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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS, 
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HIGHER MONOTONICITY PROPERTIES OF ZERO 
POINTS OF THE LINEAR COMBINATION 

OF THE SOLUTION AND ITS FIRST DERIVATIVE 
OF THE DIFFERENTIAL EQUATION y + q(t)y = 0 

MILOSHAClK, Zilina 

(Received June 25, 1973) 

In paper [1] there has been deduced a simple, sufficient condition for the mono-

tonicity of order n in the sequence of differences of zero points of linear combination 

of any solution and its first derivative of the differential equation 

(q) y" + q(t)y = 0 

in the interval I = (a, b), where a < b, aeEl9 beE* = Et u (oo). 
In paper [4] J. Vosmansky has investigated the higher monotonicity properties 

of zero points and extremants of (q). By "extremant" of the function y(t) e C2(I) 
we understand any number i e I in which the function y(t) acquires an locally extreme 
value (only proper local extremes are considered). 

In this contribution there will be extended some results from paper [4] to the 
linear combination of the solution and its first derivative of (q). 

1. In paper [2] M. Laitoch has deduced that if y(t) is a solution of (q), where 
q(t) e C2(I), q(t) > 0 for any t e I, then the function 

ccy + Py' 
(i) У ( 0 = 

Va2 + j?2q ' 

where a, jff are real numbers with the property a2 4- j82 > 0, is a solution of the 
differential equation 

(Q) Y" + Q(t) Y = 0, 

where 

(2) m „ q + < * L - + * - n 3 W 
a2 + p2q 2 a * + p2q 4 (fl.2 + piqy 

and conversely, if 7(t) is any solution of ( 0 , then there exists a solution y(t) of (q) 
such that 

- T ^ T = no. 
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Definition 1: The function F(t) is said to be of the class Mn(a, b) or monotonic of 
the order n in (a, b) if it has n ( ^ 0) of continuous derivatives F ( 0 ) , F', F",..., F(M) 

satisfying 

(3) ( - 1 ) ^ ( 0 £ 0 J = 0, 1,2, . . . ,«. 

If the preceding inequalities are fulfilled for j = 0, 1, 2, . . . , then the function F(t) 
is called a completely monotonic in (a, b) and is denoted by F(t) € M^ (a, b). 

Definition 2: The function F(t) is called the function of class Mn%m(T0, oo) if there 
is F(t) e Mn(T0, oo) and F(t) has for t > T0m derivatives for which there holds 

(4) F0)(t) -• 0/0r t -+ oo / = 0, 1,2, . . . ,m. 

(Evidently F(t)e Mnt0(T0, oo) implies F(t)e Mn^x(T0, oo) for n ^ 1). 

Lemma 1: Let q(t) possess a derivative q'(t)e Mn+l(0, co)n ^ 1, q(t) > 0 for 
t e (0, oo), q(oo) < oo and let Q(t) be defined by the formula (2). Let OL2 + P2 > 0, 
oip ^ 0. 
Then 

(5) e ' ( O e M n . 1X0,00) 

(6) [q(0-e(0]eM„,o(0,oo) 

(7) 0 ^ j I>(0 - Q(0] d>< °° 

where equality in (7) can hold only if ft = 0 or q(t) = const. 

Proof : Relation (5) is proved in Lemma 2 of paper [1]; from the proof of that 
lemma there also holds that \_q(t) - Q(0] e M,(0, 00). Since under assumption 
q(co) = c < oo? so q'(co) = 0 and because q'(/)eM„+1(0^oo), it is evident that 
q"(co) = 0. Hence [q(t) - Q(t)2 e MHf0(0, oo). 
Because of identically holding 

?2„f2 

f í" *' f__Ј_____н 

Ј p T Ã ^ - ^ T Ã ^ Ј ^ + A)2 '' 
we have forfi^O 

L n^ f/3 A' 2 1 ^V *M \At 

h( fa' \ 2 , i r /?v r 1 f/__v_Vdi- f______dř_ 

" 4 J U + A F H ^ + A 2L«2 + AJ 
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It is evident that ——-L • o for t -> oo and for sufficiently large t there holds 
a + ft q 

00 oo 

0 * Ifcrk)2<"< M W d ' " [l08("'+m< * 
From here 

there follows the validity of (7). 
In the case /? = 0 the assertion (7) is evident. If q(t) = const., then q(t) =- g(r)» 

and the equality in (7) holds as well. 

