m+1} \Gamma^{\mathrm{I}} x_{m}\right)$. The latter statement also holds if $\widehat{k}_{k} x_{k+1} \Gamma^{\mathrm{I}} x_{k}$. Thus $\mathrm{V}_{\mathbf{2}}^{\boldsymbol{k}}$ implies V_{1}. ${ }^{m<k}$ the other hand, if V_{1} holds, then either $\neg \underset{k}{\mathrm{~V}} x_{k+1} \Gamma^{k}{ }_{x_{k}}$, then
 exists the integer $r:={ }^{m} \min \left\{k \mid x_{k+1} \Gamma \amalg x_{k}\right\}$, hence $\widehat{k}_{k<r} \neg x_{k+1} \Gamma \amalg_{x_{k}}$, consequently
 hence again V_{2} holds. Thus we have proved $\mathrm{V}_{1} \Leftrightarrow \mathrm{~V}_{2}$.

 consequently $\bigwedge_{n} V_{k>n}\left(x_{k+1} \Gamma^{\mathrm{I}} x_{k} \wedge \wedge_{m<k} x_{m+1} \Gamma^{\Pi} x_{m}\right)$, hence V_{3} is valid. Thus $\mathrm{V}_{3} \Leftrightarrow \mathrm{~V}_{4}$ has been proved.
Q. E. D.
2. Remarks. Let $\boldsymbol{q}^{\varepsilon}$ (where ${ }^{\varepsilon}$ is some of those occurring in the head of 6) be that mapping of Corr $P \times \operatorname{Corr} P$ ($=$ the set of all parameters) into $\exp P$ which maps
 function (§5.8). Let $E:=\operatorname{Corr} P \times \operatorname{Corr} P, F:=P$ in the situation considered in § 2.4; then we may introduce the induced operations U, \bigcap, - onto $(\exp F)^{E}=$ $=(\exp P)^{\operatorname{Corr} P \times \operatorname{Corr} P}$ by \S 2.5.2. It is easy to see that then

$$
\begin{gather*}
\boldsymbol{q}^{\Delta}=\bigcup_{k} \boldsymbol{q}^{k}, \quad \boldsymbol{q}_{\Delta}=\bigcap_{k} \boldsymbol{q}_{\boldsymbol{k}}, \tag{6}\\
\boldsymbol{q}^{\square}=\underset{k}{\limsup } \boldsymbol{q}^{k}, \quad \boldsymbol{q}_{\square}=\underset{k}{\liminf } \boldsymbol{q}_{k}, \tag{7}
\end{gather*}
$$

where $\limsup _{k}[\underset{k}{[\liminf }]$ means, of course, $\bigcap_{n} \bigcup_{k>n}\left[\bigcup_{n} \bigcap_{k>n}\right]$.
10. Theorem. Let γ be a parameter. Then
$\boldsymbol{q}^{\square}(\gamma)$ has the property $\left(\mathrm{I}_{0}\right)$,
$\boldsymbol{q}_{\square}(\gamma)$ has the property $\left(\mathrm{I}^{\mathrm{O}}\right)$.

Proof. These assertions follow immediately from theorem 8, (ii/1-2). Q.E.D.
11. Theorem. Each basic aim has the property (I).

Proof. Let $\gamma=\left(\Gamma^{\mathrm{I}}, \Gamma^{\mathrm{II}}\right)$ be a parameter. Let $\mathbf{x}, \boldsymbol{y} \in \boldsymbol{P}, 0 \leqslant m<1+\min (l(\boldsymbol{x})$, $l(\boldsymbol{y})),\left(x_{0}, \ldots, x_{m}\right)=\left(y_{0}, \ldots, y_{m}\right)$, let $\boldsymbol{x} \in \mathbf{A}:=\boldsymbol{q}^{\varepsilon}(\gamma)$, where ${ }^{\varepsilon}$ will be chosen in the following.

1. Let ${ }^{\varepsilon}:=\Delta$. Then (cf. 6) there exists k_{1} such that $x_{k_{1}+1} \Gamma^{\mathrm{I}} x_{k_{1}} \wedge \wedge_{k<k_{1}} x_{k+1} \Gamma^{\Pi} x_{k}$. If $k_{1}<m$, then $y_{k_{1}+1} \Gamma y_{k_{1}} \wedge \bigwedge_{k<k_{1}} y_{k+1} \Gamma \Gamma_{y_{k}}$ (since $\bigwedge_{k<m} y_{k}=x_{k}$ and $k_{1}+1 \leqslant m$), hence $\mathbf{y} \in \mathbf{A}$. If $k_{1} \geqslant m$, then $x_{k_{1}+1} \Gamma^{k<k_{1}} x_{k_{1}} \wedge \bigwedge_{m \leq k<k_{1}} \boldsymbol{x}_{k+1} \Gamma^{k<m}{ }_{x_{k}}$, hence $\mathbf{x}^{[m]} \in \mathbf{A}$; if, moreover, $\mathbf{y}^{[m]} \in A$, then there exists $k_{2} \geqslant m$ such that $y_{k_{2}+1} \Gamma^{\Gamma} y_{k_{2}} \wedge \bigwedge_{m \leqslant k<k_{2}} y_{k+1} \Gamma \Gamma_{y_{k}}$, but
 $\underset{A}{A}$ has the property (I).

 but then (cf. above) $\left(\underset{k}{\wedge_{k}} y_{k+1} \Gamma \Psi_{y_{k}}\right) \wedge \widehat{n}_{k>n}^{V_{k+1} \Gamma^{m} y_{k}}$, hence $\boldsymbol{y} \in \mathbf{A}$. Therefore, A has the property (I).
2. If ε is either Δ or \square, then $q^{\varepsilon}(\bar{\gamma})$ has the property (I) (see 1, 2), hence $\boldsymbol{q}_{\varepsilon}(\gamma)=$ $=\boldsymbol{P}-\boldsymbol{q}^{\varepsilon}(\bar{\gamma})$ has the property (I) (7(i); 2.1(iii) with $\left.\Gamma:=\mathbf{L}\right)$.
Q.E.D.
12.0. Remark. It is possible to derive several other properties of the basic aims by means of theorems $2.1,10,11$. On the other hand, simple examples show that it may happen that e.g. $q^{\Delta}(\gamma)$ has neither $\left(I^{\circ}, \Gamma\right)$ nor $\left(I_{0}, \Gamma\right), q{ }^{\square}(\gamma)$ has not (I°, Γ), etc. Nevertheless, there holds
12.1. Lemma. Let $\gamma=(\Gamma, \Gamma$ II) be a parameter, $\varepsilon \in\{\Delta, \square\}$. Then
(i) $\Gamma \subset \Gamma$ II $\Rightarrow \boldsymbol{q}^{\mathrm{f}}(\gamma)$ has the property $\left(\mathrm{I}^{\circ}, \Gamma\right)$
(ii) $\mathbf{L}_{P}-\Gamma \supset \Gamma$ II $\Rightarrow \boldsymbol{q}_{s}(\gamma)$ has the property $\left(\mathrm{I}_{0}, \Gamma\right)$

Proof. (i) follows immediately from $6(\varepsilon:=\Delta), 8(\mathrm{ii} / 1)(\varepsilon:=\square)$. If $\mathbf{L}_{P}-\Gamma \supset$ $\supset \Gamma$ II, then $\Gamma \subset \mathbf{L}_{P}-\Gamma^{I I}$, hence $\boldsymbol{q}^{\varepsilon}\left(\mathbf{L}_{P}-\Gamma^{I}, \mathbf{L}_{P}-\Gamma I I\right)=\boldsymbol{q}^{\varepsilon}(\bar{\gamma})$ has the property ($\mathrm{I} 0, \Gamma$), and $\boldsymbol{q}_{\varepsilon}(\gamma)=P-\boldsymbol{q}^{\epsilon}(\bar{\gamma})$ has the property $\left(\mathrm{I}_{0}, \Gamma\right)(12.1(\mathrm{i}), 7(\mathrm{i})$, 2.1(iii)). Q.E.D.
12.2. Remarks. Clearly, $L_{P}-\Gamma \supset \Gamma$ is equivalent to the condition $\Gamma^{I I} \cap$ $\cap \Gamma=\mathbf{L}_{\text {Ø }}$. Thus 10 and 12.1 imply especially:
12.3. Corollary. For any parameter $\gamma=\left(\Gamma^{I}, \Gamma^{I I}\right)$ there holds:
(i) $\Gamma \subset \Gamma \Pi \quad q \square(\gamma)$ has the property $\left(I_{0}^{\circ}, \Gamma\right)$,
(ii) $\Gamma \Pi \cap \Gamma=\mathbf{L}_{\varnothing} \Rightarrow q_{\square}(\gamma)$ has the property (I_{0}°, Γ).
13.1. Definition, remarks. Under an r-parameter we shall mean a pair $x=\left(\Omega, \Gamma^{\circ}\right)$ where Ω is a countable (i.e. card $\Omega \leqslant \mathcal{N}_{0}$) collection in P and $\Gamma^{\circ} \in \operatorname{Corr}(P, P)$. To such an r-parameter x we define the complementary one

$$
\bar{x}:=\left(\{P-K \mid K \in \boldsymbol{\Omega}\}, \mathbf{L}_{P}-\Gamma^{\circ}\right),
$$

(i.e. $\overline{\mathcal{X}}=\left(\exp P-\overline{\boldsymbol{\Re}}, \mathbf{L}_{P}-\Gamma^{\circ}\right)$, where ${ }^{-}$is the operation introduced in § $4.2(Q:=$ $:=P)$); evidently

$$
\begin{equation*}
\overline{\bar{x}}=x . \tag{8}
\end{equation*}
$$

We say that an r-parameter $\boldsymbol{x}=\left(\boldsymbol{\Omega}, \Gamma^{\circ}\right)$ is a \cup-parameter [an \cap-parameter] iff $\boldsymbol{\Omega}$ is U-directed [\cap-directed]. Evidently

$$
\begin{equation*}
x \text { is a } U \text {-parameter } \Leftrightarrow \bar{x} \text { is an } \cap \text {-parameter } \tag{9}
\end{equation*}
$$

13.2. Definition, remarks.
(i) Let $x=\left(\Omega, \Gamma_{0}\right)$ be a \cup-parameter. Then we put

$$
\boldsymbol{r}_{\square}(\boldsymbol{x}):=\boldsymbol{r}_{\square}\left(\boldsymbol{\Omega}, \Gamma^{\circ}\right):=\bigcup_{\boldsymbol{K} \in \mathscr{R}} \mathbf{q}_{\triangle}\left(\mathbf{L}_{K}, \Gamma^{\circ}\right) .
$$

(ii) Let $x=\left(\Omega, \Gamma^{\circ}\right)$ be an \cap-parameter. Then we put

$$
\boldsymbol{r} \square(x):=\boldsymbol{r} \square\left(\boldsymbol{\AA}, \Gamma^{\circ}\right):=\bigcap_{\boldsymbol{K} \in \mathscr{\AA}} \boldsymbol{q}^{\Delta}\left(\mathbf{L}_{K}, \Gamma^{\circ}\right) .
$$

(where the intersection is defined to be equal to P if $\boldsymbol{\Omega}=\emptyset$). By means of (4') and $7(i)$ we conclude
$\boldsymbol{r} \square(x)=\boldsymbol{P}-\boldsymbol{r}_{\square}(\bar{x})$ for each \cap-parameter x,
$\boldsymbol{r} \square(x)=\boldsymbol{P}-\boldsymbol{r}_{\square}^{\square}(\bar{x})$ for each \cup-parameter x.

Elements of $\left\{r_{\square}(x) \mid x\right.$ is a U-parameter $\}[\{r \square(x) \mid x$ is an \cap-parameter $\}]$ will be called U-aims [\cap-aims]. U-aims and \cap-aims will be also called r-aims. From (10) there follows
\boldsymbol{A} is a \cup-aim $\Leftrightarrow P-A$ is an \cap-aim
A is an r-aim $\Leftrightarrow P-A$ is an r-aim
13.3. Lemma. Let $x_{t}=\left(\Omega_{t}, \Gamma_{t}\right)(\iota=1,2)$ be complementary r-parameters (i.e. $\left.x_{2}=\overline{x_{1}}\right)$, let $x_{1}^{\prime}:=\left(\Omega_{1} \cup\{\emptyset\}, \Gamma_{1}\right), x_{2}^{\prime}:=\left(\Omega_{2} \cup\{P\}, \Gamma_{2}\right)$. Then $x_{1}^{\prime}, x_{2}^{\prime}$ are complementary parameters, and the following four statements are mutually equivalent: x_{1} is a \cup-parameter; x_{1}^{\prime} is a \cup-parameter; x_{2} is an \cap-parameter; x_{2}^{\prime} is an \cap-parameter. Further, if
some (and, consequently, each) of these four statements is valid, then $\boldsymbol{r}_{\square}\left(\chi_{1}\right)=\boldsymbol{r}_{\square}\left(\chi_{1}^{\prime}\right)$, $\boldsymbol{r} \square\left(\chi_{2}\right)=\boldsymbol{r} \square\left(\chi_{2}^{\prime}\right)$.
(This lemma follows immediately from the above definitions and remarks).
14.1. Lemma. Let $C \subset A, D \subset B$. Then $\mathbf{L}_{C}^{D} \subset \mathbf{L}_{A}^{B}$.

Proof. This follows immediately from $\S 6.4$ (as $D \times C \subset B \times A$). Q.E.D.
14.2. Lemma. Let $\Gamma^{\mathrm{I}}, \Gamma^{\mathrm{II}}, \Gamma^{\mathrm{II}}, \Gamma^{\mathrm{IV}} \in \operatorname{Corr}(P, P)$, let ε be some of those occurring in the head of 6. If $\Gamma^{\mathrm{III}} \subset \Gamma^{\mathrm{I}}, \Gamma^{\mathrm{IV}} \subset \Gamma^{\mathrm{II}}$, then $\boldsymbol{q}^{\varepsilon}\left(\Gamma^{\mathrm{III}}, \Gamma^{\mathrm{IV}}\right) \subset \boldsymbol{q}^{\varepsilon}\left(\Gamma^{\mathrm{I}}, \Gamma^{\mathrm{II}}\right)$.

