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DIFFERENTIAL EQUATION y’ = q(t)y

MirosLAv BARTUSEK, BRNO

(Received April 26, 1973)

1.1. Consider a differential equation
(q) y" = q(t)y, ¢€C°[a, b), q(t) < 0, ¢ €la, b), b = oo,

where C?[a, b) (n being a nonnegative integer) is the set of all continuous functions
having continuous derivatives up to and including the order n on [a, b). In all the
work we suppose that (q) is an oscillatoric (¢ — b_) differential equation, i.e. every
non-trivial solution has infinitely many zeros on every interval of the form [t,, b),
to € [a, b).

Let 1 (y2) be a non-trivial solution of (¢) such that y,(t) = 0 (y,(t)=0), t €[a, b).
If @(t) (y(2)) is the first zero of y; (y;) lying on the right of ¢, then ¢(yp) is called the
basic central dispersion of the 1-st (2-nd) kind (briefly, dispersion of the 1-st (2-nd)
kind).

The properties of dispersions can be found in [3]. If § is the dispersion of the k-th
kind, £k =1, 2, then

1. 0 € C3[a, b) ifk=1
deC(a, b) if k=2
(1) 2.6'(¢) >0 on [a, b)
3.6(t) >t on [a, b)
4. lim 8(t) = b
t>b

hold (see [3] § 13). Let y be an arbitrary non-trivial solution of (¢q). Then (see [3]
§ 13.3) ’

i — 9O yAYE) J(t) = 0

VO =00) 720
qt)  yAt)

=) Py YO =0

The dispersion @ of the first kind of (g) fulfils the following non-linear differeritial
equation .
) Lot 3 L er=q0),  te@b)
2¢ &g ’ » O
1.2. In our later considerations we shall need some results being derived in [1], [4].
(i) Let @() be the dispersion of the l-st (2-nd) kind of (q), q € C°[a, b], ¢(t) < 0

@)




on (a,b), b < o0, (q) oscillatoric on [a, b). Let to € (a, b). Then
1) g(fo) < wp(to) iff ¢"(to) > 0
2) glto) = (to) iff p"(t)) = 0
3) plto) > p(to) iff "(t) < 0

to) = 1 ’ ’ _ q(tg)“_

4) g(to) = y(to) iff @ (fo) '(to) = ol
5) plto) * (ko) iff @'(to) 9'(to) < gllo)
q(y(to))

(ii) Let (9), g€ C° [a, b), b < oo be oscillatoric on [a, b) and let @ be its dispersion
of the 1-st kind.
a) If ¢'(t) < 1 on [a, b), then every solution of (¢) is bounded on [a, b).
b) If ¢'(t) < const < 1 on [a, b), then b < co and every solution of (g) tends
to zero for ¢t — b_.
2. In [1] relations between the dispersions of the 1-st and 2-nd kind were exa-
mined. The following theorem completes the results derived there.
Theorem 1. Let (g), g€ C° [a, b), q(t) < 0, t € [a, b) be an oscillatoric (f —b_)
differential equation and g(y) its dispersion of the 1-st (2-nd) kind. Let ¢, € [a, b) and

s =28y, teimb)
Then
a) @(to) < p(to) if, and only if  f'(t;)) < O
b) @lto) = p(to) if, and only if  f'(tp) = 0
c) @(to) > p(to) if, and only if  f'(t) > 0.

Proof. a) Let y be a solution of (g) such that y'(to) > 0, y (to) = 0. It follows from
(2) that the function f has the derivative and

iy — (RO s @) y(yo)
It ( Y3t ) lt=1, % qto) ¥'(wo)

holds where o = (to), Yo = ¥'(to).
Let @(to) < (to). Then y(yo) < 0, ¥'(yo) < 0 and according (4) we have

(5) f’(to) < 0.

Let (5) ve valid. As y'(yo) < 0, it follows from (4) that y(yo) < Oa,nd thus @(te) < (fo)
b) c) These cases can be proved in the same way.

The following theorem sums up the results of 1.2. and Theorem 1 concerning the
important case @(fo) = p(fo), o € [a, b).

Theorem 2. Let ¢(y) be the dispersion of the 1-st (2-nd) kmd of an oscillatoric
(t — b_) differential equation (g), g € C° [a, b), q(t) < 0 on [a, b). Then the following
assertions are equivalent:

a) @(to) = w(to)
b) ¢*(t)) = 0

)
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@w@d-ﬂm Y(to) = 1.

Remark 1. Theorem 2 indicates that there exists a more profound dependence

between the functions ¢’ and - ay). . ¢'. The following theorem expresses this depen-

q(t)

=tlo

dence more in detail.