Lemma 2: Let q(t) > 0 for-1 e (0, oo), q(oo) e M„+ ,(0, oo), n ^ 1 am/ fet Qfj) be 
defined by formula (2). Let for constants a, p there hold a2 + p2 > 0, ap __ 0. Let 
q'(t) # Ofor any t e (0, oo). Then there holds 

(8) ( - i y C ( l + 1)(0 __ ( - 1 ) V + 1 ) ( 0 > 0 i = 0, 1,2,..., n - I, 

where equality holds only if P = 0. 

Proof: At first let /? # 0 hold. As the assumptions of Lemma 1 are fulfilled, so 
there holds: Q'(t) e Mn„x(^ oo) and [q(0 - Q(0] e Mn,o(0, oo) as well. Therefore if 
we choose in Lemma 0,3 of paper [4] pg. 40f(0 = q(0 - £?(0 and c = 0> we obtain 
the validity of the following inequality 

(~l) f + 1 [q(0 - Q(0Y+1) > 0 for i = 0, l,2,. t . ,K - 1, 

hence we have 
(-i)i+1

tJ
(i+1,(0>(-i)('+1)G(i+1)(0. 

what is equivalent to the inequality 

(-i)'Q(i+i)(o>(-iy«(i+i>(o-
Inequality (— l)*q(i+1)(0 > 0 follows directly from assumptions putting on the 

coefficient q(t) of (q). 
In the case p = 0, we have q(0 = Q(0 a nd equality holds in (8). 
Thus, lemma is proved. 

Lemma 3: Let q(t) > 0 for any te(a, b), a < b a,beEl = Ex u (-oo) u (oo). 
Let a, /?(?- 0) be real constants. Then between every two neighbouring zero points of 
arbitrary non-trivial solution y(t) of (q) there lies only one zero point of the function 
a>> + py'. 

Proof: Let tt, t2 e (a, b) be two neighbouring zero points of a solution y(t) of (q)9 

ie.^tx) = 0, y(t2) = 0. It is evident that ocy(tt) + PyXh) * Oandayfe) + PyXh) * 
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^ 0 as well. Suppose that the function ay + Py' has no zero point in the interval 
(ti, t2). We can easy derive a relation 

( 9 ) / y Y_ £%y2 + y'2) 
«y + i»/ j " (ay + py')2 

which holds for any t fulfilling ocy + Py' ?- 0. After integrating (9) from ti to t2 

we obtain zero on the left-hand side and with regard to q(t) > 0 we have a number 
different from zero on the righthand side which is a contradiction. Thus, we have found 
that between two neighbouring zero points tl9 t2 of any non-trivial solution y(t) 
of (q) there lies at least one zero point of the function ay + Py'. If two zero points 
lie between tx and t2 — denote them by x and x — we can easily prove in a similar 
way'as above, considering the relation 

*y + py'X_ -P(y'2 + gy2) 

y ) y2 

that between T, T there lies at least one zero point / of the solution y(t). Hence we 
have 

t! < X < t < X < t2 

which is impossible because tx and t2 are by assumption two neighbouring zero 
points of y(t). Thus, the proof of the lemma is complete. 

Definition 3: Let {tk} denote the sequence and Antk an n-th difference of the sequence 

{/J so that 

A% = tk,Atk = tk+l - tk9 ...,A% = A " " 1 ^ - An~ltk 

k = 0, 1,2,. . .« = 1,2, . . . . 

The sequence {tk} is called monotonic of order n if 

(-l)JAJth^ 0 k = 0, 1,2, . . . J = 1,2, . . . , n . 

If n = oo, then the sequence {th} is called a completely monotonic one. 