Proof. In fact, $y \Gamma^{\mathrm{III}} x \Rightarrow y \Gamma^{\mathrm{I}} x, y \Gamma^{\mathrm{IV}} x \Rightarrow y \Gamma^{\mathrm{II}} x$ for any $x, y \in P$, hence the assertion follows immediately from the definition 6. Q.E.D.
14.3. Remark. If $x=\left(\Omega, \Gamma^{\circ}\right)$ is an \cap-parameter and $x^{\prime}:=\left([\Omega]_{p}, \Gamma^{\circ}\right)$, then $\boldsymbol{r}_{\square}(x)=\boldsymbol{r}_{\square}\left(\chi^{\prime}\right)$ (namely, " \supset " follows from $\boldsymbol{\Omega} \subset[\boldsymbol{\Omega}]_{P}$, while " \subset " can be derived by means of 14.1-2, cf. 13.2 (ii) and § 2.12).
15. Lemma. Each r-aim has the property (I).

Proof. Let A be a \cup-aim, i.e. $A=r_{\square}(x)$ for some U-parameter $x=\left(\Omega, \Gamma^{\circ}\right)$. $\boldsymbol{\mathcal { R }}$ is \cup-directed, hence $\left\{\boldsymbol{q}_{\triangle}\left(\mathbf{L}_{K}, \Gamma^{\circ}\right) \mid K \in \boldsymbol{\Omega}\right\}$ is U-directed (14.1, 14.2), each $\boldsymbol{q}_{\triangle}\left(\mathbf{L}_{K}\right.$, Γ°) has the property (I) (theorem 11), hence $r_{\square}(x)$ has the property (I) (13.2(i), $2.1($ viii $/ 1$) with $\Gamma:=\mathbf{L}$). This, (l1) and 2.1 (iii) imply that also each \cap-aim has the property (I). Q.E.D.

c) The main min-max results

Meta-remarks. We shall apply the idea of active and passive aims (§ $\mathbf{8 c}$) in the following three cases ($\S \S 6 \mathrm{c} / 1,2,3$). The corresponding considerations would comprehend a certain sizable common part; we do not wish to present it three times, therefore we shall use an advantageous (though somewhat unusual) way of exposition (such a way was used in [4], too): we shall present not the actual three texts (corresponding to those cases), but a certain text schema (containing, in fact that common part) and further three lists of text substitutions. The exact wordings of actual texts are to be obtained from the text schema by replacing all occurrences of the variables α and α th by their particular values (cf. the formative rules) and by the replacement of all text variables by the corresponding particular texts from the α th list.

Thus, we may say that the proper text of this paper consists, on the one hand, of the explicitely presented passages, and, on the other hand, of those (not explicitely presented!) passages which are to be formed in the above mentioned way, while the forming means (i.e. the text schema and the lists of text substitutions) and also the meta-text (i.e. these meta-remarks on and the rules of that formation) do not belong to the proper text and are designated in another manner than its parts. (The prefix "meta" is used only in the above mentioned connections in this paper.)

THE FORMATIVE RULES. α will denote the serial variable ($\alpha=1,2,3$),
α th $:=\left\{\begin{array}{l}\text { first } \\ \text { second for } \alpha=\left\{\begin{array}{l}1 \\ \text { third }\end{array} \text {. The proper text of } \S 6 \mathrm{c} / \alpha \text { is to be obtained by the replacement of }\right. \\ 3\end{array}\right.$ each α and α th by its actual value and by the replacement of each text variable (there are nine text variables) 〈 $\boldsymbol{\Xi}\rangle$ (where $\boldsymbol{\Xi}$ is some auxiliary designation, "identifier") by the particular text presented in the α th list beyond the corresponding expression " $\langle\Xi\rangle:=$ ".

THE TEXT SCHEMA

c / α) The α th main min-max results
16/ α. Suppositions, definition, remarks. In $\S 6 c / \alpha$ let $\{j, i\}=\{1,2\}$ (j and i are fixed), let $\mathscr{U}=\left(u_{1}, u_{2}\right)$ be a regular weakly complete pair of elements of Corr (P,
$\exp P)$ ，let $\left(P, P_{0}\right)$ be the type of \mathscr{U} ．We put $v_{t}:=\left[u_{t}\right]_{P}(\ell=1,2)$（the＂player t＇s＂ game correspondence），thus $v_{3-1}=v_{1}^{\prime}$（cf．§4．16）．〈the choice of $\left.\mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$

Let $\sim_{i}:=\circ(\S 1.2)$（i．e．，roughly speaking，the active player uses only his plain strategies；cf．§ 5．11）．〈the choice of $\left.\sim_{j}\right\rangle$

17．0／a．Definition，remark．〈the introduction of $\left.w_{1}, w_{2}\right\rangle$
17／1／a．Lemma．There holds：
（i）$w_{j}=\overline{w_{i}}$ ，
（ii）w_{1} and w_{2} are Mcorrespondences．
Proof．〈the proof of $17.1 / \alpha\rangle$ Q．E．D．
17．2／α ．Definition．We define $w_{l}^{*} \in \operatorname{Corr}(P, \exp P)(t=1,2)$ by

$$
w_{j}^{*}:=\mathbf{1} \cap w_{j}, \quad w_{i}^{*}:=\mathbf{1} \cup w_{i}
$$

（where 1 is defined by § 2．18．1）．
17．3／a．Lemma．There holds：
（ii）

$$
\begin{equation*}
w_{j}^{*}=\overline{w_{i}^{*}} \tag{i}
\end{equation*}
$$

Proof．In fact，$\overline{w_{i}^{*}}=\overline{1 \cup w_{i}}=\overline{\mathbf{1}} \cap \overline{w_{i}}=1 \cap w_{j}=w_{j}^{*}(17.2 / \alpha, 17.1 / \alpha$（i），§4（24）， 47））．（ii）follows from $17.1 / \alpha$（ii）（cf．，e．g．，§ 2．12，§ 2 （30））．Q．E．D．

18．0／α ．Definition．We put

$$
\begin{aligned}
& \mathfrak{A r}_{j}:=\left\{X \mid X \subset P \quad X \subset w_{j} X\right\}, \\
& \mathfrak{A}_{i}:=\left\{X \mid X \subset P, X \supset w_{i} X\right\} .
\end{aligned}
$$

18．1／α ．Remark．Clearly，for $\iota=1,2$

$$
\mathfrak{A}_{\iota}=\left\{X \mid X \subset P, X=w_{\imath}^{*} X\right\}
$$

${ }^{\mathrm{i}}$ ．e．， \mathfrak{A}_{t} is the set of all fixpoints of the M －correspondence w_{i}^{*} ．
18．2／ ．Remark．w_{i} and $w_{l}^{*}(i=1,2)$ are M－correspondences，hence they have fixpoints（§ 5．15．0）；moreover $\bigcap_{\substack{X \subset P \\ X \supset w_{i} X}} X$ and $\bigcap_{\substack{X \\ X \supset P \\ X \supset w_{i}: X}} X$ are the smallest fixpoints of w_{i} and w_{i}^{*} ，respectively（§ 5．15．0＊）；but $X \supset w_{i} X$ iff $X \supset w_{i}^{*} X$ ，therefore w_{i} and w_{i}^{*} have the same smallest fixpoint．Analogously，w_{j} and w_{j}^{*} have the same greatest fixpoint $\underset{\substack{X \in P \\ X \in w_{j} X}}{ } X=\bigcup_{\substack{\left.X \in P \\ X \in w_{j}\right]}} X$ ．（Of course，the equations between those fixpoints follow from § $5\left(13^{\prime}\right)$ ，（ 14 ），too，but the latter statements were derived by means of the transfinite iterations（＂successive approximations＂），while we shall need to－have derived those equations without using the notion of transfinite iteration，cf．remark 19／a．）

19／α ．Remark． $16 / \alpha$ and $18 / \alpha$ have introduced a particular case of the situation considered in §5c．To this particular case there will be related the conditions（C） （ P^{*} ），（ A^{*} ）defined in §5．11． \mathfrak{Q}_{j} was chosen in such a way that it is simple to verify $\left(\mathrm{P}^{*}\right)$（see $21 / \alpha$ ）． \mathfrak{A}_{i} is uniquely determined by \mathfrak{A}_{j} if (C) holds（then $\mathfrak{A}_{i}=\exp P-\overline{\mathfrak{A}_{j}}$ ，

[^1]see § 5.11), but we have also \mathfrak{A}_{i} explicitely defined (while (C) will be proved in 20/ α) as the set of fixpoints of a certain M-correspodence, which is important especially at the following application of the method of "successive approximations". The condition (A^{*}), which here consists in finding $A \in \mathfrak{A l}_{i}$ and $\sigma_{i} \in \dot{S}\left(u_{i}\right)$ such that $s\left(x, \sigma_{i}\right) \subset$ $\subset A_{i}$ for each $x \in A$, will be proved twice, namely by means of the mutually independent uses of both the methods mentioned in § 5.12: the "(I)-property method" $(22 / \alpha)$ and the "successive approximations method" (23/ α); the auxiliary results and considerations obtained at applying these two methods are important, too.

20/ α. Lemma. The condition (C) is satisfied.
Proof. In fact, for each $X \subset P P-w_{j}^{*} X=P-\overline{w_{i}^{*}} X=w_{i}^{*}(P-X)(17.3 / \alpha(\mathrm{i})$, $\S 4(30))$, therefore $X \in \mathfrak{H}_{j} \Leftrightarrow X=w_{j}^{*} X \Leftrightarrow P-X=w_{i}^{*}(P-X) \Leftrightarrow P-X \in \mathfrak{A}_{i}$ (18.1/ α). Q.E.D.

21/ α. Lemma. The condition (P^{*}) is satisfied.
Proof. $\left\langle\right.$ the proof of the satisfaction of $\left.\left(\mathrm{P}^{*}\right)\right\rangle$ Q.E.D.
22/ α. THE "(I)-PROPERTY METHOD".
22.1/ α. Lemma. A_{1} and A_{2} have the property (I).

Proof. This follows immediately from $16 / \alpha$ and \langle the property (I)〉. Q.E.D.
$22.2 / \alpha$. Corollaries. A_{i} has the property (I) $(22.1 / \alpha)$, hence it has the property (I, Γ) (theorem 2.1 (iv)) where Γ may be the graph of u_{i}. Therefore, a plainly $\left\{\boldsymbol{A}_{\boldsymbol{i}}\right\}$ absolute u_{i}-strategy exists (§3.11), i.e., there is $\sigma_{i} \in \dot{S}\left(u_{i}\right)$ such that $\mathrm{s}\left(x, \sigma_{i}\right) \subset \boldsymbol{A}_{i}$ for each $x \in \dot{\boldsymbol{u}}_{i} \boldsymbol{A}_{i}$ (§ 3.5). Consequently, $\dot{\boldsymbol{u}}_{i} \boldsymbol{A}_{i}=\left\{x \mid x \in P, \mathrm{~s}\left(x, \sigma_{i}\right) \subset A_{i}\right\}$ (cf. § 3.2); if $\sigma^{*} \in \mathscr{S}\left(u_{i}\right)$ and $\sigma\left|Z \cap \stackrel{\circ}{u}_{i} \boldsymbol{A}_{i}=\sigma^{*}\right| \boldsymbol{Z} \cap \stackrel{\circ}{\boldsymbol{u}}_{i} \boldsymbol{A}_{i}$, then $\mathrm{s}\left(x, \sigma^{*}\right) \subset \boldsymbol{A}_{i}$ for each $x \in \stackrel{1}{i}_{i} \boldsymbol{A}_{i}$ (§ 3.10), i.e., then σ^{*} is a plainly $\left\{\boldsymbol{A}_{i}\right\}$-absolute u_{i}-strategy, too.
22.3/ α. Lemma. $\stackrel{\circ}{u}_{i} \boldsymbol{A}_{i} \in \mathfrak{M}_{i}$.

Proof. Let $A:=\stackrel{\circ}{\boldsymbol{u}}_{i} A_{i} ;$ it is sufficient to prove $w_{i} A \subset A(18.0 / \alpha)$. Let $\sigma_{i} \in \dot{S}\left(u_{i}\right)$; be such that $\mathrm{s}\left(x, \sigma_{i}\right) \subset A_{i}$ for each $x \in A$ (see 22.2/ α). 〈the remainder of the proof of $22.3 / \alpha\rangle$ Q.E.D.
22.4/ α. Corollary. (of 22.3-2/ α; cf. 19/ α). (A*) is satisfied.

23/ α. THE "SUCCESSIVE APPROXIMATIONS METHOD".

