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DIRECT PRODUCTS OF HOMOMORPHIC MAPPINGS 
Ivan Chajda, Pferov 

(Received January 2, 1972) 

It is well-known in the theory of abstract algebras that for arbitrary class of 
algebras 21 the direct product Y[ K of homomorphic mappings hx of algebras AT e 21 

TeT 

onto BTG2l is a homomorphic mapping of the direct product ]~[ At onto ]~| BT. 
Tc2' TcT 

The prupose of this paper is to give sufficient conditions for the converse of this 
theorem. I t will be shown that the class of algebras, for which the converse of the 
theorem is valid, is enough extensive. It contains for example atomic Boolean algebras, 
discrete direct products of completely ordered groups or rings and lattices which 
are direct products of chains with the least or greatest element. 

1. 

B A S I C C O N C E P T S 

Let 21 be a class of algebras with the zero element 0 and the binary operation 
© and a set Q of n-ary operations (n ^ 1) fulfilling for each algebra A E 21 and each 
element ae A identities: 

(i) a@0 = a = 0@a 

(ii) for each co e Q is 00 ... 0 e*> = 0 

The operations in all algebras of 21 will be denoted by the same symbols. 

Definition 1. An algebra A e 21 is said to be without zero-divisors iff there exists 
Q' c Qy Q' -£ 0 with following properties: 

(a) the arity of each co E Q' is greater than 1 
(b) for each COEQ' the identity aia2 ... anco = 0 holds 
iff at = 0 for at least one i (1 ^ t ^ n). 

The set Q' is called the set of regular operations. 

Definition 2. An algebra A e 21 is called N-algebra iff there exist algebras AT e 91, 
XET without zero-divisors such that A is equal to the direct product of AT, i.e. 
-4 = ]̂ [ ^4r and at least one of the following conditions is satisfied: 

T€T 

(iii) for each XE T in AT there exists "sum" (in the sense of 0 ) of arbitrary set 
{a^; a^EAT, yEO, a? = 0 for y ^y0eO, card O ^ card T} and it is equal 
to ay°. 

(iv) J | -4T is the discrete direct product. 
T€T 
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Remark. If T is a finite index set, then the conditions (iii) and (iv) of the defi
nition 2 can be omitted because for a finite index set is each direct product dis
crete one and (iii) follows directly from (i). From (i) it follows that the "sum" of 
the set from the condition (iii) does not depend on a bracketing. 

For some algebras the conditions for direct decomposition to algebras without 
zero-divisors are known. For example an atomic Boolean algebra is direct decom
posable to two-element Boolean algebras (they do not contain zero-divisors), see [10] 
and [3]. The conditions for i2-algebras and iQ-groups are given recently in [8] and [9]. 
These algebras are N-algebras. 

, Notation. Let 91 be a fixed class of algebras with 0, operation © and a set Q 
of operations fulfilling (i), (ii), let T be an index set. The direct product of algebras 
Ar e 21 for T G T will be denoted by A = J~J Ar, the zero of A is denoted by 0A. 

reT 

Let a eA, the projection of a into Ax is denoted by prx(a) = a(r). It is easy to show 
that prx(0A) = 0 for each reT. For T s T there is f f Z T = { a ; f l e i , prx(a) = 0 

reT' 

for reT — T}. Specially for T = {T0} is j"J Ar denoted by ATo. An element of 
*0 

Ar is denoted by ax. Let Ax, Bae%. By the symbol H(AX, Ba) we denote the set 
of all homomorphic mappings of Ax into Ba, by H(Ar, Ba) the set of all homomorphic 
mappings of Ax onto Ba. 

Definition 3. Let A, B e S , A = J~J Ax, B = \\ Bx, (pr: Ar-+Br for each r e T, 
reT reT 

SB beeing an arbitrary class of algebras. The mapping (p : A -> B defined by the rule: 

prr(p(a) = (pr(prr(a)) for each r eT, ae A 

is called the direct product of mappings cpx and it is denoted by cp = J~J cpr (see [12], 
reT 

p . 127, Lemma 3). 

Lemma. Let A, B be N-algebras, cp e H(A, B) and OB be a zero of the algebra B. 
Then (p(0A) = 0B. 