Theorem 3. Let (q), ¢ € C° [a, b), q(t) < O on.[a, b) be oscillatoric on [a, b) and ¢, p
be its dispersions of the 1-st and 2-nd kind. Let us put:

Then

a) The function ¢’ has a local maximum (minimum) at ¢ = ¢, if, and only if f has
a local minimum (maximum) at the point t,. Moreover,

[T E
holds if the point ¢, is an extremant of ¢’ or f.

b) The function ¢’ is increasing (decreasing) at ¢ = t, if, and only if f is decreasing
(increasing) at { = {o. '

c) If ¢'(t) =2 1 (f(f) = 1) holds on [a, b), then f(t) < 1 (¢'(t) < 1) on [a, b). If
@'(t) £ l ( f( )= 1) holds on (@, b), then there exists a number i, t€ [a, b) such that
f6) 2 1 (¢'(t) 2 1) on [{, b).

Proof a) b) ) The relation (6) from the case a) follows from Theorem 2 because if
the function @'(f) has a local extreme at the point to, then ¢”(to) = 0 (f'(to) = 0).
Further, it follows from Theorem 1 and 1. 2. that (p”(lo) < 0, resp. = 0, resp. > 0 if,
and only if f'(f)) > 0, resp. = 0, resp.. < 0, Thus if ¢"(t) + 0 (f'(to) &= 0) holds, then
the statement b) is valid. If ¢"(t) = 0( f (to) = 0), then the statements a) b) follows
from the followmg assertions. '

1IE '(t) 2 ¢'lte) (fE) = flto)), tEJ, then f(t) < f(to) (¢'(t) glp(zo)),fteJ holds.

2) If ¢'(t) < ¢'(to) (1) < f(to), t € J, then f(t) = fito) (¢/(t) 2 ¢'(t)), t € J; holds,
where J = [to, to + &), resp. (bo—¢, to], € > 0 is an arbitrary.number, ¢ < fo—a
and J, = [to, to + &1), resp. (to — &1, to}, & < ¢ is a suitable number and ¢"(fo) = 0
(f'(t) =0). .

The assertion 1) follows dlrectly from 12 and Theorem 1. The assertion 2):
Let @ (t) <P '(to), teJ and te J, @"(t) = 0. Fhen according to Theorem'2 we have:

o 1 . 1
R g~ ¢l) = Jt :
Let e number ¢, ; € J exist such that ¢"(t;) = 0,¢, + to. If € J, ¢"(f) # O, [t —to| <
< |ty-=—itol; then ¢’ is monotone in some nelghourhood of the point { and there
eXist numbers f,, {3 € J such that ¢"(f;) = ¢”(t3) = 0, ¢ (t) + 0,t€ (b t3), LE (ts, t5).
We have: f(t2) = f(to), f(ts) = f(to). As the function f is monotone on (f2, £3), we have
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f(§) = f(to) and the statement is valid in this case. If the above mentioned number
t, does not exist, then ¢”(f) > 0, resp. < 0 for teJ, t % t, where J = (to — &, to],
resp. J = [to, to + €). From here it follows (by use of 1.2.) that the function fis increas-
ing, resp. decreasing and in both cases f(t) = f(lo), ¢t € J holds. The rest of the state-
ment

ft) £ flto), ted = @'(t) 2 ¢'(to), t € Jy

we can proved in the same way.

c)I. Let ¢'(t) 2 1 (f(t) 2 1), t € [a, b). Then according to 1.2. we have: f(t) <
(¢'(t) S 1), te[a, b) and so the statement is valid in this case.

II. Let ¢'(t) < 1 (f(t) £ 1), t € [a, b) and let M be the set of all numbers ¢ € [a, b)
such that the function ¢’(f) has a local maximum at ¢ € M. If the infinity is the accu-
mulation point of M, then it follows from a) that f(¢’) has all local minima at the
points ¢ € M and we have

@) .ft)=1,te M.

From this f(t) = 1 (¢'(t) = 1), t€[to, b) and the statement is valid in this case.
If the infinity is not the accumulation point of M, then there exists a number
t € [a, b) such that the function ¢’(f) is monotone on [, b).
A. Let ¢'(t) £ 1, te[t, b). Suppose that hm fit) =c < 1. Let y be an arbitrary

non-trivial solution of (¢) and {zx}g the sequence of all zeros of y', ;€ [{, b). So
Zx = p(xk_1), k = 1 and |y(zx)| are local maxima of |y|. It follows from (2) that

yz(xO) k Y (2 _1) k
V@) a1 PREe) nI_I flan-1) 5= 0

Thus y is unbounded and it is in contradiction with 1.2. (ii). Thus lim f(f) = 1.
t—+b

0<-

Let ¢’ be non-decreasing. Then f is non-increasing (see b)) and the statement
is valid.
Let ¢’ be non-increasing. Then hm ¢’(t) < 1 and according to 1.2. (ii) we have

that an arbitrary solution of (q) converges to zero for t — b_. Suppose tha,t lxm f(t =1