23.1/ α. Definition, remarks. In $\S 6.23 / \alpha$ we shall denote (for shortness)

$$
w:=w_{i} .
$$

w is an M-correspondence ($17.1 / \alpha$ (ii)), hence the sets $w^{\infty} \emptyset$, $w \emptyset \emptyset$ (for any ordinal number ξ) are defined (see § 5.15.1); we denote

$$
A^{\infty}:=w^{\infty} \emptyset, \quad A^{\xi}:=w^{\xi} \emptyset
$$

Thus, $A^{\xi}=\bigcup_{0 \leqslant \eta<\xi} w A^{\eta}$ for every $\boldsymbol{\xi}(\S 5.15 .1)$. Let $\xi_{0}:=\min \{\xi \mid \xi$ is an ordinal number $\left.A^{\xi}=A^{\xi+1}\right\}$; indeed, ξ_{0} exists ($\S 5(10)$), and

$$
\emptyset=A^{\circ} \subsetneq A^{1} \subsetneq \ldots \subsetneq A^{\xi_{0}}=A^{\xi_{0}+1}=\ldots=A^{\infty},
$$

(§5(1), (7)). Further, for each $x \in A^{\infty}$ we put

$$
\eta(x):=\min \left\{\eta \mid \eta \text { is an ordinal number, } x \in A^{\eta}\right\} .
$$

There holds especially:
a) A^{∞} is the smallest fixpoint of $w\left(=w_{i}\right)$ and also of $w_{i}^{*}\left(\S 5(14),\left(13^{\prime}\right)\right)$; consequently,

$$
A^{\infty} \in \mathfrak{H}_{i} .
$$

b) If $x \in A^{\infty}$, then $0<\eta(x)<\xi_{0}$ (cf. above) and $\eta(x)$ is not limit (§5(5); cf. above); consequently, $\eta(x)-1$ exists, and (cf. §5(3))

$$
x \in A^{\eta(x)}-A^{\eta(x)-1}=w A^{\eta(x)-1}-A^{\eta(x)-1} .
$$

23.2/ α. Remarks, definition. 〈the definition of $\left.\sigma_{0}\right\rangle$
23.3/ α. Lemma. $\mathrm{s}\left(x, \sigma_{0}\right) \subset A_{i}$ for each $x \in A^{\infty}$ (where σ_{0} is the strategy introduced in 23.2/ α).

Proof. 〈the proof of $23.3 / \alpha\rangle$ Q.E.D.
23.4/ α. Corollary (of $23.2 / \alpha, 23.1 / \alpha$ a); cf. 19/ α). (A*) is satisfied.
$24 / \alpha$. Remark. Thus we have proved the satisfaction of (C), (P^{*}), (A^{*}) at the above introduced situation (cf. 19/ α). Now the main result of those of $\S 6 c / \alpha$, namely theorem $25 / \alpha$, follows immediately from § 5.11 (excepting the statement (iv), which follows from (iv') by means of $18.0-2 / \alpha$).

25/ α. THE α th MAIN MIN-MAX THEOREM. Let

$$
E_{\imath}:=\sim_{\imath} \boldsymbol{u}_{\imath} \boldsymbol{A}_{\imath} \text { for } \imath=1, \mathbf{2}
$$

(16/ α; in particular, $E_{i}=\dot{\boldsymbol{u}}_{i} \boldsymbol{A}_{i}$). Then there holds:

$$
\begin{equation*}
E_{1} \cup E_{2}=P, E_{1} \cap E_{2}=\emptyset \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{E}_{t}=\boldsymbol{u}_{t} \boldsymbol{A}_{t} . \tag{ii}
\end{equation*}
$$

There exists $a\left(\sim_{\imath},\left\{\mathcal{A}_{\imath}\right\}\right)$-absolute u_{t}-strategy.
$\left.\begin{array}{l}E_{i} \\ E_{j}\end{array}\right\}$ is the $\left\{\begin{array}{l}\text { smallest } \\ \text { greatest }\end{array}\right.$ (under $\left.\subset\right)$ set of $\left\{\begin{array}{l}\mathfrak{A}_{i} \\ \mathfrak{A}_{j}\end{array}\right.$.
(iv)

$$
\left.\begin{array}{l}
E_{i} \\
E_{j}
\end{array}\right\} \text { is the }\left\{\begin{array} { l }
{ \text { smallest } } \\
{ \text { greatest } }
\end{array} \text { fixpoint of } \left\{\begin{array} { l }
{ w _ { i } } \\
{ w _ { j } }
\end{array} \text { and also of } \left\{\begin{array}{l}
w_{i}^{*} \\
w_{j}^{*}
\end{array}\right.\right.\right.
$$

THE LISTS OF TEXT SUBSTITUTIONS

THE FIRST LIST OF TEXT SUBSTITUTIONS ($\alpha:=1, \quad \alpha$ th $:=$ first)

$\left\langle\right.$ the choice of $\left.A_{1}, A_{2}\right\rangle:=$ Let $\gamma_{1}=\left(\Gamma_{i}^{\mathrm{I}}, \Gamma_{i}^{\mathrm{II}}\right)(t=1,2)$ be mutually complementary parameters (i.e. $\gamma_{2}=\overline{\gamma_{1}}$), let

$$
\boldsymbol{A}_{j}:=\boldsymbol{q}_{\Delta}\left(\gamma_{j}\right), \boldsymbol{A}_{i}:=\mathbf{q}^{\Delta}\left(\gamma_{i}\right) ;
$$

consequently (cf. 7(i)), $A_{2}=P-A_{1}$.
$\left\langle\right.$ the choice of $\left.\sim_{j}\right\rangle:=$ Let $\sim_{j}:=\stackrel{\circ}{\sim}$, i.e., the passive player uses only his plain strategies, too.
$\left\langle\right.$ the introduction of $\left.w_{1}, w_{2}\right\rangle:=$ For $t=1,2$ we put

$$
P_{0}^{\mathbf{t}}:=\left\{x \mid x \in P_{0} \cap \Gamma_{t}^{\mathrm{t}} x\right\} ;
$$

evidently, $P_{0}^{2}=P_{0}-P_{0}^{1}$.
Let w_{j}, w_{i} be those elements of $\operatorname{Corr}(P, \exp P)$ for which

$$
\begin{gathered}
x w_{j} D \Leftrightarrow x \in P_{0}^{j} \cup v_{j}\left(\Gamma_{j}^{\mathrm{I}} x \cap\left(D \cup \Gamma_{j}^{\amalg} x\right)\right), \\
x w_{i} C \Leftrightarrow x \in P_{0}^{i} \cup v_{i}\left(\Gamma_{i}^{\mathrm{I}} x \cup\left(C \cap \Gamma_{i}^{\Pi} x\right)\right),
\end{gathered}
$$

for any $x \in P, D, C \subset P$.
\langle the proof of $17.1 / \alpha\rangle:=v_{j}$ and v_{i} are M-correspondences, which easily implies that w_{j} and w_{i} are M-correspondences, too (cf. §2(13)). Thus (ii) holds. Let $x \in P, D \subset P, C:=P-D$. Then (cf. 16/1, §4(30), (31)) $x \overline{w_{i}} D \Leftrightarrow \neg x w_{i} C \Leftrightarrow$ $\Leftrightarrow\left(x \in P_{0} \wedge \neg x w_{i} C\right) \vee\left(x \in Z \wedge \neg x w_{i} C\right) \Leftrightarrow\left(x \in P_{0} \wedge \neg x \in P_{0}^{i}\right) \vee\left(x \in v_{i} P \wedge\right.$ $\left.\wedge \neg x v_{i}\left(\Gamma_{i}^{\mathrm{I}} x \cup\left(C \cap \Gamma_{i}^{\mathrm{I}} x\right)\right)\right) \Leftrightarrow x \in P_{0}^{j} \vee x v_{i}^{\prime}\left(P-\left(\Gamma_{i}^{I} x \cup\left(C \cap \Gamma_{i}^{\mathrm{I}} x\right)\right)\right) \Leftrightarrow x \in P_{0}^{j} \cup$ $\cup v_{j}\left(\Gamma_{j}^{\mathrm{I}} x \cap\left(D \cup \Gamma_{j}^{\mathrm{I}} x\right)\right) \Leftrightarrow x w_{j} D$. Hence $\overline{w_{i}}=w_{j}$, i.e., (i) holds.
$\left\langle\right.$ the proof of the satisfaction of $\left.\left(\mathbf{P}^{*}\right)\right\rangle:=$ Let $B \in \mathscr{A}_{j}$, i.e., $B \subset P$ and $B \subset w_{j} B$. For each $z \in Z \cap B$ there holds $z \in\left[u_{j}\right]_{P}\left(\Gamma_{j}^{\mathrm{I}} z \cap\left(B \cup \Gamma_{j}^{\mathrm{II} z}\right)\right)$ (16/1, 17.0/1); hence, there exists $\sigma \in \dot{S}\left(u_{j}\right)$ such that $\sigma z \subset \Gamma_{j}^{\Gamma} z \cap\left(B \cup \Gamma_{j}^{\Pi I} z\right)$ for each $z \in Z \cap B$. For this σ and any $x \in B, \mathrm{x}=\left(x_{k}\right) \in \mathrm{s}(x, \sigma)$ (cf. 3.1) there holds: If $x_{k} \in B$ for some number k, then $x_{k+1} \Gamma_{j}^{\dagger} x_{k}$ [namely, if $x_{k} \in B$, then either $x_{k} \in P_{0} \cap B$, then $x_{k+1}=x_{k} \in P_{0} \cap$ $\cap B \subset P_{0} \cap w_{j} B=P_{0}^{j}$, hence $x_{k+1} \Gamma_{j}^{\top} x_{k}(17.0 / 1)$, or $x_{k} \in Z \cap B$, then $x_{k+1} \in \sigma x_{k} \subset$ $\subset \Gamma_{j}^{\top} x_{k}$, thus again $\left.x_{k+1} \Gamma_{j}^{\top} x_{k}\right]$. Therefore, if $\bigwedge_{k} x_{k} \in B$, then $\bigwedge_{k} x_{k+1} \Gamma_{j}^{\top} x_{k}$, hence $\mathrm{x} \in$ $\in \boldsymbol{q}_{\Delta}\left(\gamma_{j}\right)$ (see 8(i/1)). On the other hand, if $\urcorner \bigwedge_{k}^{k} x_{k} \in B$, then there exists k_{0} such that $\left(\wedge_{k<k_{0}} x_{k} \in B\right) \wedge x_{k_{0}+1} \notin B$ (namely, $\left.x_{0}=x \in B\right)$; thus $\widehat{k}_{k \leq k_{0}} x_{k+1} \Gamma_{j}^{\Gamma} x_{k}$ and, further, $x_{k_{0}} \in$ $\stackrel{k_{k}<k_{0}}{\in B} \cap Z\left[x_{k_{0}} \in B ; x_{k_{0}} \in B \cap P_{0}\right.$ implies $x_{k_{0}+1}=x_{k_{0}} \in B$, which is a contradiction], therefore, $x_{k_{0}+1} \in \sigma_{j} x_{k_{0}}-B \subset\left(\Gamma_{j}^{\mathrm{I}} x_{k_{0}} \cap\left(B \cup \Gamma_{j}^{\mathrm{I}} x_{k_{0}}\right)\right)-B \subset \Gamma_{j}^{\mathrm{I}} x_{k_{0}}$, hence $x_{k_{0}+1} \Gamma_{j}^{\mathrm{I}} x_{k_{0}}$; thus, again $\mathbf{x} \in \boldsymbol{q}_{\triangle}\left(\gamma_{j}\right)$ (see $8(\mathrm{i} / 1)$). In such a way we have proved that always $\mathbf{x} \in \boldsymbol{q}_{\Delta}\left(\gamma_{j}\right)=A_{j}$. Therefore, $s(x, \sigma) \subset A_{j}$ for each $x \in B$. Consequently, (P^{*}) is satisfied.

\langle the property (I) $\rangle:=$ theorem 11

\langle the remainder of the proof of $22.3 / \alpha\rangle:=$ Let $y \in w_{i} A$, i.e., $y \in P_{0}^{i} \cup v_{i}\left(\Gamma_{i}^{1} \cup\right.$ $\left.\cup\left(A \cap \Gamma_{i}^{\mathrm{II}} y\right)\right)$. Let $y \notin A$. If $y \in P_{0}$, then $y \in P_{0} \cap w_{i} A=P_{0}^{i}, y \Gamma_{i}^{\mathrm{I}} y$, hence $(y) \in \mathbf{q}^{\triangle}\left(\gamma_{i}\right)$, $\mathbf{s}\left(y, \sigma_{i}\right)=\{(y)\} \subset \boldsymbol{q}^{\triangle}\left(\gamma_{i}\right)=\boldsymbol{A}_{i}$ (see 6), $y \in \dot{\boldsymbol{u}}_{i} \boldsymbol{A}_{i}=A$, which is a contradiction (as $y \notin A)$. On the other hand, if $y \in Z$, then, evidently, there exists $\sigma^{*} \in \stackrel{S}{S}\left(u_{i}\right)$ such that $\sigma^{*}\left|Z \cap A=\sigma_{i}\right| Z \cap A, \sigma^{*} y \subset \Gamma_{i}^{\mathrm{I}} y \cup\left(A \cap \Gamma_{i}^{\mathrm{I}} y\right)$; hence (see 22.2/1) $\mathrm{s}(x$, $\left.\sigma^{*}\right) \subset \boldsymbol{A}_{i}$ for each $x \in A$, and that contradiction $y \in A$ can be obtained again: Let $\mathbf{x}=\left(x_{k}\right) \in \mathrm{s}\left(y, \sigma^{*}\right)$. Then $l(\mathbf{x})>0$ (as $\left.x_{0}=y \in Z\right), x_{1} \in \sigma^{*} x_{0}=\sigma^{*} y \subset \Gamma_{i}^{\top} y \cup\left(A \cap \Gamma_{i}^{\mathrm{II}} y\right)$; hence, either $x_{1} \in \Gamma_{i}^{\top} y$, then $x_{1} \Gamma_{i}^{\mathrm{T}} x_{0}, \mathbf{x} \in \mathbf{q}^{\Delta}\left(\gamma_{i}\right)=\mathbf{A}_{i}$ (see 6), or $x_{1} \in A \cap \Gamma_{i}^{\mathrm{I}} y$, but then $x^{[1]} \in \mathrm{s}\left(x_{1}, \sigma^{*}\right) \subset \boldsymbol{A}_{i}$ (as $x_{1} \in A$), but $x_{1} \Gamma_{i}^{I \mathrm{I}} x_{0}$, hence (cf. 6) $\mathbf{x} \in \boldsymbol{A}_{i}$, too. Hence $\mathrm{s}\left(y, \sigma^{*}\right) \subset \boldsymbol{A}_{i}, y \in \dot{\boldsymbol{u}}_{i} \boldsymbol{A}_{i}=A$ (the contradiction).

