
Archivum Mathematicum

Josef Zapletal
On the characterization of semilattices satisfying the descending chain condition and
some remarks on distinguishing subsets

Archivum Mathematicum, Vol. 10 (1974), No. 2, 123--128

Persistent URL: http://dml.cz/dmlcz/104824

Terms of use:
© Masaryk University, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/104824
http://project.dml.cz


ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS, 
X: 123—128, 1974 

ON THE CHARACTERIZATION 
OF SEMILATTICES SATISFYING 

THE DESCENDING CHAIN CONDITION 
AND SOME REMARKS ON DISTINGUISHING 

SUBSETS 

JOSEF ZAPLETAL, BRNO 

(Received July 31, 1973) 

1. I N T R O D U C T I O N 

In this paper one internal characterization of semilattices satisfying the descending 
chain condition is given. Further the distinguishing subsets of semigroups are 
constructed. The results concerning the distinguishing subsets of semilattices satisfying 
the maximum condition are given in [4] . In the introductory part we give some 
known definitions and results. 

1.1. Definition. Let G be an ordered set, E g G. The set E is called an initial 
segment of G if, for all elements xeE and y e G, the condition y g x implies y e E. 

1.2* Lemma. Let G be a lower semilattice' J g G. Then J is an ideal in G iff J is an 
initial segment. 

Proof. Let J g G be an ideal. Let x e J, y e G, y ^ x. Then x = x A y e J. 
Hence J is an initial segment in G. 

Let J be an initial segment in G. Let x e J, y e G be arbitrary. Then we have 
x A y S * and hence x A y e J and J is an ideal in G. 

1.3. Definition. Let G be an ordered set and let H be a well-ordered set. A one-one 
isotone mapping (p of G into H is called a good extension of G. 

Theorem (V. NovAk [1], Theorem 2.3) — Let G be an ordered set. Then G has 
a good extension if and only if G satisfies the descending chain condition. 

1.4. Definition. Let G be a semigroup, L g G its subset. For x, y e G we put 
(x,y)eE{G)L) if, for any u, veG, the condition uxveL is equivalent to uyveL. 

1.5. Remark. It is easy to prove that the relation 3{G,D is a congruence-relation on G 
(See [2], [3]). 
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1.6. Definition. Let G a semigroup, L g G a set, u, v e G. We say that the elements 
x, 7 6 G, x # j , are distinguished by u and v with respet to L if the condition uxv e L, 
uyv e L, are not equivalent. We say that L distinguishes G if, for any x, y e G, x 7-= v, 
there are w, v e G such that x, y are distinguished by u and v with respet to L. 

2. A C H A R A C T E R I Z A T I O N O F S E M I L A T T I C E S S A T I S F Y I N G 

T H E D E S C E N D I N G C H A I N C O N D I T I O N 

2.1. Theorem. Let G be a semigroup satisfying the folowing conditions: 

1. There exists a (transfinite or finite) sequence (at)t < 9 (where & is an ordinal) 
in which each element of G appears precisely once such that for every a < B the set 
{at\i < a} is an ideal in G. 

2. For every xe G there exists a natural number n(x) ^> 2 such that xn(x) = x. 

Then G is a lower semilattice satisfying the descending chain condition. 

Proof, a) First we prove that all elements of G are idempotent. 

Let xeG. Let X < 5 be the least ordinal number such that xe Jk = {a.; 1 < X}. 
We show that X is an isolated ordinal number. Let us admit that A is a limit ordinal 
number. Then according to the condition 1. Jk — \J JM. Hence x e J^ for \i < X and 

n < x 
it is a contradiction with the minimality of X. Therefore X is isolated. 

Simultaneously xeJki x^Jk^x. For n(x) — 2 it follows x2 = x and x is an 
idempotent element in G. Let n(x) > 2. From the definition of the ideal we have 

xn(x)-2 x __ x»(x)-i _ j ^ According to the condition 1. it is J;, — Jk_t = {x}. 
Hence**30"1 e Jk_t o r x ^ " 1 e {x}. Let x"^"1 e Jk_i. Thenx"0 0"1 . x = xe Jk.t 
which is a contradiction with the assumption that x£JA_t. Hence xw(X)_1 = x. 
Analogously it can be proved that x"(x)~k = x for every k for which n(x) — k ^ 2. 

b) We prove that under the conditions 1. and 2. the semigroup operation is 
commutative. 