Theorem I: Let the function q(t) possess a derivative q'(t)e Mn+i (0, oo), n ^ 2, 
q(t) > 0, q\t) # Ofor t e (0, oo) and q(oo) < oo.Let {th} denote the sequence of zeros 
of any solution y(t) of (q) and {Tk} the sequence of zeros of the linear combination 
ay + Py' of the same solution, whereby for constants a, P there holds a2 -F p2 > 0, 
ap <; 0. / / there is t0 > T0 > 0, then there holds 

(10) (^l)iAi(tk-Tk)>0 / = 0 , l , 2 , . . . , / i k = 0 , l , 2 , . . . . 

Proof: Let the function Q(t) be defined by the formula (2). Because q'(co) = 
= q"(oo) = Q, so it holds ^(oo) = C(oo). By Lemma 1 and Lemma 2 [q(t) - Q(t)~\ e 
6 Af.,.0 (0, oo), Q\t) eMn„t (0, oo) and q(t) ^ Q(t) holds for t e (0, oo). The condi-
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tions of Theorem 4; 1 and Theorem 4; 2 of paper [4], where n is replaced by n — 1, 
are therefore fulfilled. From the introductory remarks and from the formula (1) 
it is evident that the sequence {Tk} is a sequence of zeros of a suitable solution of (Q) 
and conversely. Therefore because of Theorem 4; 2 and Remark 4; 1 of paper [4] 
pg. 57 — 58 and by using (7) we obtain that for any mumber T0 there exists a number 
t0 (sufficiently large) such that (10) holds and (tk — Tk) -> y as k -> oo, where y(^ 0) 
is constant. The number t0 is given by the relation (4; 24) of paper [4]. 

Since q(t) > 0, by Lemma 3, we get that between any pair of neighbouring zeros 
of arbitrary non-trivial solution y(t) of (q) there lies the only zero point of the func
tion ay + Py' and therefore the constant y > 0. If {tk} (resp. {Tk}) denotes the 
sequence of zeros of y(t) (resp. the sequence of zeros of the function ocy 4- fly') 
where y(t) is the above mentioned solution of (q), then tk > Tk for any k. Therefore 
the relation (10) holds and Theorem 1 is proved. 

Remark 1: Let assumptions of Theorem 1 be fulfilled. Let {ik} denote the sequence 
of zeros of either the same solution y(t) of (q), for which the linear combination 
y.y +Py' has the sequence of zeros {Tk}, or the other solution y(t) of the same differ
ential equation (a). From Remark 5; 3 of paper [4] it follows that if t0 is greater 
than or equal to a solution of equation (4; 11) of paper [4] (which is a\so designated 
by t0), then there holds 

(10) ( - lVA'fo - F*)>0 i = 0 , l , 2 , . . . , * k = 0 ,1 ,2 , . . . . 

However, the relation (10) holds if t0 is greater than or equal to the first zero of 
the solution y(t), but this zero point must be greater than the zero point T0 ofay + /Jy\ 

Lemma 4: Let qk(t) > 0, q'k(t) e Mn+l (0, GO), n = 1, I = V 2 and let [qv(t) -
- q2(t)] e Mn + 2 (°> °o).- Let further ctp ^ 0 and also 

„„ e i (1 ).,, + _ % _ + ' * : 3 A ? 
a' + 0V, 2 „« + p'qi 4 („* + fatf • 

Then the function [Qi(l) — Q2(0] is of the class M„(0, oo). 

Proof: According to the supposition of Lemma 4 it holds for t > 0 and i 
= 0, l , . . . , / i + 1 

(12) q,(t) ?k q2(t) 

and 

(13) Og( - l ) , . 7 < 1
, + 1 >(Og(- l ) , «7i ' + 1 ) (0 

thus, there holds | t7i'+l)(0 I = I 1i + 1 )(0 I • Hence it follows that 

"fl^TT^ a2 + P2q2 
(14) i = 0 ,1 , . . . ,n + 1. 
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According to Lemma 2 of paper [5] the relation 

[ n(D l ( i » I * I n(*i,k) 

_л 
2„Л a z + /Jza 

holds for p + i < A. + 2, where Q , N, /, vJtk are suitable numbers, whose detailed 
specification is not necessary in our case. From term-by-term comparison of the 
•expression (15) for the functions qx(t), q2(0 because of (14) there follows the in
equality 