Therefore, $y \in A$. Consequently, $w_{i} A \subset A$.
$\left\langle\right.$ the definition of $\left.\sigma_{0}\right\rangle:=$ Let $\sigma_{0} \in \dot{S}\left(u_{i}\right)$ be such that $\sigma_{0} z \subset \Gamma_{i}^{I} z \cup\left(A^{\eta(z)-1} \cap \Gamma_{i}^{11} z\right)$ for each $z \in Z \cap A^{\infty}$; such σ_{0} exists [if $z \in Z \cap A^{\infty}$, then $z \in Z \cap w A^{r(z)-1}(23.1 / 1 \mathrm{~b})$), hence $\left.z \in\left[u_{i}\right]_{P}\left(\Gamma_{i}^{\top} z \cup\left(A^{\eta(z)-1} \cap \Gamma_{i}^{\mathrm{II}} z\right)\right)(17.0 / 1,16 / 1)\right]$.
\langle the proof of $23.3 / \alpha\rangle:=$ Let $x \in A^{\infty}, x=\left(x_{k}\right) \in \mathrm{s}\left(x, \sigma_{0}\right)$. Let $\mathrm{x} \notin \mathrm{A}_{i}$. Let V_{m} be this assertion: $x_{0}, \ldots, x_{m} \in A^{\infty}, \eta\left(x_{0}\right)>\ldots>\eta\left(x_{m}\right), \wedge_{k<m}\left(x_{k+1} \Gamma_{i}^{\mathrm{II}} x_{k} \wedge \neg x_{k+1} \Gamma_{i}^{\mathrm{I}} x_{k}\right)$. V_{0} is true. If $\mathrm{V}_{\boldsymbol{m}}$ holds for some m, then $\neg x_{m+1} \Gamma_{i}^{\mathrm{L}} x_{m}$ (otherwise $\mathrm{x} \in \boldsymbol{q}^{\boldsymbol{m}}\left(\gamma_{i}\right) \subset \boldsymbol{A}_{i}$, a contradiction), hence $x_{m} \in Z$ (as otherwise $x_{m} \in P_{0} \cap A^{\infty}=P_{0} \cap w_{i} A^{\infty}=P_{0}^{i}$, $x_{m+1}=x_{m} \in \Gamma_{i}^{\mathrm{I}} x_{m}$, cf. 23.1/1, 17.0/1, 16/1), $x_{m+1} \in \sigma_{0} x_{m}-\Gamma_{i}^{\mathrm{I}} x_{m} \subset A^{n\left(x_{m)-1}\right.} \cap \Gamma_{i}^{\mathrm{II}} x_{m}$, $\eta\left(x_{m+1}\right) \leqslant \eta\left(x_{m}\right)-1<\eta\left(x_{m}\right)$; therefore, V_{m+1} is valid. Thus, V_{k} holds for each k, hence $\left(\eta\left(x_{k}\right)\right)_{0<k<\omega_{0}}$ is an infinite decreasing sequence of ordinal numbers, which is impossible. This contradiction shows that $\mathbf{x} \in \boldsymbol{A}_{i}$. Consequently, $\mathrm{s}\left(x, \sigma_{0}\right) \subset \boldsymbol{A}_{i}$ for each $x \in A^{\infty}$.

THE SECOND LIST OF TEXT SUBSTITUTIONS

$$
(\alpha:=2, \quad \alpha \text { th }:=\text { second })
$$

$\left\langle\right.$ the choice of $\left.A_{1}, A_{2}\right\rangle:=$ Let $\gamma_{t}=\left(\Gamma_{\iota}^{I}, \Gamma_{\iota}^{\mathrm{II}}\right)(\iota=1,2)$ be mutually complementary parameters (i.e. $\gamma_{2}=\overline{\gamma_{1}}$), let

$$
\boldsymbol{A}_{j}:=\boldsymbol{q}\left(\gamma_{j}\right), \quad \boldsymbol{A}_{i}:=\boldsymbol{q}_{\square}\left(\gamma_{i}\right) ;
$$

consequently (cf. 7(i)), $A_{2}=P-A_{1}$.
$\left\langle\right.$ the choice of $\left.\sim_{j}\right\rangle:=$ Let $\sim_{j}:=\dot{\sim}$, i.e., the passive player uses only his plain strategies, too.
$\left\langle\right.$ the introduction of $\left.w_{1}, w_{2}\right\rangle:=$ Let w_{j}, w_{i} be those elements of $\operatorname{Corr}(P, \exp P)$ for which

$$
\begin{aligned}
w_{j} D & =\stackrel{\circ}{\mathbf{u}}_{j} \boldsymbol{q}^{\Delta}\left(\Gamma_{j}^{\mathrm{I}} \cap \Gamma_{j}^{\mathrm{II}} \cap \mathbf{L}^{D}, \Gamma_{j}^{\amalg \mathrm{I}}\right) \\
w_{i} C & =\mathbf{\iota}_{i} \boldsymbol{q}_{\Delta}\left(\Gamma_{i}^{\mathrm{I}} \cup \Gamma_{i}^{\Pi} \cup \mathbf{L}^{C}, \Gamma_{i}^{\mathrm{I}}\right)
\end{aligned}
$$

for any $D, C \subset P$; here we might write also $u_{\iota} \boldsymbol{q} \ldots$ instead of $\dot{\boldsymbol{u}}_{\iota} \boldsymbol{q} \ldots(\imath=1,2)$, too (cf. 25/1(ii)).
\langle the proof of 17.1/ $\alpha\rangle:=$ (ii) follows immediately from § 2(13), § 3(3), § 6.14.1-2. Let $D \subset P, C:=P-D$. Using $\S 4(30)$ (with $Q:=P$), § $6.25 / 1(\mathrm{i}), \S 6.7(\mathrm{i})$ and the fact that ($\Gamma_{j}^{\mathrm{I}} \cap \Gamma_{j}^{\mathrm{II}} \cap \mathbf{L}^{\boldsymbol{D}}, \Gamma_{j}^{\Pi I}$), ($\Gamma_{i}^{\mathrm{I}} \cup \Gamma_{i}^{\mathrm{II}} \cup \mathbf{L}^{C}, \Gamma_{i}^{\mathrm{II}}$) are mutually complementary parameters (cf. 5, §6(4'), (1) etc.), we obtain: $\widetilde{w_{i}} D=P-w_{i} C=P-\dot{u}_{i} \boldsymbol{q}_{\Delta}\left(\Gamma_{i}^{1} \cup\right.$ $\left.\cup \Gamma_{i}^{I I} \cup L^{C}, \Gamma_{i}^{I I}\right)=\dot{\boldsymbol{u}}_{j} q^{\Delta}\left(\Gamma_{j}^{\mathrm{I}} \cap \Gamma_{j}^{\mathrm{II}} \cap \mathbf{L}^{D}, \Gamma_{j}^{\mathrm{II}}\right)=w_{j} D$. Hence $\overline{w_{i}}=w_{j}$, i.e., (i) holds.
$\left\langle\right.$ the proof of the satisfaction of $\left.\left(\mathbf{P}^{*}\right)\right\rangle:=$ Let $B \in \mathfrak{A}_{j}$, i.e., $B \subset P, B \subset w_{j} B$. Let $\mathbf{B}:=\mathbf{q}^{\Delta}\left(\Gamma_{j}^{\mathrm{I}} \cap \Gamma_{j}^{I I} \cap \mathbf{L}^{B}, \Gamma_{j}^{\mathrm{II}}\right)$. Then there exists $\sigma \in \dot{S}\left(u_{j}\right)$ such that $\mathrm{s}(x, \sigma) \subset \mathbf{B}$ for each $x \in \dot{u}_{j} B=w_{j} B$ (see 25/1(iii); cf. part IV). Let $x \in B, x=\left(x_{k}\right) \in \mathfrak{s}(x, \sigma)$. Let some k_{0} be such that $x_{k_{0}} \in B$; then $x_{k_{0}} \in w_{j} B$, therefore $\mathbf{x}^{\left[k_{0}\right]} \in \mathrm{s}\left(x_{k_{0}}, \sigma\right) \subset B$, hence there exists $r \geqslant 0$ such that $x_{k_{0}+r+1}\left(\Gamma_{j}^{I} \cap \Gamma_{j}^{I I} \cap L^{B}\right) x_{k_{0}+r} \wedge \Lambda x_{k_{0}+8+1} \Gamma_{j}^{I \mathrm{~F}} x_{k_{0}+8}$ (see 6), which implies (cf. 4) $x_{k_{0}+r+1} \Gamma_{j}^{\mathrm{I}} x_{k_{0}+r} \wedge\left(\underset{s \leqslant r}{ } x_{k_{0}+s+1} \Gamma_{j}^{\mathrm{II}} x_{k_{0}+s}\right)^{s<r} \wedge x_{k_{0}+r+1} \in B$. From this and from $x_{0}=x \in B$ it follows (by induction) that there exists a sequence $0=k_{1}<k_{2}<\ldots$ such that for $m=1,2, \ldots$ there holds $x_{k_{m+1}} \Gamma_{j}^{\top} x_{k_{m+1}-1} \wedge$ $\wedge\left(\bigwedge_{k_{m} \leqslant k<k_{m+1}} x_{k+1} \Gamma_{j}^{\mathrm{I}} x_{k}\right) \wedge x_{k_{m+1}} \in B$. Consequently, $\left(\bigwedge_{k} x_{k+1} \Gamma_{j}^{\mathrm{I}} x_{k}\right) \wedge \bigwedge_{n} \bigvee_{k>n} x_{k+1} \Gamma_{j}^{\mathrm{T}} x_{k}$, hence (see 8(ii/l)) $x \in q^{\square}\left(\gamma_{j}\right)=A_{j}$. Therefore, $s(x, \sigma) \subset A_{j}$ for each $\stackrel{n}{x} \in B$.
\langle the property (I)〉:= theorem 11
\langle the remainder of the proof of $22.3 / \alpha\rangle:=$ Let $C:=q_{\Delta}\left(\Gamma_{i}^{\mathrm{I}} \cup \Gamma_{i}^{\mathrm{II}} \cup L^{A}, \Gamma_{i}^{\mathrm{I}}\right), C:=$ $:=\dot{u}_{i} C\left(=w_{i} A\right)$, let σ be some plainly $\{C\}$-absolute u_{i}-strategy (see 25/1 (iii) or 22.2/1 (with $\boldsymbol{A}_{i}:=\boldsymbol{C}$)). Let σ^{*} be that plain u_{i}-strategy for which $\sigma^{*} \mid \boldsymbol{Z} \cap A=$ $=\sigma_{i}\left|Z \cap A, \sigma^{*}\right| Z-A=\sigma \mid Z-A$. Then $s\left(x, \sigma^{*}\right) \subset A_{i}$ for each $x \in A$ (see 22.2/2).

Let $x \in C, \mathbf{x}=\left(x_{k}\right) \in \mathrm{s}\left(x, \sigma^{*}\right)$. Then there occurs just one of the following cases $(\alpha),(\beta)$:
$(\alpha) \widehat{k}_{k} x_{k} \notin A$. Then $\mathrm{x} \in \mathrm{s}(x, \sigma) \subset C$ (namely: $\sigma^{*}|Z-A=\sigma| Z-A, \sigma$ is
 $=A_{i}$ (see $8(\mathrm{ii} / 2)$), or $\widehat{k}_{k} \neg x_{k+1} \Gamma_{i}^{\mathrm{I}} x_{k}$, then (cf. $\left.8(\mathrm{i} / 1)\right) \widehat{k}_{k}\left(\neg x_{k+1} \Gamma_{i}^{\mathrm{II}} x_{k} \wedge x_{k+1}\left(\Gamma_{i}^{\mathrm{I}} \cup\right.\right.$ $\left.\cup \Gamma_{i}^{\mathrm{II}} \cup \mathbf{L}^{A}\right) x_{k} \wedge x_{k+1} \notin A$), hence (cf. 4) $\widehat{k}_{k} x_{k+1} \Gamma_{i}^{\mathrm{T}} x_{k}$, thus (see again 8(ii/2)) $\mathrm{x} \in \boldsymbol{A}_{i}$.
 $x \in \boldsymbol{A}_{i}\left(A_{i}=\boldsymbol{q}_{\square}\left(\gamma_{i}\right)\right.$ has the property ($\left.\mathrm{I}^{\circ}\right)$, as we have mentioned in 10).

