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NOTE ON THE THEORY OF DISPERSIONS OF THE 
DIFFERENTIAL EQUATION y" = q(t)y 

MIROSLAV BARTUSEK, BRNO 

(Received April 26, 1973) 

1.1. Consider a differential equation 

(q) y" = q(t)y, qeC°[a, b), q(t) < 0, t e[a, b), b g oo, 

where Cn[a, b) (n being a nonnegative integer) is the set of all continuous functions 
having continuous derivatives up to and including the order n on [a, b). In all the 
work we suppose that (q) is an oscillatoric (t -> b_) differential equation, i.e. every 
non-trivial solution has infinitely many zeros on every interval of the form [t0, b), 
t0e [a, b). 

Let yi (y2) be a non-trivial solution of (q) such that yx(t) = 0 (y'Jf)— 0), t e[a, b). 
If <p(t) (tp(t)) is the first zero of y\ (y2) lying on the right of t, then <p(tp) is called the 
basic central dispersion of the 1-st (2-nd) kind (briefly, dispersion of the 1-st (2-nd) 
kind). 

The properties of dispersions can be found in [3]. If d is the dispersion of the k-th 
kind, k = 1, 2, then 

1. ðєC*[a, Ь) i f i = 1 
ô є OҶa, Ь) i f i = 2 

(1) 2. å'(t) > 0 on [a, b) 

3. ô(t) > t on [a, b) 

4. lim ð(t) == b 

hold (see [3] § 13). Let y be an arbitrary non-trivial solution of (q). Then (see [3] 

= q{t) yl(t) if«'m = 0 
~q(V>(t)) 2Z2(VW) V U ' 

The dispersion <p of the first kind of (q) fulfils the following non-linear differential 
equation 

(3) — ^ l r + ^ l l + q(ip)v'2__q{t)9 te(a,b). 

1.2. In our later considerations we shall need some results being derived in [1], [4], 
(i) Let <p(tp) be the dispersion of the 1-st (2-nd) kind of (q), q e C°[a, b], q(t) < 0 



on [a, b), 6 g oo, (q) oscillatoric on [a, b). Let t0 e (a, b). Then 

1) <p(h) < y>(t0) i«<p"(t0) > 0 

2) <p(to) = xp(t0) iff ^ ( f e ) = o 

3) <p(to) > rp(t0) iff <p"(t0) < 0 

4) <p(to) - y>(h) iff ?'(« ?'(« = -T^r 
q(y>(to)) 

5) y(W * V(«o) iff * / (« y'(fo) < - ^ V 
#(wo)) 

(ii) Let (q), qe C° [a, b), b _{ oo be oscillatoric on [a, b) and let 99 be its dispersion 
of the 1-st kind. 
a) If <p'(t) ^ 1 on [a, b), then every solution of (q) is bounded on [a, b). 
b) If <p'(t) _l const < 1 on [a, b), then b < 00 and every solution of (q) tends 

to zero for t -^b_. 
2. In [1] relations between the dispersions of the 1-st and 2-nd kind were exa

mined. The following theorem completes the results derived there. 
Theorem 1, Let (q), qe C° [a, b), q(t) < 0, t e [a, b) be an oscillatoric (t -> bj) 

differential equation and <p(tp) its dispersion of the 1-st (2-nd) kind. Let t0 e [a, b) and 

M = - ^ - V < 0 . «e[M). 
Then 

a) <p(t0) < y)(to) if> a n d only if f'(t0) < 0 

b) <p[t0) = y)(t0) if, and only if f'(t0) = 0 

c) <p(t0) > yj(t0) if, and only if f'(t0) > 0. 

Proof, a) Let y be a solution of (q) such that y'(t0) > 0, y (t0) = 0. It follows from 
(2) that the function / has the derivative and 

• , ,„ , __ (y'2W)) V j _ o „ / 2 ?2(v°) y(y>o) 

holds where y>0 = y)(t0), tp0 = Y>'(*o). 
Let 9?(f0) < V^o)- Then y(y)o) < 0, 2/'(^0) < 0 and according (4) we have 

(5) f'(to) < 0. 

Let (5) ve valid. As y'(y>o) < 0, it follows from (4) that y(y)0) < 0 and thus <p(t0) < y)(t0) 
b) c) These cases can be proved in the same way. 

The following theorem sums up the results of 1.2. and Theorem 1 concerning the 
important case <p(t0) — tp(to), t0 e [a, b). 

Theorem 2. Let <p(y>) be the dispersion of the 1-st (2-nd) kind of an oscillatoric 
(t -> b_) differential equation (q), qeC° [a, b), q(t) < 0 on [a, b). Then the following 
assertions are equivalent: 

a) <p(t0) = y)(t0) 

b)<p"(t0) = 0 
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d ) ^ o ) . ^ V ' ( t o ) = l. 
Wo) 

Remark 1. Theorem 2 indicates that there exists a more profound dependence 

between the functions <p' and——- . xp'. The following theorem expresses this depen

dence more in detail. 
Theorem 3. Let (q), qeC° [a, b), q(t) < 0 on [a, b) be oscillatoric on [a, b) and <p, ip 

be its dispersions of the 1-st and 2-nd kind. Let us put: 

M =**$$-«*). te[a,b). 