(iб) Í(.° 
a2 + /?2a, 

Furthermore, we have the identity 

(P) I ( __ 
\ a 2 + / ß2 2 

(p) 

(,7)/f'_-__Y_-_Г. f t'V_îL_ył,,.f____ 
IV- +ДYJ- Í+Ѓ 2 ,J Å V ' Л - + ŕ Y j V« !+ŕY 

(P-O 

From lemma 2 of paper [5] it follows that ~- qя . e ^ i + i (0, oo) and because 
a 2 + P2q* 

of this all members of the sum on the right-hand side of (17) have the same sign, 
namely ( — l ) p + 1 . Then because of (16) there holds 

)(p)\ 

<18) 
IW+ЃяJ 

- i 

lVa2 + A 2 j a2+/?2aj 

For the (/ + l)-th derivative i = 0, 1, 2,. . . , n — 1 of the function QA(0 we obtain 

_(*> ^''-^M^r^^)'^ + 

'(19) +> g„ 
( i + 1 ) 

« 2 + i»2qA 

Using term-by-term comparison of the right sides of (19) for A = 1, 2 and consid
ering that a/? <L 0 we get because of (16) and (18) 

<20) | Q(/+1)(0 I __ I fi(2l+,)(0 I / = 0, l,2,.. .,/i - 1. 

Because by lemma 1, QK0 e ^ « - i (0> °°X we obtain from (20) the inequalities 

(21) 0 ^ (-1) ' GV + 1 ) (0 -- ( - 1 ) ' 2(2 + 1 ) ( 0 / = 0, 1,..., n - 1. 

The inequality 0 g Q2(0 = 2 i ( 0 follows with regard to (14) directly, using term-

by-term comparison [11] for A = 1, 2 and Lemma 2 of paper [3]. Thus the proof 

is finished. 
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Lemma 5: Let the conditions of Lemma 4 be satisfied and let qi(0 ^ qi(l) for all 
t E (0, oo). Then there holds 

(22) (-l)'e(i°(0 > (-iyQ2°(0 / = 0, l,...,«;/e(0,oo). 

Proof: Since qi(0 < q_(0 for t e (0, oo), because of the conditions of Lemma 5, 
we have q[(t) < q-(0 anc- by lemma 0; 3 of paper [4] also 

(23) ( - i y q i , ) ( o > ( - i y q 2 0 ( o ^ o 

for i = 0, V . . . , n + V le(0, oo), and therefore the non-strict inequalities in (14), 
(16), (18), (20) and non-strict inequalities on the right side of (21) can be replaced by 
strict ones with the possible exception of the inequalities for the highest derivatives. 
From (19) it may be seen, however, that in (20) and in the right side of (21) the sharp 
inequality also remains for i -= n — 1; thus (22) holds for i = 1, 2 , . . . , n. The validity 
of (22) for i = 0 may be seen directly from (11) by means of the relations (14). 

Theorem 2: Let the function qi(0, tresp. q2(t) possess a derivative q[(t) e Mn+l (0, oo), 
resp. q2(t) e Mn(0, oo) n ^ 3 and further let [qt(t) - q2(t)~\ e Mn + 1(0, oo), qt(t)> 
> q2(t) ^ 0 hold for t e (0, oo) and qi(oo) -= q2(oo) < oo. 

Let {txfk} for X = V 2 denote the sequence of zeros of any solution yk(t) of the 
differential equation 

07;.) yl + qx(t) y = o 

and {T)„k\ denote the sequence of zeros of the function ay + j3y', where fx(t) is either 
the solution yx(t) of {qx) or any other solution of (qx) and a, fi are constants with the 
properties a2 + jS2 > 0, a/? g 0. 

Then for any fixed choice of T2,0> 0 and any numbers y e <0, oo), <5 e <0, oo) 
there exist numbers T1?0, tl0 sufficiently large so that 

(24) ( - l ) ' A , ( - . p J k - r 2 . „ > 0 /' = 0, 1 , . . . , » - 2 , * = 0 , 1 , . . . . 