Thus we have proved that $\mathrm{s}\left(x, \sigma^{*}\right) \subset A_{i}$ for each $x \in C$, consequently $w_{i} A=C \subset$ $\subset \dot{\boldsymbol{u}}_{i} \boldsymbol{A}_{i}=A$, i.e., $w_{i} A \subset A$.
$\left\langle\right.$ the definition of $\left.\sigma_{0}\right\rangle:=$ For any non-limit ordinal number η such that $0<\eta \leqslant \xi_{0}$ let $\sigma^{\eta} \in \dot{S}\left(u_{i}\right)$ be such that $\mathrm{s}\left(x, \sigma^{\eta}\right) \subset \boldsymbol{q}_{\Delta}\left(\Gamma_{i}^{\mathrm{I}} \cup \Gamma_{i}^{\mathrm{I}} \cup \mathbf{L}^{A^{\eta-1}}, \Gamma_{i}^{\mathrm{II}}\right)$ for all $x \in A^{\eta}$ [such σ^{η} exists: $A^{\eta}=w A^{\eta-1}=\stackrel{\circ}{\boldsymbol{u}}_{i} \boldsymbol{q}_{\Delta}\left(\Gamma_{i}^{\mathrm{I}} \cup \Gamma_{i}^{\mathrm{II}} \cup \mathbf{L}^{A^{\eta-1}}, \Gamma_{i}^{\mathrm{II}}\right)$, see $\left.23.1 / 2 \mathrm{~b}\right)$, 17.0/2; further, cf. $25 / 1$ (iii)]. Let $\sigma_{0} \in \stackrel{\circ}{S}\left(u_{i}\right)$ be such that for each $z \in Z \cap A^{\infty}$ there holds (cf. 23.1/2b)) $\sigma_{0} z=\sigma^{\eta(z)} z$.
\langle the proof of $23.3 / \alpha\rangle:=$ Let $x \in A^{\infty}, \mathbf{x}=\left(x_{k}\right) \in \mathrm{s}\left(x, \sigma_{0}\right)$. If ${\underset{k}{k}}^{x_{k+1}} \Gamma_{i}^{I I} x_{k}$, then $\mathbf{x} \in \boldsymbol{q}_{\square}\left(\gamma_{i}\right)=\boldsymbol{A}_{i}$ (see 8(ii/2)). In the following let $\underset{k}{\wedge} \neg x_{k+1} \Gamma_{i}^{\mathrm{II}} x_{k}$ (the other possibility); then there holds $\widehat{k}_{k}\left(x_{k} \in A^{\infty} \Rightarrow x_{k+1} \in A^{\eta\left(x_{k}\right)}\right)$.
[Proof: Let there exist m such that $x_{m} \in A^{\infty}$ but $x_{m+1} \notin A^{\eta\left(x_{m}\right)}$; there holds $x_{m} \notin P_{0}$ (otherwise $x_{m+1}=x_{m} \in A^{\eta\left(x_{m}\right)}$, a contradiction) and (see 17.0/2, 23.1/2b)) $A^{\eta\left(x_{m}\right)}=$ $=w_{i} A^{\eta\left(x_{m}\right)-1}=\stackrel{\circ}{\boldsymbol{u}}_{i} \boldsymbol{C}$ where $\mathbf{C}:=\boldsymbol{q}_{\Delta}\left(\Gamma_{i}^{\mathrm{I}} \cup \Gamma_{i}^{\mathrm{II}} \cup \mathbf{L}^{A \eta\left(x_{m}\right)-1}, \Gamma_{i}^{I I}\right)$, hence $\mathrm{s}\left(x_{m+1}, \sigma^{\eta\left(x_{m}\right)}\right) \nsubseteq$ $\$ \boldsymbol{C}$ (otherwise $x_{m+1} \in \dot{\boldsymbol{u}}_{i} \boldsymbol{C}=A^{\eta\left(x_{m}\right)}$, a contradiction), thus there exists $\boldsymbol{y}=\left(y_{k}\right) \in$ $\in \mathrm{s}\left(x_{m+1}, \sigma^{\eta\left(x_{m}\right)}\right)-C$. Now we put $\mathrm{x}^{\prime}:=\left(x_{m}, x_{m+1}, y_{1}, y_{2}, \ldots\right)$; then $\mathrm{x}^{\prime} \in \mathrm{s}\left(x_{m}\right.$, $\left.\sigma^{\eta\left(x_{m}\right)}\right) \subset C$ (see 23.2/2), but $\widehat{k}_{k} \neg x_{k+1} \Gamma_{i}^{\mathrm{I}} x_{k}$ (the supposition), hence (see 8(i/1)) $\boldsymbol{y}=\left(\boldsymbol{x}^{\prime}\right)^{[1]} \in \boldsymbol{C}$, which is a contradiction (as $\boldsymbol{y} \notin \mathbf{C}$).]

From this and from $x_{0}=x \in A^{\infty}$ it follows that $\widehat{k}_{k} x_{k} \in A^{\infty}$ and that $\left(\eta\left(x_{k}\right)\right)_{0 \leq k<\omega_{0}}$ is a nonincreasing sequence of ordinal numbers. Consequently, there exists n such that ($x_{n} \in A^{\infty}$ and) $\eta\left(x_{n}\right)=$ $=\eta\left(x_{n+1}\right)=\ldots$. Then, clearly (cf. 23.2/2), $\mathbf{x}^{[n]} \in \mathrm{s}\left(x_{n}, \sigma^{\eta\left(x_{n}\right)}\right) \subset \boldsymbol{q}_{\Delta}\left(\Gamma_{i}^{\mathrm{I}} \cup \Gamma_{i}^{\mathrm{TI}} \cup\right.$ $\cup \mathbf{L}^{A^{\eta\left(x_{n}\right)-1}}, \Gamma_{i}^{\mathrm{II}}$), but $\widehat{k}_{\hat{k}} \neg x_{k+1} \Gamma_{i}^{\Gamma} x_{k}$ (the supposition) and $\bigwedge_{k \geqslant n} x_{k} \notin A^{\eta\left(x_{n}\right)-1}$ (as $\eta\left(x_{k}\right)=\eta\left(x_{n}\right)$ for $\left.k \geqslant n\right)$, hence (cf. 4, 8(i/1)) $\bigwedge_{k>n}^{\wedge_{n}} x_{k+1} \Gamma_{i}^{\mathrm{i}} x_{k}$, thus (see 8(ii/2)) $\mathbf{x} \in \boldsymbol{q}_{\square}\left(\gamma_{i}\right)=$ $=A_{i}$.

In such a way we have proved that $\mathrm{s}\left(x, \sigma_{0}\right) \subset A_{i}$ for each $x \in A^{\infty}$.

THE THIRD LIST OF TEXT SUBSTITUTIONS

$$
(\alpha:=3, \alpha \text { th }:=\text { third })
$$

$\left\langle\right.$ the choice of $\left.A_{1}, A_{2}\right\rangle:=$ Let $x_{t}=\left(\boldsymbol{R}_{t}, \Gamma_{\imath}\right)(\imath=1,2)$ be mutually complementary r-parameters (i.e. $x_{2}=\overline{x_{1}}$), let x_{j} be an \cap-parameter and x_{i} be a \cup-parameter (cf. $\S 6(9)$). We shall suppose (without loss of generality, see 13.3) that $\boldsymbol{\Omega}_{1} \neq \emptyset \neq \boldsymbol{\Omega}_{\mathbf{2}}$. Let

$$
\boldsymbol{A}_{j}:=\boldsymbol{r} \square\left(x_{j}\right), \quad \boldsymbol{A}_{i}:=\boldsymbol{r}_{\square}\left(x_{i}\right) ;
$$

consequently (cf. §6(10)), $\boldsymbol{A}_{\mathbf{2}}=\boldsymbol{P}-\boldsymbol{A}_{1}$. (Of course, the symbol x itself (i.e., without index) will be used in the sense introduced in § 1.2.)
$\left\langle\right.$ the choice of $\left.\sim_{j}\right\rangle:=$
Let Γ be the graph of u_{j}, let $X:=X_{\Gamma}(\S 2.26 .2)$.
Let χ be a mapping of \mathbf{Z} into $\{\emptyset, P\}$ such that: if $\mathbf{z}=\left(z_{0}, \ldots, z_{n}\right) \in \mathbf{Z}, \chi \mathbf{z}=\emptyset$, then there exists $K \in \boldsymbol{\Omega}_{j}$ such that $V_{k<n}\left[K \cap\left\{z_{0}, \ldots, z_{k}\right\}=\emptyset \wedge \neg z_{k+1} \Gamma_{j} z_{k}\right]$. (Clearly, if $\mathbf{x}=\left(x_{k}\right) \in \boldsymbol{P}, \chi\left(x_{0}, \ldots, x_{k}\right)=\emptyset$ for some $k(<l(\mathbf{x}))$, then $\mathbf{x} \notin \boldsymbol{A}_{j}$.)

Let π be a mapping of \boldsymbol{Z} into $\left[\Omega_{j}\right]_{P}(\S 2.12)$ such that for each $\mathbf{x}=\left(x_{k}\right) \in \boldsymbol{X}$ with $l(\boldsymbol{x})=\omega_{0}$ and for each $\mathbf{z}=\left(z_{0}, \ldots, z_{n}\right) \in \mathbf{Z}$ having the property $\widehat{m<n}^{\text {holds: }}$

$$
\begin{align*}
& \bigwedge_{k}\left[\left\{x_{k}, x_{k+1}\right\} \cap \pi\left(x_{0}, \ldots, x_{k}\right)=\emptyset \Rightarrow \pi\left(x_{0}, \ldots, x_{k}\right)=\pi\left(x_{0}, \ldots, x_{k+1}\right)\right], \tag{i}\\
& z_{n} \in \pi\left(z_{0}, \ldots, z_{n}\right) \Rightarrow \text { for each } K \in \boldsymbol{\Omega}_{j} \underset{m \leqslant n}{V} z_{m} \in K,
\end{align*}
$$

$$
\begin{equation*}
\left[\bigwedge_{k} \underset{m>k}{\vee} x_{m} \in \pi\left(x_{0}, \ldots, x_{k}\right)\right] \Rightarrow \text { for each } K \in \boldsymbol{\Omega}_{j} \bigvee_{m} x_{m} \in K \tag{iii}
\end{equation*}
$$

Let \sim_{j} be that (binary) relation on \mathbf{Z} for which

$$
\mathbf{z}^{1} \sim_{j} \mathbf{z}^{2} \Leftrightarrow \chi\left(\mathbf{z}^{1}\right)=x\left(\mathbf{z}^{2}\right) \wedge \pi \mathbf{z}^{1} \cap \chi \mathbf{z}^{1}=\pi \mathbf{z}^{2} \cap \chi \mathbf{z}^{2}
$$

for any $\boldsymbol{z}^{1}, \mathbf{z}^{\mathbf{2}} \in \mathbf{Z}$ (cf. § 1.2). Evidently, \sim_{j} is a memory relation.

Remarks.

0) The above given definition of \sim_{j} is somewhat complicated, but it involves various natural particular choices of $\mathcal{\sim}_{j}$, cf. remarks 2 and 3. In contradistinction to the cases $\alpha=1$ and $\alpha=2$, here it is not possible to choose $\sim_{j}:=\dot{\sim}$ generally (although there are particular cases at which the latter choice is possible, see remark 2), as it is shown by this

Example ([4], § 9.3.2). Let $P:=\{0,1,2, \ldots\}, P_{0}=\emptyset, 0 u_{j}:=\{\{1\},\{2\}, \ldots\}, x u_{j}:=$ $:=\{0\}$ for $x \in P-\{0\}, 0 u_{i}:=\{1,2, \ldots\}, x u_{i}:=\{0\}$ for $x \in P-\{0\}$. Let $\boldsymbol{A}_{i}, \mathfrak{A}_{i}$ etc. (cf. 16-18/3) be introduced to $\Omega_{j}:=\{\{k, k+1, k+2, \ldots\} \mid k=0,1,2, \ldots\}$, $\Gamma_{j}:=\mathbf{L}_{P} \quad$ (which determines x_{i}, cf. 13.1). Clearly, then $\mathfrak{A}_{j}=\{B \mid B \subset P$, card $\left.B \in\left\{0, \mathcal{N}_{0}\right\}\right\}, u_{j} \mathcal{A}_{j}=\emptyset \neq P=u_{j} \mathcal{A}_{j}\left(\right.$ cf. 25/3(ii)); especially, $P \in \mathfrak{U}_{j}$, but $s(x, \sigma) \nsubseteq A_{j}$ for each $x \in P$ and each $\sigma \in \stackrel{\circ}{S}\left(u_{j}\right)$ (cf. ($\left.\mathrm{P}^{*}\right)$).

1) By definition, at $z \in Z$ the player j retains the last position $x(z)$ of z and the set $\boldsymbol{\pi z} \cap \chi \mathbf{z}$. If $\boldsymbol{\pi z} \cap \chi \mathbf{z}=\emptyset$, then either $\chi \mathbf{z}=\emptyset$ or $\boldsymbol{\pi z}=\emptyset$ (as $\chi \mathbf{z} \in\{\emptyset, P\}$), and $\mathbf{x} \notin A_{j}$ for any variant x having z as an initial segment (cf. the definition of χ; if $\pi z=\emptyset$, then $\emptyset \in \boldsymbol{I}_{j}$ and $\mathbf{A}_{j}=\emptyset$). If $\pi \mathbf{z} \cap \chi \mathbf{z} \neq \emptyset$, then $\chi \mathbf{z}=P, \pi \mathbf{z} \cap \chi \mathbf{z}=\pi \mathbf{z}$, and, roughly speaking, πz can be considered as the set which could be attained under abiding Γ_{j} in the following course of play (cf. the proof of $21 / 3$).
2) \sim_{j} is uniquely determined by π and χ. If $\pi z \cap \chi z$ depends only on $\chi(\mathbf{z})$, then $\sim_{j}=\stackrel{\sim}{\sim}$. There are three important particular cases at which such a choice of π and of χ is possible:
a) $\emptyset \in \boldsymbol{\Omega}_{j}$ (then $A_{j}=\emptyset$; cf. 1)), i.e., $\boldsymbol{\Omega}_{j}$ is a singular collection. Then it is possible to take the constant mapping of \boldsymbol{Z} onto $\{\emptyset\}$ as π (and to choose χ arbitrarily in compliance with the corresponding definition). The case a) is a particular case of the following one:
b) $\bigcap_{K \in \mathbb{R}_{j}} K \in \boldsymbol{\Omega}_{j}$. Then it is possible to choose the constant mapping of \boldsymbol{Z} onto $\left\{\bigcap_{K \in \mathbb{R}^{\prime}} K\right\}$ as π, and the constant mapping of \boldsymbol{Z} onto $\{P\}$ as χ.
c) X does not contain infinite variants. Then it is possible to choose the constant mapping of \boldsymbol{Z} onto $\{P\}$ as χ, and to put $\pi \mathbf{Z}:=\pi_{0} x(\mathbf{z})$ where π_{0} is a mapping of Z into $\left[\Omega_{j}\right]_{P}$ such that $z \notin \pi_{0} z$ if $z \in Z-\bigcap_{K \in \Omega} K$.
3) Always it is possible to take the constant mapping of Z onto $\{P\}$ as χ. Let us mention two general examples of practically suitable mappings π.