Proof. Let w be a direct product of n-ary regular operations (n ^ 2), let 
(p-i(0B) = V. Then for each v e V it holds 

<p(0A) = (p(vOA ... 0Aco) = <p(v) q>(0A) ... (p(0A) (o = 0B(p(0A) ... (p(0A) co = 0B. 

Theorem 1. Let £ be a class of algebras with a set of operations Q, let Ar, Bx e £ 
for T e T and (pxeH(Ar, Br). Then Y\(pxe H([\ Ax, J l Bx) (see [12]). 

reT reT reT " 

Proof. For each reT and arbitrary w-ary operation coeQ there is 
prxcp(axa2 ...anco) = (pr(prr(axa2 ... an(o)) = (pr(ax(r) a2(r) ... an(r) (o) = 
(pr(at(r)) cpr(a2(r)) ... (pr(an(r)) co, i.e. cp(axa2 ... anco) = (p(ax) (p(a2) ... cp(an) co. This 
implies that cp = J l (pr e H(f[ Ar, f | Bt). 

ref reT reT 

Definition 4. A mapping cp of an N-algebra A into an N-algebra B is said to be 
trivial iff card (p(A) = 1. If (p(A) = {0B} and (p e H(A, B), (p is called a zero-homo-
morphism and it is denoted by o. 
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2. 

T H E O R E M S ON H O M O M O R P H I C M A P P I N G S OF N-ALGEBRAS 

Theorem 2. Let Ar, J5ffe2I be algebras without zero-divisors for TET, aeS 
and A = f j Ar, B = ]~J Ba be N-algebras. Let <p be a homomorphic mapping of A 

reT aeS 

onto B which is not trivial. Then for each a G S there exists just one T0 G T such that 
Ba c <p(ATa). 

Proof. Let the assumption of the theorem be valid and let there exists aoES 
such that the assertion of the theorem is not true. Let T' be an arbitrary subset 
of T such that <p (Y\Ar) 2 Bo0 (such T' exists, for example T = T). Evidently 

card T' 2? 1. Denote A' = J} ^4T. As the assertation of the theorem is not valid, it is 
reT' 

card T' > 1, so that there exist Ti, T2 G T', TI ?- T2. 

(a) Let there exist aTxe ATl, aT2e AT, aTi,aT2eA' such that 9?(aTl) ^ 0B ^ <p(at2). 
For each n-ary operation a>e Q' which is the direct product of regular operations 
the relation 

<p(aTlaT2 ... aT2co) = <p(0A) = 0B 

holds by the lemma, but by the assumption (a): 

<p(aTl) <p(at2) ... <p(at2) co 7- 0B 

which is a contradiction. 
(b) Let (a) does not hold. Thus there exists To G T' such that <p(ar) = 0B for 

each areAT, TeT' T T£ T0. Let baoeBao, bao ^ 0B. Choose ae<p~l(bao), as A' ar
bitrary; according to lemma we have a # 0A. We can write a = a(To)© c, where 
C(T0) = 0. Then <p(a) = <p(a(T0))@ <p(c) = <p(a(T0)), (p(c) being 0B according to the 
assumption (b) and (iii) of the definition 2. Thus2?<-0 £ <p(ATo), in contradiction with 
the assumption of the proof. 

The proof of the theorem 2 is complete. 
Definition 5. An algebra A e 21 without zero-divisors is said to be pseudo-ordered, 

if there exists a set Q" £ Q'', Q" 7-= 0 such that for each w-ary co e Q" there is 
axai ... ana) = o^a where i e{ l , 2, ..., n} and a is the identity operation (i.e. atx = a) 
or a G _0 is a unary operation with aoc = 0 iff a = 0. 

From the inclusion Q" c A' it holds that the arity of co e Q" is greater than 1. 
Let us denote T* = {ta; a e S} where Ta is corresponding to a e S by the theorem 2, 
evidently T* c J\ 

Theorem 3. Let _4 T, 2?a G 91 be pseudo-ordered algebras and A = J l AT, B = f | -#* 
T € T <T€« 

and 99 be a non trivial homomorphic mapping of A onto B. Then there exists an 
algebra C = FT <7T (isomorphic with J5), where CT = Ba for T = T ( , G T * and CT = {0} 

for TET — T* such that i.<p = FT 99,. where <px is a homomorphic mapping of AT 
T€T 

onto (7T and i is a natural isomorphism of B onto (7. 
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Proof. I t is clear that C is isomorphic with B. By the theorem 2 for each ae S 
there exist just one %a~T for which CTa = Ba ~: <p(Ar ). 