(_D--iA-1(r1 . t-r2 . t)^o, 

(25) (Tltk-T2,k)~*y for k ^ oo 

and furthermore 

(26) ( - l y ' A X ? , , * - T2,*)>0 / = 0, 1 , . . . , » - 1,* = 0, i , . . . 

(27) (tuk~ T2tk)-*S for k-+co 

OO 

if and only if the integral J [qi(0 — q2(0] dt converges. 

Proof: Let the functions Qi(0, Qz(t) be defined by the formula (11). According 
to the hypotheses qi(oo) = q2(oo) < oo. Therefore ql(oo) = ql(co) = 0, A = 1, 2 
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and q.(oo) = q2(oo) = Qlvoo) = Q2(oo). By Lemma 1 we have Q\(t)e Mw_i(0, oc), 
Q2(0 e M„_2(0, oo). By Lemmas 1 and 4 there holds for t e (0, oo) and / = 0, 1, ..., 
n - 1 

(28) (~o l"Qi°(o>(-iye(2)(o. 

The conditions of Theorems 4; 1 and 4; 2 of [4], where Q is changed to Q2, q to Q 
00 

and n to n — 2 are therefore satisfied. The integral J* [qA(0 — 2 A ( 0 ] d/ converges 

by Lemma l. Furthermore the integral J [Q i(0 - Q2(0] d/ converges if and only 
00 

if the integral J [qi(0 — q2\0] dt converges. From Theorems 4; 1 and 4; 2 of paper 
[4], the assertions (24) and (25) follow. The relations (26) and (27) follow also from 
Theorems 4; 1 and 4; '2 and Remark 4; 1 of paper [4], where q is changed to qi and Q 

oo 

to Q2. The integral j [qj(0 — Q2(0] dl converges because of Lemma 1 if and only 
OO 

if the integral J" [q t(0 — q2(0] dt does so. 

Remark 2: If in the assumptions of Theorem 2 there holds q[(t)e M.. + 2(0, oo), 
then (24) holds in the form 

(29) ( - i y ' ( P i , f c - T2fk)>0 / = 0, l ,2, . . . , /7 - I k = 0, 1,..., 

this follows from Remark 4; 1 of paper [4] because in this case Q[(t)e Mn(0, x ) . 

Remark 3 : If y > 0, d > 0, then because of Theorem 4; 2 of [4] the identity 
qx(t) == q2(t) for t e (a, oo) a > 0 can occurr provided q[(t) = 0 for t e (0, co). 

2. In this part we give an application of the preceding results to the Bessel differ
ential equation 

r '/ (30v) y" + 11 • f y = 0, t > 0, 

the fundamental system of solutions of which is formed by the functions 

(^ntJjv(t%(^ntjYv(t). 
Let {tv,J denote a sequence of zeros of any non-trivial solution yv(0of (30v) and 

let {TvJ[} denote a sequence of zeros of the function a£v + /?£v, where #v(0 is either 
the above-mentioned solution j v ( 0 or any other non-trivial solution of (30v), where 
a, /? are real constants with property a2 + j52 > 0. 

Let {iVtk}, resp. {TVtk} denote a sequence of zeros of the solution yv(0 of (30v), 
resp. zeros of the function otyv + pyv, oc2 + fi2 > 0, whereby yv(0 may but need not 
be identical with the above-mentioned solution yv(0-
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Lee Lorch and P. Szego showed (see [3] pg. 63, 72) that if tVt0 < iVt0, then 

for | v | > — the sequence {lVjfc — tVtk} is completely monotonic and there holds 

(31) ( - i y A U , * - > v , * ) > 0 i,k = 0 , 1 , 2 , . . . . 

In paper [5] J. Vosmansky showed that for the sequences of differences of 
extremants there holds also a relation analogous to (31). 

According to the assertion of the corollary of Theorem of paper [1] we obtain 
directly that in case ajS = 0 there holds also 

(32) ( - 1 ) ' A'(Tv,k - TVik) > 0 / = 0, 1, 2, 

1_ 
2 

In paper [3] it is further shown that for v > jx > — and any fixed sequences 

{fn,k}i {U,k} there exists an integer r such that 

(33) ( - I ) ' A%fk+r - tVtk) > 0 i, k = 0, 1, 2, ... 