Then 
a) The function <p' has a local maximum (minimum) at t = t0 if, and only if/ has 

a local minimum (maximum) at the point t0. Moreover, 

(6) *M = m 
holds if the point t0 is an extremant of <p' o r / . 

b) The function <p' is increasing (decreasing) at t = t0 if, and only if / is decreasing 
(increasing) at t = to. 

c) If <p'(t) ^ 1 (f(t) ^ 1) holds on [a, b), then /p) ^ 1 (<p'(t) S 1) on [a, b). If 
<p'(t) < 1 (f(t) g 1) holds on (a, b), then there exists a number i, ie [a, b) such that 
/ («)£ 1 (<p'(t) £ 1 ) on [*,&). 

Proof, a) b) The relation (6) from the case a) follows from Theorem 2 because if 
the function <p'(f) has a local extreme at the point t0, then <p"(to) = 0 (ff(t0) = 0). 
further, it follows from Theorem l a n d 1. 2. that <p"(t0) < 0, resp. = 0, resp. > 0 if, 
ai^d only if/'po) > 0, resp. == 0, resp. < 0 . Thus if <p"(t0) 4. 0 (/'p0) 4= 0) holds, then 
the statement b) is valid. If <p"(t0) = 0 (ff(t0) ='0), then the statements a) b) follows 
from the following assertions. • 

1) If <p'(t)l> <p%) (f(t) ^ f(t0)), t e J, then f(t) ^ f(t0) (<p'(t) <> <p'(t0)ht e J holds. 

2) If <p'(t) ^ <p'(t0) (f(t) <; f(t0), t e J, then f(t) ^ f(t0) (<pf(t) Z <pf(t0)), t e Jt holds, 
where J = [t0, t0 + e), resp. (t0 — e,t0]/B> 0 is an arbitrary number, e <. t0 — a 
and Ji = p0, h + £1), resp. p 0 — eu £0}>

 £i g e is a suitable nuniber and <p"(t0) = 0 
(f'(to) = 0). , 

The assertion 1) follows directly from 1.2. and Theorem 1. The assertion 2): 
Let <p'(t) g <pf(t0), t eJ and te J, <p"(t) = 0. Then according to Theorem 2 we have: 

/(F) = - L - ^ * _ / p o ) , 
<p(t) <P(t0) 

Let a number ii , ti e J exist such that <p"(h) = 0,«i-j= t0. Hie J, <p"(i)JF 0, \i — *0| < 
< ]ii ^—iol^"then <p' is monotone in some neighourhood of the point i and there 
exist numbers t2, he J such that <p"(t2) = <p"(h) = 0, <p"(t) 4= 0, t e (h, h), i e (t2i h). 
We have: f(h) ^ f(t0), f(h) ^ /p0). As the function / is monotone on (t2, £3), we have 
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f(i) =5 f(to) and the statement is valid in this case. If the above mentioned number 
tx does not exist, then <p"(t) > 0, resp. < 0 for t e J, t =# t0 where J = (t0 — e, t0], 
resp. J = [t0, t0 + e). From here it follows (by use of 1.2.) that the function/is increas
ing, resp. decreasing and in both cases f(t) ^ f(t0), teJ holds. The rest of the state
ment 

/(*) ^ /(M, teJ => <p'(t) .> <p'(t0), t G ^ 

we can proved in the same way. 
c) I. Let <p'(t) ^ 1 (f(t) > 1), te[a, b). Then according to 1.2. we have: f(t) ^ 1 

(<p'(t) < 1), t G [a, b) and so the statement is valid in this case. 
II. Let <p'(t) g 1 (f(t) g l),te[a, b) and let M be the set of all numbers t e [a, b) 

such that the function <p'(f) has a local maximum at t e M. If the infinity is the accu
mulation point of M, then it follows from a) that f(<p') has all local minima at the 
points t e M and we have 

<p'(t).f(t) = l,teM. 

From this f(t) > 1 (<p'(t) ^ 1), te[t0, b) and the statement is valid in this case. 
If the infinity is not the accumulation point of M, then there exists a number 

16 [a, b) such that the function <p'(f) is monotone on [I, b). 
A. Let <p'(t) ^ 1, te[t, b). Suppose that lim f(t) = c < 1. Let y be an arbitrary 

e — b 
non-trivial solution of (q) and {#*}o° the sequence of all zeros of y', xk e [I, b). So 
xk = y)(xk_i), k Hi 1 and \y(xk)\ are local maxima of \y\. It follows from (2) that 

ft tf2(*o) * *-<*.,_.) * 

Thus y is unbounded and it is in contradiction with 1.2. (ii). Thus lim f(t) ^ 1. 
t-+b 

Let <p' be non-decreasing. Then / is non-increasing (see b)) and the statement 
is valid. 