(a) Let CTa = Ba = <p(ATa) for each ae S, then prTa <p e H(ATa, Ba) = 
= H(AV , Cr<j). Let <pr = prTa <p for r = ra e T* and <pT = o for r G T — T*, then 
i . <p = Yl<Pr a n d <preH(Ar, Cr). 

T€T _ _ 

(b) Let there be BGQ ^ <p(AXa), Bao <~\ <p(AT(y) for some o*0 ~ S. Because <p is the 
mapping of the type "onto", there exists a that set S' ~\ S, card S' > 1, such 
<p(ATa) ~2 Ba ioraeS'. Let a\ ^ o2, at, a2 e S' and 61 e Bai, b2 e Ba2, 6t # OB 7- b2-
Let »i, a 2 e A T and <p(ai) = 61 <p(a2) = b2- Then for each co which is the direct 
product of operations from Q" we have: 

OB = bib2 ..• b2a) = <p(a\) <p(a2) ... <p(a2) <o = <p(a\a2 ... a2co) = 

= <p(aiOc) = 9?(«j) a = b\OL ^ OB, where i = 1 or 2, 

which is a contradiction. The proof is complete. 

Theorem 4. Each chain with the least element 0 or the greatest element 1 is 
a pseudo-ordered algebra. Each completely ordered group is a pseudo-ordered 
algebra. 

Proof. Let A be a chain with the least element 0. Put: a@b = max {a, 6}, 
a .b = min {a, b), 0 = {0}, Q' = Q" = {.}. Dually for a chain with the greatest 
element. 

Let A be a completely ordered group. Then @ be the group composition, 0 the 
unit element of A and Q' = Q" = {.}, where a . b = min (max (a, a'1), max (6, 6-1)). 

Corollary 5. Let ^4T, BaeM be pseudo-ordered algebras and A = f |A[T , B = 
T S T 

= Y\ Bo he N-algebras and <p be a non trivial homomorphic mapping of A onto B. 
T 6 # 

Then card S ^ card T. 
It follows directly from the theorems 2 and 3. 
Corollary 6. Let ^4T, A* be pseudo-ordered algebras and A = f\ Ar and A = 

Ter 

= f j ^4* be N-algebras. Then card O = card T and ^4* = ^4-,(T), where n is a per-

mutation of the set T. 
It follows directly from the theorem 3 and corollary 5. 
Theorem 7. Let Ax, Br ~ 91 be pseudo-ordered algebras and <p be a homomorphic 

mapping of an N-algebra A = f | -4T onto N-algebra 2? = [^ J5T. Then there exists 
reT reT * 

a permutation 71 of the set T and the natural isomorphism p of ]̂ [ Br onto [~[ i?-^) 
T € T reT 

such that 
I> • ? = n <P* 

xeT 

where <pr is a homomorphic mapping of ^4T onto Bn(r). 

I t follows directly from the theorem 3 and corollary 6. The theorem 7 is the 
converse of the theorem 1 for pseudo-ordered algebras. From theorems 7 and 4 we 
obtain: 
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Corollary 8. For atomic Boolean algebras, for 1-groups discretely directly de
composable into completely ordered groups, for lattices which are direct products 
of chains with the least (or the greatest) element and for ordered rings which are 
discrete direct products of completely ordered rings is the converse of the theorem 
1 valid. 

Remark. For 1-groups and lattice-ordered rings is by a "homomorphism" in the 
sense of this paper understood the homomorphic mapping preserving lattice opera
tion (because it must preserve the direct product of operations introduced in the 
proof of theorem 4). It is easy to show that this homomorphism is also o-homomor-
phism in the sense of [11]. 

The conditions for discreie direct decompositions of 1-groups and ordered rings 
into completely ordered groups and rings are given in [11]. 
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