In the following two examples, let $\left(K_{n}\right)_{0<n<1+l}\left(0<l \leqslant \omega_{0}\right)$ be a sequence of sets such that $\left\{K_{n} \mid 0 \leqslant n<1+l=\boldsymbol{\Omega}_{j}\right\}$. (Such a sequence exists, as $0<$ card $\boldsymbol{\Omega}_{\boldsymbol{j}} \leqslant \boldsymbol{N}_{0}$.)
3.1) Example. Let π_{1} be the mapping of Z such that for any $z=\left(z_{0}, \ldots, z_{m}\right) \in \boldsymbol{Z}$ there holds

$$
\pi_{1} \mathbf{z}=\left\{\begin{array} { l }
{ K _ { \operatorname { m i n } \{ n | 0 } \leqslant n \varangle 1 + l , K _ { n } \cap \{ z _ { 0 } , \ldots , z _ { m } \} = \emptyset \} } \\
{ P }
\end{array} \quad \text { if } \quad \left\{\begin{array}{l}
\underset{n<1+l}{\mathbf{V}} K_{n} \cap\left\{z_{0}, \ldots, z_{m}\right\}=\emptyset \\
\bigwedge_{n<1+l} K_{n} \cap\left\{z_{0}, \ldots, z_{m}\right\} \neq \emptyset
\end{array}\right.\right.
$$

This defines just one mapping π_{1} of \boldsymbol{Z} into $\Omega_{j} \cup\{P\} \subset\left[\Omega_{j}\right]_{P}$. It is clear that those conditions (i) - (iii) are satisfied with $\pi:=\pi_{1}$.
3.2) Example. Let the symbol $\left(z_{0}, \ldots, z_{-1}\right)$ mean the empty sequence. We put $\mu\left(z_{0}, \ldots, z_{-1}\right):=0, l\left(\left(z_{0}, \ldots, z_{-1}\right)\right):=-1$. Let m be arbitrary; if for any $\mathbf{z} \in \mathbf{Z} \cup$ $\cup\left\{\left(z_{0}, \ldots, z_{-1}\right)\right\}$ with $l(\mathbf{z})<m$ an integer $\mu \mathbf{z}$ is defined, then we put for each $\mathbf{z}=$ $=\left(z_{0}, \ldots, z_{m}\right) \in \mathbf{Z}$

$$
\mu \mathbf{z}:=\min \left\{n \mid \mu\left(z_{0}, \ldots, z_{m-1}\right) \leqslant n<1+l, z_{m} \notin K_{n}\right\},
$$

where $\min \emptyset:=1+l$. Clearly, this inductive definition introduces an integer $\mu \mathbf{z}$ (such that $0 \leqslant \mu z<1+l$) to any $z \in \mathbf{Z}$. We introduce $K_{1+l}:=P$. Let π_{2} be the mapping of \mathbf{Z} such that $\pi_{2} \mathbf{z}=K_{\mu \mathbf{z}}$ for each $\mathbf{z} \in \mathbf{Z}$. Thus $\boldsymbol{\pi}_{2}$ is a mapping of \mathbf{Z} into $\boldsymbol{\Omega}_{\boldsymbol{j}} \cup\{P\} \subset\left[\boldsymbol{\Omega}_{j}\right]_{P}$. It is not difficult to verify that those conditions (i) - (iii) are satisfied with $\pi:=\pi_{2}$.
$\left\langle\right.$ the introduction of $\left.w_{1}, w_{2}\right\rangle:=$ Let w_{j}, w_{i} be those elements of Corr $(P, \exp P)$ for which

$$
\begin{aligned}
& w_{j} D=\bigcap_{K \in \Omega_{j}}^{\mathfrak{m}_{j} \boldsymbol{q}^{\Delta}\left(\mathbf{L}_{K \cap D}, \Gamma_{j}\right)} \\
& w_{\boldsymbol{i}} C=\bigcup_{\boldsymbol{K} \in \mathbb{R}_{\mathfrak{i}}} \dot{\mathbf{i}}_{i} \boldsymbol{q}_{\Delta}\left(\mathbf{L}_{\boldsymbol{K} \cup \boldsymbol{C}}, \Gamma_{\boldsymbol{i}}\right)
\end{aligned}
$$

for any $D, C \subset P$; here we might write also $u_{\iota} q \ldots$ instead of $\boldsymbol{u}_{\bullet}, ~ \ldots(\imath=1,2)$, too (cf. 25/1(ii)).
\langle the proof of $17.1 \mid \alpha\rangle:=$ (ii) follows immediately from §2(13), §3(3), §6.15.1-2. Let $D \subset P, C:=P-D$. Using § $4(30)$ (with $Q:=P$), § $6.25 / 1$ (i), § 6.7 (i), § 6.13 .1
and the fact that $\left(\mathbf{L}_{K \cup C}, \Gamma_{i}\right),\left(\mathbf{L}_{(P-K) \cap D}, \Gamma_{j}\right)$ are mutually complementary parameters for any $K \subset P$ (cf. $5, \S 6\left(4^{\prime}\right)$ etc.), we obtain: $\overline{w_{i}} D=P-w_{i} C=P-\bigcup_{K \in \Omega_{i}} \stackrel{\circ}{i}_{i} \boldsymbol{q}_{\Delta}\left(\mathbf{L}_{K \cup C}\right.$, $\left.\Gamma_{i}\right)=\bigcap_{K \in \mathscr{g}_{i}} \dot{\mathbf{u}}_{\boldsymbol{q}} \boldsymbol{q}^{\Delta}\left(\mathbf{L}_{(P-K) \cap D}, \Gamma_{j}\right)=\bigcap_{K \in \mathscr{\Omega}_{j}} \stackrel{\circ}{\boldsymbol{u}}_{j} \boldsymbol{q}^{\Delta}\left(\mathbf{L}_{K \cap D}, \Gamma_{j}\right)=w_{j} D$. Hence $\overline{w_{i}}=w_{j}$, i.e., (i) holds.
$\left\langle\right.$ the proof of the satisfaction of $\left.\left(\mathbf{P}^{*}\right)\right\rangle:=$ Let $B \in \mathfrak{A}_{j}$ in this proof. For any $K \subset P$ we denote $\mathbf{B}_{K}:=\mathbf{q}^{\triangle}\left(\mathbf{L}_{K_{n} B}, \Gamma_{j}\right), B_{K}:=\dot{\boldsymbol{u}}_{j} \mathbf{B}_{\boldsymbol{K}}$. Thus $B \subset w_{j} B=\bigcap_{K \in \Omega_{j}} B_{K}$. For any $K \subset P$ let $\sigma_{K} \in \dot{S}\left(u_{j}\right)$ be such that $s\left(x, \sigma_{K}\right) \subset B_{K}$ for each $x \in B_{K}$ (such σ_{K} exists, see 25/1 (iii); cf. part IV). Again, let Γ be the graph of u_{j}.

There holds:

$$
\begin{align*}
B_{K_{0}}= & w_{j} B \text { for any } K_{0} \in\left[\Omega_{j}\right]_{P} \tag{Ll}\\
& P_{0} \cap w_{j} B \subset \bigcap_{K \in \mathscr{R}_{j}} K \tag{L2}
\end{align*}
$$

(L3) If $K \in\left[\Omega_{j}\right]_{P}, z \in\left(Z \cap w_{j} B\right)-K$ and $y \in \sigma_{K} z$, then $y \in w_{j} B$ and $y \Gamma_{j} z$.
Proofs (of (L1) - (L3)):
(L1): Let $K_{0} \in\left[\boldsymbol{\Omega}_{j}\right]_{P}$. There exists $K_{0}^{\prime} \in \boldsymbol{\Omega}_{j}$ such that $K_{0}^{\prime} \subset K_{0}$. There holds $B_{K_{0}} \supset B_{K_{0}^{\prime}} \supset \bigcap_{\boldsymbol{K} \in \mathbb{R}_{j}} B_{K}=w_{j} B(\S 6.14, \S 3(3))$. Let $K \in \boldsymbol{\Omega}_{j}$. Let $\boldsymbol{\sigma}$ be the mapping of \boldsymbol{Z} such that for each $\mathbf{z}=\left(z_{0}, \ldots, z_{m}\right) \in \mathbf{Z}$ there holds:

$$
\boldsymbol{\sigma} \mathbf{z}=\left\{\begin{array} { l }
{ \sigma _ { K _ { \mathbf { N } } } z _ { m } } \\
{ \sigma _ { K } z _ { m } }
\end{array} \text { if } \quad \{ z _ { 0 } , \ldots , z _ { m } \} \cap K _ { 0 } \cap B \left\{\begin{array}{l}
=\emptyset \\
\neq \emptyset
\end{array}\right.\right.
$$

Clearly, $\sigma \in S\left(u_{j}\right)$. Let $x \in B_{K_{0}}$, let $\mathbf{x}=\left(x_{k}\right) \in \mathrm{s}(x, \sigma)$. Supposing ${\underset{k}{k}}^{x} x_{k} \notin K_{0} \cap B$, we can obtain a contradiction (then $\mathrm{x} \in \mathrm{s}\left(x, \sigma_{K_{0}}\right) \subset B_{K_{0}}$ (as $x \in B_{K_{0}}$ etc.), hence, among others, $\left.\underset{k}{V} x_{k} \in K_{0} \cap B\right)$. Thus, there exists $k_{0}:=\min \left\{k \mid x_{k} \in K_{0} \cap B\right\}$; there holds $k_{0} \leqslant l(x)$ and $x^{\left[k_{0}\right]} \in \mathrm{s}\left(x_{k_{0}}, \sigma_{K}\right) \subset B_{K} \quad\left(\right.$ namely, $\left.x_{k_{0}} \in K_{0} \cap B \subset B \subset w_{j} B \subset B_{K}\right)$. Thus, there holds:
$\left(\alpha_{1}\right)$
$\left(\alpha_{2}\right)$

$$
\begin{gathered}
\underset{k<k_{0}}{\wedge} x_{k} \notin K_{0} \cap B, \\
\underset{k \geqslant k_{0}}{V}\left(x_{k} \in K \cap B \vee \underset{\substack{m<k \\
m \geq k_{0}}}{\bigwedge_{m+1}} x_{j} x_{m}\right) .
\end{gathered}
$$

Further, $\bigwedge_{k<k_{0}} x_{k+1} \in \sigma_{K_{0}} x_{k}$, hence there exists $y=\left(y_{k}\right) \in s\left(x, \sigma_{K_{0}}\right)$ such that

$$
\widehat{k}_{k \leqslant k_{0}} x_{k}=y_{k}
$$

There holds $y \in s\left(x, \sigma_{K_{0}}\right) \subset B_{K_{0}}$ (as $x \in B \subset B_{K_{0}}$ etc.), hence

$$
\underset{k}{V}\left(y_{k} \in K_{0} \cap B \wedge \wedge_{m<k} y_{m+1} \Gamma_{j} y_{m}\right)
$$

But $\left(\alpha_{1}\right),(\beta),(\gamma)$ give $\underset{k>k_{0}}{V}\left(y_{k} \in K_{0} \cap B \wedge \wedge_{m<k} y_{m+1} \Gamma_{j} y_{m}\right)$, hence $\underset{m<k_{0}}{\wedge_{m+1}} y_{j} y_{m}$, i.e., $\bigwedge_{m<k_{0}}^{\wedge} x_{m+1} \Gamma_{f} x_{m}($ see $(\beta))$, which together with $\left(\alpha_{2}\right)$ gives $\underset{k}{\mathbf{k}}\left(x_{k} \in K \cap \stackrel{k_{0}}{m<k_{0}} \wedge \underset{m<k}{\wedge_{m+1}} x_{m} \Gamma_{j} x_{m}\right)$.

Hence $\mathbf{x} \in \boldsymbol{B}_{\boldsymbol{K}}$. Consequently, $\mathbf{s}(x, \sigma) \subset B_{K}$, hence $x \in \boldsymbol{u}_{j} \mathbf{B}_{\boldsymbol{K}}=\mathbf{u}_{j} \mathbf{B}_{\boldsymbol{K}}=\boldsymbol{B}_{\boldsymbol{K}}$ (see $\mathbf{2 5 / 1}$ (ii), $\mathbf{1 6 / 1) . ~ T h u s , ~ f o r ~ a n y ~} K \in \boldsymbol{I}_{j}$ and each $x \in B_{K_{0}}$ there holds $x \in B_{K}$. Hence $B_{K_{0}} \subset$ $\subset \bigcap_{K \in \Omega_{j}} B_{K}=w_{j} B$. This completes the proof of (Li).
(L2): If $K \in \Omega_{j}$ and $x \in w_{j} B$, then $s\left(x, \sigma_{K}\right) \subset B_{K}$ (as $w_{j} B \subset B_{K}$); if, moreover, $x \in P_{0}$, then $\mathrm{s}\left(x, \sigma_{K}\right)=\{(x)\} \subset B_{K}=\mathbf{q}^{\triangle}\left(\mathbf{L}_{K \cap B}, \Gamma_{f}\right)$, hence, among others, $x \in K$. Thus $P_{0} \cap w_{j} B \subset K$ for each $K \in \boldsymbol{\Omega}_{j}$.
(L3): Let $K \in\left[\Omega_{j}\right]_{P}, z \in\left(Z \cap w_{j} B\right)-K$ (or only $z \in w_{j} B-K$, see (L2)), let $y \in \sigma_{K} z$. There exists $x=\left(x_{k}\right) \in \mathrm{s}\left(z, \sigma_{K}\right)$ such that $x_{1}=y$, further $\mathrm{s}\left(z, \sigma_{K}\right) \subset B_{K}$ (as $z \in w_{j} B \subset B_{K}$, cf. the proof of (L1)), thus $\bigvee_{k}\left(x_{k} \in K \cap B \wedge \wedge_{k} x_{m+1} \Gamma_{j} x_{m}\right)$, but $x_{0}=$ $=z \notin K$, hence $\underset{k \geqslant 1}{\mathbf{V}}\left(x_{k} \in K \cap B \wedge \bigwedge_{m<k} x_{m+1} \Gamma_{j} x_{m}\right)$. Thus $\mathbf{x}^{[1]} \in \mathbf{B}_{K}$, and, moreover, $x_{1} \Gamma_{j} x_{0}$, i.e., $y \Gamma_{j} z$. Further, $y \in B_{K}$ [if $y \notin B_{K}$, then there exists $\boldsymbol{Y}=\left(y_{k}\right) \in \mathrm{s}\left(y, \sigma_{K}\right)$ -- B_{K}, but now we can choose $\mathrm{x}=\left(x_{k}\right):=\left(z, y, y_{1}, y_{2}, \ldots\right)$, then $\mathrm{x} \in \mathrm{s}\left(z, \sigma_{K}\right), x_{1}=y$, hence $\boldsymbol{x}^{[1]} \in \mathbf{B}_{K}$ (see above), but $\boldsymbol{x}^{[1]}=\boldsymbol{y} \notin \mathbf{B}_{\boldsymbol{K}}$, which is a contradiction $]$, but $B_{K}=$ $=w_{j} B($ see $(\mathrm{L} 1))$, hence $y \in w_{f} B$, which completes the proof of (L3).
Q.E.D. ((L1) - (L3))

Let σ be the mapping of \mathbf{Z} such that $\sigma \mathbf{z}=\sigma_{\pi \mathbf{z} \cap \chi} x(\mathbf{z})$ for eaph $z \in \mathbf{Z}$. Evidently, $\boldsymbol{\sigma} \in \sim_{j} \boldsymbol{S}\left(u_{j}\right)$.