In paper [4] pg. 66 it is shown that the relation (33) follows directly from Theorem 4; 1 

of paper [4] because in case v > \x ̂  — there holds 

oo 

(34) q,(t) - qv(t) = (v2 - »2)y2 e M ^ O , co); 0 < j [ ^ ( 0 - qM dt < oo. 

The following theorem includes all preceding results and also Theorem 6;1 of 
paper [4] as special cases. 

Theorem 3: Let v, \i be any real numbers satisfying v > p. ^ -~-. Let {tvk}, resp. 

{fn,k} denote a sequence of zeros of any solution yv(t), resp. y^(t) of the differential 
equation (30v), resp. (30M). Let { l^J denote a sequence of zeros of the solution yjif) 
0f(3O„), where y^t) may but need not be identical with y»(t). Let {TVtk}, resp. { 7 ^ } 
denote a sequence of zeros of the function ayv + f}yv, resp. ocy^ + py^9 where a, /? 

are real constants with the properties a2 + />2 > 0, ajS = 0. Let yv = v2 , 

2 1 

y, = v2 - T -
Then for any pair of numbers 2e(0, oo) and tVtOe(0, oo), resp. Tv,o^(y^, oo) there 
exists a number t^0, resp. 7;> 0 , i^ t0 such that 

(35) (-1)1 A%^k - tVtk) > 0 i, k = 0, 1, 2 , . . . 

(tf.k - tv,k)-+ A /0 rk~>oo, 
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(36> (-1)'A'tf,.* - Tv,*) > 0 i,k = 0, 1, 2, . . . 

(^,fc — rvJk) -+ A / o r & _• oo, 

(37) ( - iy A«(rM,fc - Fv,fc) > 0 /, k = 0, 1, 2, . . . 

(^/i,* - ^v.ft) ~* ̂  for k-+ cc. 

The numbers fM>0, ^ f0» ^M,o #>*£ **he solutions of the corresponding equations (4;24), 
(4;11) resp. of paper [4]. 

Proof: Since q'v(t)e M^O, oo), ^ ( O e MJO, oo), ?v(o°) = qM(oo) = 1 and (34) 
holds, the conditions of Theorems 4;1 and 4;2 of paper [4] are satisfied for n — oo 
and q changed to qv, Q changed to q^. Hence (35) follows directly. Assertions (36) 
and (37) follow analogously from Theorem 2, where the interval (0, oo) of the variable/ 
is replaced by interval (yM, oo). 

Remark 4: For the Bessel equation the function Qv(t) is of the form 

r, . 2 / ? 4 ~ T ) _ 3pyv QM-1-Ч + 
'' ,• [г+ß>-Щ .ү+ŕ-Щ 

Remark 5: Provided fi> —9itis possible to put \i = v in the preceding theorem, 

so that the relations (35) —(37) are then related to the sequences of zeros of the 
same or different solutions of the same Bessel equation, resp. the sequences of zeros 
of the functions otyv 4- pyv9 where yv(t) are the same or different solutions of the same 
Bessel equation with exception of the case k = 0 in (35) and (37), when {tvk} = {t^} 
and {FM,J = {TVtk}. 

Theorem 4: For v > — let {/v,fc} denote the sequence of zeros of any non-trivial 

solution yv(t) of(30v). Let {TVtk} denote the sequence of zeros of the function ocyv 4- />yv, 
where yv(t) is the abovementioned solution andot, /? are real constants with the properties 

(*P S 0, P # 0. 7f/0 > T0> yv9 (yv = v2 - — J, then 

(38) (-1)1 A'(/v>Jk - TVtk) > 0 /,k = 0, V ... 

Proof: Theorem 4 is a direct consequence of Theorem 1 for n = oo and te(yv, oo) 
because qv(t) e M^(yvy oo), qv(t) > 0 t > yv and qv(oo) = 1. 

Concluding this paper I should like to express my gratitude to RNDr. Jaromir 
Vosmansky, CSc. for his valuable remarks and advice. 
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