Let <p' be non-increasing. Then lim <p'(t) < 1 and according to 1.2. (ii) we have 
t-+b 

that an arbitrary solution of (q) converges to zero for t -> &_. Suppose that lim f(t) = 1. 
t-+b 

As f is non-decreasing we have f(t) <* 1, t e [t, b). Let y be an arbitrary non-trivial 
solution of (q) and {xn}ff a sequence of the zeros of y', xne [i0, b). Then y has a local 
extreme at xn and by use of (2) we have: 

<7> ° ° t ^ r g ^ = ft ^ = ft/(**-.)* i. 
tt °° y2(*n) * = i y2(*k) *-=i 

But this is the contradiction. So lim f(t) > 1 and the statement is valid. 

B. Let f(t) ^ 1, t € [t, b) and let lim <p'(t) = c < 1. Then (7) is valid and it is the 
t-+b 

contradiction. Thus lim <p'(t) ^ 1. If / is non-decreasing, then <p' is non-increasing 
t^b 

and the statement is valid. Let / be non-increasing. Then lim f(t) = c < 1 and <p' 
t-»b 

is non-decreasing on (t, b). In the first part of c) II. A) we proved that the conditions 
<p'(t) % 1, t e [i, b), lim f(t) < 1 can not be valid at the same time. From this lim 

t-+b- t-+b 

qf(t) > 1 and the statement of the theorem is proved. 
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Remark 2. The case c) of Theorem 3 is valid, too if we replace the inequalities 
^ , ^ by < , > , resp. because if <p'(t0) = 1 (f(t0) = 1), he [a, b), t h e n according 
t o Theorem 2 we have/(fo) = 1 (<p'(to) = 1)-

The results of Theorem 3 gives us a possibility to generalize a theorem from [2] 
(Theorem 10) concerning the behaviour of solutions of (q). 

Theorem 4. Let (q), q e C°[a, b), q(t) < 0, te [a, b), be oscillatoric on [a, b) and 
let <p, y) be its dispersions of the 1-st, 2-nd kind, resp. Consider the following assertions 
on [a, b): 

A) The sequence of the absolute values of all local extremes (of the derivative) of an 
arbitraty non-trivial solution of (q) is non-increasing. 

B) The sequence of the absolute values of all local extremes of the derivative of an 
arbitrary non-trivial solution (of an arbitrary non-trivial solution) of (q) is non-decreasing. 

C) —JT~ y)' ^ 1 (<p(t) — t is non-decreasing) 
Qv) 

D) <p(t) — t is non-increasing 
( # * - • ) . 

Then A <=> C => D <=> B and there exists a number t0, t0 e[a, b) such that we have 
D => C on [t0, b). 

P r o o f . According to Theorem 10 from [2] we must only prove t h a t there exists 
a number t0, t0 e [a, b) such t h a t D => C on [t0, b) holds. B u t this fact follows directly 
from Theorem 3c). 

Remark 3. If we replace < {non-increasing", < tnon-decreasing", ^ , ^ by S4decrea-
sing", ^increasing", < , > , respectively, t h e n Theorem 4 is valid, too. 

Theorem 5. Let (q), qe C°[a, b), q(t) < 0, te [a, b) be oscillatoric on [a, b) and let 
<p, \p be its dispersions of the 1-st and 2-nd kind. Let t0 e [a, b). Then the following 
assertions are equivalent. 

A. <p(t0) = y)(t0), <p'(t0) = tp'(t0) 

B. <p"(t0) = <pm(t0) = 0. 

Moreover, if there exists q'(t0), then the assertion 

C)f'(t0) = f(t0) = 0 where f(t) = ^ X L L y>'(t) is equivalent with A) and B). 
q(t) 

P r o o f . A => B: According t o Theorem 2 we have: 

<l(to) q(to) 
<p"(to) = 0, <p'Цt0) = <p'(t0) У>'(t0) = 

q(V>(t0)) q(<p(t0)) 
From this and from (3) 

1 <P*(to) 3 

\ 9'(M ) 2 <p'(t0) 4 

holds and thus <p"(to) = 0. 

B => A. I t follows from Theorem 2 that <P(t0) = y(<o) holds and from (3) we have: 

q(to) = q(f(to)) q>'2(t0) = q(y>(t0)). <p'2(to). 

From this and from theorem 2 we get: <p't(t0) = ^ ^ , ^ ftnd t h u s ^ = ^ 
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AoC. Let y be a, non-trivial solution of (q) such that y(to) = 0. Then it follows 
from (2) that / has the derivative and 

/ W = 2 . / 2 ( % ( t ) l » - 2 / W ^ ) ^ | 

/ ' 
holds in some neighbourhood of the point t0. Thus we can see that the function — 

has the derivative and if q'(t0) exists, then we have at t = V-

(8) (L^L-fv^^rL+tflf.f-!). 
C. => A: According to (8) we ha,vef(fy>' — 1) = 0 for t = t0 and because/ 4= 0 we get. 

(9) f(t0) rp'(t0) = 1. 

Theorem 2 gives us: <p(t0) = rp(t0), 

(10) /(to) <p'(t0) = 1. 

Thus (p'(t0) = xp'(t0) and the statement is proved. 
A => O. I t follows from the assumptions and Theorem 2 that/'(£0) = 0 and (10) 

and (9) hold. Then the statement follows from (8). 
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