Let $x \in w_{j} B$, let $\mathrm{x}=\left(x_{k}\right) \in \mathrm{s}(x, \sigma)$. There holds

$$
\begin{equation*}
\mathbf{x} \in \mathrm{s}(x, \boldsymbol{\sigma}) \subset \boldsymbol{X}_{\Gamma} \tag{1}
\end{equation*}
$$

For obtaining a contradiction we shall suppose $x \notin \boldsymbol{A}_{j}$.
We introduce (for any k)

$$
\mathrm{V}_{k}:=x_{k} \in w_{j} B \wedge k \leqslant l(\mathbf{x}) \wedge \bigwedge_{m<k} x_{m+1} \Gamma_{j} x_{m} .
$$

Let $\mathrm{V}_{\boldsymbol{k}}$ hold for some k. Then there exists $K_{0} \in \boldsymbol{\Omega}_{\boldsymbol{j}}$ such that $K_{0} \cap\left\{x_{0}, \ldots, x_{k}\right\}=\emptyset$ (otherwise the supposition $\bigwedge_{m<k} x_{m+1} \Gamma_{j} x_{m}$ implies $\boldsymbol{x} \in \mathbf{A}_{j}$, which is a contradiction), in particular, $x_{k} \notin \bigcap_{K \in \mathscr{R}_{j}} K$. Hence, $x_{k} \in Z$ (otherwise $x_{k} \in P_{0} \cap w_{j} B \subset \bigcap_{K \in \mathscr{R}_{j}} K$ (see (L2), which has been eliminated), thus $k+1 \leqslant l(x)$. Further, $\chi\left(x_{0}, \ldots, x_{k}\right)=P$ (as $\left.\widehat{m<k} x_{m+1} \Gamma_{j} x_{m}\right)$. Therefore, $x_{k} \in\left(Z \cap w_{j} B\right)-\pi\left(x_{0}, \ldots, x_{k}\right)$ (namely, if $x_{k} \in \pi\left(x_{0}, \ldots, x_{k}\right)$, then we can obtain a contradiction by means of (1), the condition (ii) in the definition of π and the supposition $\widehat{m<k}^{x_{m+1}} \Gamma_{j} x_{m}$, cf. above), $\pi\left(x_{0}, \ldots, x_{k}\right) \in\left[\Omega_{j}\right]_{P}, x_{k+1} \in$ $\in \boldsymbol{\sigma}\left(x_{0}, \ldots, x_{k}\right)=\sigma_{\pi\left(x_{0}, \ldots, x_{k}\right) \cap \chi\left(x_{0}, \ldots, x_{k}\right)} x_{k}=\sigma_{\pi\left(x_{0}, \ldots, x_{k}\right)} x_{k}$, hence $x_{k+1} \in w_{j} B, x_{k+1} \Gamma_{j} x_{k}$ (see (L3)).
Consequently, $\mathrm{V}_{\boldsymbol{k}+\boldsymbol{1}}$ holds.
We have proved $V_{k} \Rightarrow V_{k+1}$ for each k, but V_{0} holds trivially, hence V_{k} holds for each k. From this it follows that there holds:

$$
\begin{gather*}
l(x)=\omega_{0} \tag{2}\\
\widehat{k}_{k} x_{k+1} \Gamma_{j} x_{k} \tag{3}\\
\widehat{\wedge}_{k} x_{k} \in w_{j} B \tag{4}
\end{gather*}
$$

The above considerations (cf. (ii) in 16/3, (3) etc.) imply

$$
\begin{equation*}
\widehat{k}_{k} x_{k} \notin \pi\left(x_{0}, \ldots, x_{k}\right) ; \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\widehat{k}_{k} x_{k+1} \in \sigma_{\pi\left(x_{0}, \ldots, x_{k}\right)} x_{k} \tag{6}
\end{equation*}
$$

the supposition $x \notin A_{j}$ and the properties (1), (2) and (3) imply by means of the property (iii) (in the definition of π) that

$$
\begin{equation*}
\text { there exists } n \text { such that } \wedge_{k>n} x_{k} \notin \pi\left(x_{0}, \ldots, x_{n}\right) \tag{7}
\end{equation*}
$$

Let $\mathrm{W}_{k}:=\left(\pi\left(x_{0}, \ldots, x_{k}\right)=\pi\left(x_{0}, \ldots, x_{n}\right)\right) . \mathrm{W}_{n}$ is valid. If W_{r} holds for some $r \geqslant n$, then $x_{r}, x_{r+1} \notin \pi\left(x_{0}, \ldots, x_{n}\right)=\pi\left(x_{0}, \ldots, x_{r}\right)$ (see (5), (7), W_{r}), hence (see (1), (2) and the condition (i) in the definition of $\pi) \pi\left(x_{0}, . ., x_{r+1}\right)=\pi\left(x_{0}, \ldots, x_{r}\right)=\pi\left(x_{0}, \ldots, x_{n}\right)$, thus \mathbf{W}_{r+1} holds. By induction, \mathbf{W}_{k} holds for each $k \geqslant n$, i.e. there holds

$$
\begin{equation*}
\widehat{k}_{k>n} \pi\left(x_{0}, \ldots, x_{k}\right)=\pi\left(x_{0}, \ldots, x_{n}\right) . \tag{8}
\end{equation*}
$$

Therefore (see (6) and (8)) $\boldsymbol{x}^{[n]} \in \mathrm{s}\left(x_{n}, \sigma_{\pi\left(x_{0}, \ldots, x_{n}\right)}\right) \subset \mathrm{B}_{\boldsymbol{\pi}\left(x_{0}, \ldots, x_{n}\right)}$ (namely, $\boldsymbol{\pi}\left(x_{0}, \ldots, x_{n}\right) \in$ $\in\left[\boldsymbol{\Omega}_{j}\right]_{P}$, hence (see (4)) $x_{n} \in w_{j} B=B_{\pi\left(x_{0}, \ldots, x_{n}\right)}$, see (L1)). But $x^{[n]} \in B_{\pi\left(x_{0}, \ldots, x_{n}\right)}$ implies that there exists $r \geqslant n$ such that $x_{r} \in \pi\left(x_{0}, \ldots, x_{n}\right) \geq \pi\left(x_{0}, \ldots, x_{r}\right)$ (cf. (8)), which is a contradiction (see (5)).

In such a way we have proved that $\mathrm{s}(x, \sigma) \subset A_{j}$ for each $x \in w_{j} B$, and, therefore, for each $x \in B\left(\subset w_{j} B\right)$.
\langle the property (I)〉:= lemma 15
\langle the remainder of the proof of $22.3 / \alpha\rangle:=$ Let $K \in \boldsymbol{\Omega}_{i}$ be fixed in the following part of the proof, let $\boldsymbol{C}:=\boldsymbol{q}_{\triangle}\left(\mathbf{L}_{K \cup A}, \Gamma_{i}\right), C:=\boldsymbol{u}_{i} \boldsymbol{C}$. Let σ be some plainly $\{C\}$-absolute u_{i}-strategy (see 25/1 (iii) or 22.2/1). Let σ^{*} be that plain u_{i}-strategy for which $\sigma^{*}\left|Z \cap A=\sigma_{i}\right| Z \cap A, \sigma^{*}|Z-A=\sigma| Z-A$.

Let $x \in C, \mathbf{x}=\left(x_{k}\right) \in \mathrm{s}\left(x, \sigma^{*}\right)$. Then there occurs just one of the following cases $(\alpha) ;(\beta)$:
($\alpha) ~ \widehat{x} x_{k} \notin A$. Then $x \in \mathrm{~s}(x, \sigma) \subset C$ (namely: $\sigma^{*} \mid Z-A, \sigma$ is plainly $\{C\}$-absolute, $x \in C=i_{i} C$), hence (see $8(i / 1)$) there holds

$$
\left(\bigwedge_{k} x_{k} \in K \cup A\right) \vee \underset{k}{\bigvee}\left(x_{k+1} \Gamma_{i} x_{k} \wedge \bigwedge_{m<k} x_{m} \in K \cup A\right)
$$

this and $\widehat{k}_{\boldsymbol{k}} x_{k} \notin A$ imply

$$
\left(\wedge_{k} x_{k} \in K\right) \vee \underset{k}{\bigvee}\left(x_{k+1} \Gamma_{i} x_{k} \wedge_{m<k} \bigwedge_{m} x_{m} \in K\right)
$$

i.e., $x \in q_{\Delta}\left(L_{K}, \Gamma_{i}\right) \subset A_{i}$.
(β) $\urcorner \bigwedge_{k} x_{k} \notin A$. Then there exists $n:=\min \left\{k \mid x_{k} \in A\right\}$, hence

$$
\begin{equation*}
\bigwedge_{k<n} x_{k} \notin A \tag{1}
\end{equation*}
$$

and $\boldsymbol{x}^{[n]} \in \mathrm{s}\left(x_{n}, \sigma^{*}\right) \subset \mathcal{A}_{i}$ (namely: $x_{n} \in A=\boldsymbol{\circ}_{i} \boldsymbol{A}_{i}, \sigma^{*}$ is plainly $\left\{\boldsymbol{A}_{i}\right\}$-absolute (22.2/3)), hence there exists $K_{1} \in \boldsymbol{\Omega}_{i}$ such that $x^{[n]} \in q_{\Delta}\left(I_{K_{1}}, \Gamma_{i}\right)(16 / 3,13.2)$. There exists $K_{2} \in \Omega_{i}$ such that $K_{1} \cup K \subset K_{2}$ (see 16/3, 13.1). Consequently, $x^{[n]} \in \mathbf{q}_{\Delta}\left(K_{2}, \Gamma_{i}\right)$ (§ 6.14):
(8 (i/l)). Further, (1) implies $\bigwedge_{k<n} x_{k+1} \in \sigma x_{k}$ (as, clearly, $i \leqslant l(\mathbf{x})$), thus there exists $y=\left(y_{k}\right) \in \mathrm{s}(x, \sigma) \subset B$ (cf. above) such that
(3)

$$
\widehat{k}_{k<n} x_{k}=x_{k}
$$

$\mathbf{y} \in C$ together with $K \subset K_{2}$ implies

$$
\begin{equation*}
\left(\bigwedge_{k} y_{k} \in K_{2} \cup A\right) \vee \underset{k}{\bigvee}\left(y_{k+1} \Gamma_{i} y_{k} \wedge \bigwedge_{m \leqslant k} y_{m} \in K_{2} \cup A\right) \tag{4}
\end{equation*}
$$

There holds

$$
\begin{equation*}
\left(\bigwedge_{k<n} x_{k} \in K_{2} \cup A\right) \Rightarrow x \in \boldsymbol{q}_{\Delta}\left(\mathbf{L}_{K_{2}}, \Gamma_{i}\right) . \tag{5}
\end{equation*}
$$

[Proof. If $\bigwedge_{k \leqslant n} x_{k} \in K_{2} \cup A$, then $\bigwedge_{k<n} x_{k} \in K_{2}$ (see (1)), which together with (2) gives $\left(\wedge_{k} x_{k} \in K_{2}\right) \vee{ }_{k}^{k \leqslant n}\left(x_{k+1} \Gamma_{i} x_{k} \wedge \bigwedge_{m \leqslant k} x_{m} \in K_{2}\right)$, i.e., $\mathbf{x} \in \boldsymbol{q}_{\triangle}\left(\mathbf{L}_{K_{2}}, \Gamma_{i}\right)$ (cf. 8 (i/l).]
(4) shows that there occurs some of the following cases $(\beta 1)-(\beta 3)$:
($\beta 1$) $\bigwedge_{k} y_{k} \in K_{2} \cup A$. Then $\widehat{k}_{k<n} x_{k} \in K_{2} \cup A, \mathbf{x} \in \boldsymbol{q}_{\triangle}\left(\mathbf{L}_{K_{2}}, \Gamma_{i}\right)$ (see (3), (5)).
($\beta 2$) $\underset{k \geqslant n}{V}\left(y_{k+1} \Gamma_{i} y_{k} \wedge \bigwedge_{m<k} y_{m} \in K_{2} \cup A\right)$. Then $\bigwedge_{k<n} x_{k} \in K_{2} \cup A, \mathbf{x} \in \mathbf{q}_{\triangle}\left(\mathbf{L}_{R_{2}}, \Gamma_{i}\right)$ (see (3),(5)). (83) $\underset{k<n}{V}\left(y_{k+1} \Gamma_{i} y_{k} \wedge \bigwedge_{m \leqslant k} y_{m} \in K_{2} \cup A\right)$. Then by using this, (3), and (1) we get $\underset{k=n}{V}\left(x_{k+1} \Gamma_{i} x_{k} \wedge \widehat{m}_{n \leqslant k} x_{m} \in K_{2}\right)$, hence $\mathbf{x} \in \mathbf{q}_{\Delta}\left(\mathbf{L}_{K_{2}}, \Gamma_{i}\right)(8(\mathrm{i} / 1))$.