As f is non-decreasing we have f(t) < 1, te[¢, b). Let y be an arbltmry non trivial
solution of () and {x»}§ a sequence of the zeros of y’, z» € [f, b). Then y has a local
extreme at z» and by use of (2) we have:

— Y _ mogme) _ n
L yz(x,,) 1;11 vi(xe) kglf(xk_x) <1

But this is the contradiction. So lim f(¢) > 1 and the statement is valid.
t—>b ~
B. Let f(t) < 1, te[¢, b) and let lim ¢'(t) = ¢ < 1. Then (7) is valid and it is the

(7

contradiction. Thus hm o'tz 1. If f is non-decreasing, then ¢’ is non-increasing
and the statement 1s vahd Let f be non-increasing. Then hm f(t) =c<1and ¢

is non-decreasing on (£, b). In the first part of ¢) IL. A) we proved that the conditions

¢ty s 1, telt b), hm f&) < 1 can not be valid at the same time. From this lim
t—+d
@’(#) > 1 and the sts,tement of the theorem is proved.
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Remark 2. The case ¢) of Theorem 3 is valid, too if we replace the inequalities
<, 2 by <, >, resp. because if ¢'(fo) = 1 (f(ts) = 1), to € [a, b), then according
to Theorem 2 we have f(to)) = 1 (¢'(fo) = 1).

The results of Theorem 3 gives us a possibility to generalize a theorem from [2]
(Theorem 10) concerning the behaviour of solutions of (q).

Theorem 4. Let (q), g € C°[a, b), q(t) < 0, t€[a, b), be oscillatoric on [a, b) and
let @, v be its dispersions of the 1-st, 2-nd kind, resp. Consider the following assertions
on [a, b):

A) The sequence of the absolute values of all local extremes (of the derivative) of an
arbitraty non-trivial solution of (q) 18 non-increasing.

B) The sequence of the absolute values of all local extremes of the derivative of an
arbitrary non-trivial solution (of an arbitrary non-trivial solution) of (q) s non-decreasing.

) %(% p =1 (@(t) — t is non-decreasing)
D) g(t) —1t i mon-increasing (%((—Z;—) y = 1)

Then A <> C = D <> B and there exists a number ty, to € [a, b) such that we have
D = C on [to, b)

Proof. According to Theorem 10 from [2] we must only prove that there exists
a number #o, ¢, € [a, b) such that D = C on [fo, b) holds. But this fact follows directly
from Theorem 3c).

Remark 3. If we replace  non-increasing”, , non-decreasing”, <, 2 by _decrea-
sing”, _increasing”, <, >, respectively, then Theorem 4 is valid, too.

Theorem 5. Let (g), q € C°[a, b), q(t) < 0, t € [a, b) be oscillatoric on [a, b) and let
@, y be its dispersions of the 1-st and 2-nd kind. Let to € [a, b). Then the following
assertions are equivalent.

A. g(to) = y(to), ¢'(t)) = ' (ko)
B. ¢"(te) = ¢"(to) = 0.
Moreover, if there exists q'(to), then the assertion
) fte) = f'(te) = O where f(t) — L‘q"gl)_ Y(0) is equivalent with A) and B).
Proof. A = B: According to Theorem 2 we have:
o) _  gqlto)
(pto))  q(plto) -

P'(t) =0,  @%t) = @'(to) ¥'(to) = 7
From this and from (3)

Lot 3wy
2 ¢'(to) 4\ ¢'(to)
holds and thus ¢”(t) = 0.
B = A. Tt follows from Theorem 2 that ¢(to) = y(to) holds and from (3) we have:
q(to) = g(@(to)) @"*(to) = q(p(to)) . ¢'2(t).
From this and from theorem 2 we get: ¢'2(tg) = ¢'(to) . y'(t,) and thus ¢’ (to) = ¥'(fo)
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"4 <> C. Let y be a non-trivial solution of (q) such that y(fo) = 0. Then it follows
from (2) that f has the derivative and

y(p() y()
= 2.f2t)q(t) L — 2 f(t) q(t) . S
@ JSAt)a(t) ¥ (9(1)) f()Q()y,(t)
holds in some neighbourhood of the point to. Thus we can see that the function f?

has the derivative and if ¢'(fo) exists, then we have at t = &;:

FN_f e 3 _
(7)~q g ~2fg YYD

C = A: According to (8) we have. f(fy’ — 1) = 0 for t = ¢, and because f + 0 we get.

(8)

9) : fito) ¥’ (o) = 1.
Theorem 2 gives us: @(fo) = y(to),
(10) Jto) ¢'(to) = 1.

Thus ¢'(fe) = y’(te) and the statement is proved.
A = C. It follows from the assumptions and Theorem 2 that f'(fo) = 0 and (10)
and (9) hold. Then the statement follows from (8).
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