Consequently, always $\mathbf{x} \in \mathbf{q}_{\triangle}\left(\mathbf{L}_{K_{2}}, \Gamma_{i}\right) \subset \boldsymbol{A}_{i}$.
Thus we have proved that $\mathrm{s}\left(x, \sigma^{*}\right) \subset \boldsymbol{A}_{i}$ for each $x \in C$. Therefore, $\dot{\boldsymbol{u}}_{i} \boldsymbol{q}_{\Delta}\left(\mathbf{L}_{K \cup A}, \Gamma_{i}\right) \subset$ $\subset \stackrel{\circ}{\boldsymbol{u}}_{i} \boldsymbol{A}_{i}=A$ for each $K \in \mathfrak{\Omega}_{i}$, hence (cf. 17.0/3) $w_{i} A \subset A$.
$\left\langle\right.$ the definition of $\left.\sigma_{0}\right\rangle:=$ Let η be a non-limit ordinal number such that $0<\eta \leqslant$ $\leqslant \xi_{0}$. Let $K \in \boldsymbol{\Omega}_{i}$. In the remainder of $\S 6 \mathrm{c} / 3$ we shall denote $C_{K}^{\eta}:=\boldsymbol{q}_{\triangle}\left(\mathbf{L}_{K \cup A \eta-1}, \Gamma_{i}\right)$, $A_{K}^{\eta}:=\stackrel{\circ}{u}_{i} \boldsymbol{C}_{K}^{\eta}$; of course, $A^{\eta}=\bigcup_{K \in \Omega_{i}} A_{K}^{\eta}$. Let there be chosen $\sigma_{K}^{\eta} \in \stackrel{S}{S}\left(u_{i}\right)$ (to any of those η, K) such that $\mathrm{s}\left(x, \sigma_{K}^{\eta}\right) \subset C_{K}^{\eta}$ for each $x \in A_{K}^{\eta}$ (such σ_{K} exists, cf. $25 / 1$ (iii)). Further, let \leqslant_{η} be a well order of $\boldsymbol{\Omega}_{i}$. For $x \in A^{\infty}$ we put

$$
K(x):=\min _{\eta(x)}\left\{K \mid K \in \boldsymbol{\Omega}_{i}, x \in A_{K}^{\eta(x)}\right\},
$$

where $\min _{\eta(x)}$ is taken under $\leqslant_{\eta}(x)$. (This is a correct definition, cf. 23.1/3b).) Let $\sigma_{0} \in S\left(u_{i}\right)$ be such that $\sigma_{0} z=\sigma_{K(z)}^{\eta(z)}$ for each $z \in Z \cap A^{\infty}$.
\langle the proof of $23.3 / \alpha\rangle:=$ We shall use the following auxiliary assertions:
(A1) Let η be a non-limit ordinal number, $0<\eta \leqslant \xi_{0}$, let $K \in \boldsymbol{\Re}_{i}$. Let $y \in A_{k}$, $y^{\prime}\left\{\begin{array}{l}=y \\ \in \sigma_{\mathbf{k}}^{\eta} y\end{array} \quad\right.$ if $\quad y \in\left\{\begin{array}{l}P_{\mathbf{0}} \\ Z\end{array}\right.$. Then $y \in K \cup A^{\eta-1} \wedge\left(y^{\prime} \Gamma_{i} y \vee y^{\prime} \in A_{K}^{\eta}\right)$. (A2) If $y \in A^{\infty}$, then $y \in\left(A_{\mathbf{K}(y)}^{\eta(y)} \cap K(y)\right)-A^{\eta(y)-1}$.
[Proofs. Let the suppositions of (A1) be satisfied. If $y \notin K \cup A^{\eta-1}$, then $y \notin C_{k}^{\eta}$ for any $y=\left(y_{k}\right)$ with $y_{0}=y$, hence $y \notin A_{K}$. Therefore, $y \in K \cup A^{\eta-1}$. Let neither $y^{\prime} \Gamma_{i} y$ nor $y^{\prime} \in A_{k}$ hold. Then there exists $\boldsymbol{y}^{\prime}=\left(y_{k}^{\prime}\right) \in \mathrm{s}\left(y^{\prime}, \sigma_{k}\right)-\mathbf{C}_{k}$. Let $y=\left(y_{k}\right):=$ $:=\left(y, y_{0}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)$; clearly, $y \in \mathrm{~s}\left(y, \sigma_{Z}^{\eta}\right) \subset C_{K}\left(y_{1}=y_{0}^{\prime}=y^{\prime} ; y \in A_{K}^{\eta}\right)$, but it is easy to see that $\neg y^{\prime} \Gamma_{i} y$ (i.e., $\left.\neg y_{1} \Gamma_{i} y_{0}\right)$ together with ($\boldsymbol{y}^{[1]}=$) $\boldsymbol{y}^{\prime} \notin \boldsymbol{C}_{k}$ implies $\boldsymbol{y} \notin \boldsymbol{C}_{k}$ (cf. 8 (i/l) etc.), which is a contradiction. Thus (A1) is proved. (A2) follows from (A1) and $23.1 / 3 \mathrm{~b})$.]

Let $\ddot{x} \in A^{\infty} ; x=\left(\ddot{x_{k}}\right) \in \mathrm{s}\left(x, \sigma_{0}\right)$.
a) If k_{0} is such that $x_{k_{0}+1} \Gamma_{i} x_{k_{0}} \wedge \widehat{k}_{k \in k_{0}} x_{k} \in A^{\infty}$, then there exists $K \in \Omega_{i}$ sueh that $K_{\left(x_{0}\right)} \cup \ldots \cup K\left(x_{k_{0}}\right) \subset K$ (as Ω_{i} is $\cup^{k<k_{0}}$-directed), hence $x_{k_{0}+1} \Gamma_{i} x_{k_{0}} \wedge \underbrace{}_{k \leqslant k_{0}} x_{k} \in K$ (see (A2)), thus $x \in \boldsymbol{q}_{\Delta}\left(\mathbf{L}_{K}, \Gamma_{i}\right) \subset \boldsymbol{A}_{i}$.
b) If $\urcorner \widehat{\wedge}_{k} x_{k} \in A^{\infty}$, then there exists m such that $x_{m} \not \notin A^{\infty} \wedge_{k} \bigwedge_{k} x_{k} \in A^{\infty}$. Then $0<m\left(x_{0}=x \in A^{\infty}\right)$. We put $k_{0}:=m-1$ and obtain $x_{k_{0}+1} \Gamma_{i} x_{k_{0}}$ from (Al) [by choosing $K:=K\left(x_{k_{0}}\right), \eta:=\eta\left(x_{k_{0}}\right), y:=x_{k_{0}} y^{\prime}:=x_{k_{0}+1}$ in (Al) and using $x_{k_{0}+1}=$ $\left.=x_{m} \notin A^{\infty}\right]$. Thus the case a) has occurred, hence $\mathbf{x} \in \boldsymbol{A}_{i}$.
c) Let $\bigwedge_{k} x_{k} \in A^{\infty}$. If $\bigvee_{k} x_{k+1} \Gamma_{i} x_{k}$, then again there occurs the case a) and hence $\mathbf{x} \in \boldsymbol{A}_{i}$. Let $\bigwedge_{k} \exists x_{k+1} \Gamma_{i} x_{k}$. Then (A1) gives $\bigwedge_{k} x_{\dot{k}+1} \in A_{K\left(x_{k}\right)}^{n\left(x_{k}\right)} \subset A^{\eta\left(x_{k}\right)}$ [by choosing $y:=x_{k}, \quad y^{\prime}:=x_{k+1}, \quad K:=K\left(x_{k}\right), \eta:=\eta\left(x_{k}\right)$ and using $\left.\neg x_{k+1} \Gamma_{i} x_{k}\right]$. Therefore, $\left(\eta\left(x_{k}\right)\right)_{k>0}$ is a nonincreasing sequence of ordinal numbers, thus there exists k_{1} such that $\bigwedge_{k \geqslant k_{1}} \eta\left(x_{k}\right)=\eta\left(x_{k_{1}}\right) ;$ let $\eta_{0}:=\eta\left(x_{k_{1}}\right)$. Hence $\bigwedge_{k \geqslant k_{1}} x_{k+1} \in A_{K}^{\eta_{0}\left(x_{k}\right)}$. Therefore, $\left(K_{j}\left(x_{k}\right)\right)_{k \gg k_{1}}$ is a nonincreasing sequence at $\leqslant \eta_{0}$ as the well order, thus there exists $k_{2} \geqslant k_{1}$ such that $\bigwedge_{k>k_{2}} K\left(x_{k}\right)=K\left(x_{k_{2}}\right)$; let $K_{0}:=K\left(x_{k_{2}}\right)$. Clearly, $\mathbf{x}^{\left[k_{2}\right]} \in \mathrm{s}\left(x_{k_{2}}, \sigma_{K_{0}}^{\eta_{0}}\right) \subset$ $\subset C_{K_{0}}^{\eta_{0}}$, hence $\bigwedge_{k \geqslant k_{2}} x_{k} \in A^{\eta_{0}-1} \cup K_{0}$ (as $\bigwedge_{k} \neg x_{k+1} \Gamma_{i} x_{k}$, see $8(\mathrm{i} / \mathrm{l})$), but $\bigwedge_{k \geqslant k_{2}} x_{k} \notin A^{r\left(x_{k}\right)-1}=$ $\left.=A^{n_{0}-1}(23.1 / 3 \mathrm{~b})\right)$, consequently, $\bigwedge_{k \gg k_{2}} x_{k} \in K_{0}$. The U-directness of Ω_{i} guarantees the existence of $K \in \mathcal{\Omega}_{i}$ such that $K\left(x_{0}\right) \cup \ldots \cup K\left(x_{k_{2}}\right) \subset K$. Therefore, $\bigwedge_{k} x_{k} \in K$, $x \in \boldsymbol{q}_{1}\left(L_{K}, \Gamma_{i}\right) \subset A_{i}$.
The considerations a), b) and c) have shown that always $x \in \boldsymbol{A}_{i}$. Consequently, $s\left(x, \sigma_{0}\right) \subset A_{i}$ for each $x \in A^{\infty}$.
(Tobe continued)

REFERENCES

[1]-[17]: see the preceding parts of this discourse.
[18] Hankk,-F., On generalized Bergean pay-off functions at complete games. Mathematical Theory of Political Decisions, J. E. Purkyne University; Research Memorandum No. 13 (May 1969). (Cyclostyled, 33 p.)
[19] Hanak, J., Symmetrized Chess as an example of a symmetric initial finite complete game

- with chess-like pay-offs. Math: Theory of Polit. Decisions, J. E. Purkyné University; Res. Mem. No. 15 (preliminary variant, December 1970). (Cyclostyled, 120 p.)
[20] Zermelo, E., Übér eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. Proceedings of the Fifth International Congress of Mathematicians (Cambridge, 1912), Cambridge University Press, 1913, 501-504.
($Ц$ ермело, Э., О прйменении теории множеств к теории шахматной ииры. Сб́ [21], 167-172.)
[21] Матричные игры. Сборник под редакцией Н. Н. Воробьева. Госуд. изд. физ.матем. литературы, Москва 1961.

J. Hanák
Department of Mathematics J. E. Purkyné University, Brno Czechoslovakia

[^0]: Preliminary (and, usually, considerably less general) versions of many results and considerations of the whole discourse are contained in my papers [4], [5], [18], which were published as research memoranda of the research programme headed by doc. dr. V. Polák. Within the framework of this programme, I have besides investigated some problems concerning the actual playing of certain SN-games: As it was already shown by Zermelo in [20], 「two-player initial finite games with perfect information and with (antagonistic) WDR (= win-draw-loss; any infinite play is drawn) pay-offs \urcorner (instead of $\ulcorner.$.$\urcorner we shall say only "PI-games") have significant stra-$ tegic properties; for having these properties, the so-called board games (special actual PI-games, as, e.g., chess, checkers etc.), having been known for several thousand years, are to be considered as the best among all actually played games. Nevertheless, the initial situation in any PI-game (except those having only one play starting from the initial position) is asymmetric for the players; thus, PI-games are not "fair", which is a certain flaw of them. But not only PI-games but also Linitial finite complete games with WDR pay-offs \rfloor (instead of $L \ldots$, we shall say only "I-games"; PI-games can be considered as particular I-games, cf. §4d) have those significant strategic properties ([19], § 2.2); thus, it is natural to search for symmetric (i.e. having an automorphism which changes the players and, of course, preserves the initial position) I-games, expecially symmetric I-games with the character in some sense near to that of well-known board games (as chess etc.). Constructing the former games - which might be considered as the best among all possible games - has shown to be a somewhat complicated problem (while it is not very difficult to construct "well playable" symmetric I-games if no special preliminary conditions to their character are given); this problem, together with certain connected questions (in particular, the applications of the so-called antagonistic coordinative arbitration) were investigated circumstantially in [19], where I have also presented a well-playable concrete symmetric I-game (called Symmetrized Chess and being near to the usual chess), as an example of the constructions given there. (The main results of [19] will be published separately in a journal article.)

[^1]: ＊）where the words＂smallest＂and＂greatest＂are to be replaced mutually．