Let us suppose that there exist x, ye G such that xy 7-= yx. Let X < $ be the 
least ordinal number with the property xy e Jk. By a), X is isolated. We can suppose, 
without loss of generality, that yx $ Jk. If we had xy e Jk, there would exist an iso
lated ordinal number a < X such that yx e Ja and xy $ Ja and the whole following 
part of proof would be done analogously. Thus, we suppose xy e Jk yx$ Jk. The 
condition xy e Jk implies y(xy) yxe Jk. In the part a) of the proof we have proved 
that every element x e G is idempotent. Hence yxyyx = yxyx = yx. We have 
yxeJk which is a contradiction to the assumption that yx$Jk. Thus we have 
proved that there are no elements x, y e G for which xy # yx holds. Such semigroup — 
operation is commutative. 
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From the parts a) and b) this proof it follows that G is an idempotent and com
mutative semigroup and hence a semilattice. Let the binary semigroup operation be 
written in the form of infimum ( A ). Then G is a lower semilattice. We prove that the 
semilattice-ordering of G has a good extension. 

c) If k 7* ft, then ax T£ a^. We prove that ax A atl = aM implies / i g l Let us 
admit I < /x. Then JA+1 contains ak and does not contain a^. But JA + 1 contains also 
ax A an — an a n d ^ is a contradiction. Hence there exists a good extension of the 
primary partial ordering. 

Using the part c) of this proof and NovAk's Theorem (see the introduction) we 
have that G satisfies the descending chain condition. 

2.2. Theorem. Let G be a semigroup. Then the following statements are equivalent: 

A. G is a lower semilattice satisfying the descending chain condition. 

B. a) There exists a (transfinite or finite) sequence (a,)t<3 in which each 
element of G appears precisely once such that for every a < 9 the set 

{a.; i < a} is an ideal in G. 

b) For every xeG there exists a natural number n(x) _t 2 such that xn{x) = x. 

Proof. The statement B implies A according to Theorem 2.L A implies B follows 
from [1] Theorem 2.3. 

2.3. Theorem. Let G be a semigroup, I g G an ideal in G. Let L distinguish I. Let 
the following conditions be valid for G: 

1. There exists a (transfinite or finite) sequence (a , )K 3 in which each-element 
of G — I appears precisely once such that Jx = I u {a.; i < a} is an ideal in G for 
every a < 9. 

2. x3 = xfor every x e G — I. 

Then there exists L g G distinguishing G. 

Proof. First, we carry out some preparatory considerations. 

a) An arbitrary union of ideals of a semigroup is an ideal in this semigroup. 
Let us have an element xe\J Jx. For arbitrary a, be G, ax, xb e \J Jx. Indeed, 

xeK xeK 

let x0 be an index from K for which xe JXQ. For arbitrary a, be G ax, xbe JXQ 

and hence ax, xb e\J Jx. 
xeK 

b) In this part of the proof we construct distinguishing subsets for the given 
sequence of ideals satisfying the conditions of this Theorem. 

The ideal I0 has a distinguishing subset L0 according to the assumption of the 
Theorem. 
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Let 0 < a < 9 be an ordinal. Suppose that, for each X < a, we have defined 
a distinguishing subset LA of JA satisfying the following condition: If X < JI < a 
then Lx = Jxc\ L... Then we define La in the following way: 

Let a be isolated. Then Ja_t is an ideal in G such that La_! distinguishes Ja_i. 
Then the setsL a_! o r L a _ ! u {aa_i} distinguish Ja = Ja_t u {aa_i}. 

Indeed, if there exist for every xeJa_t elements ux, vxeLa_x such that La_t 

contains precisely one of the elements uxxvx, uxaa_x vx then both sets La_i, La_X u 
u {aa_i} distinguish the ideal Ja. We define La to be one of these sets. 

If there exists x e Ja_ x such that for every u, v e Ja_ i the set La_ x contains either 
both elements uxv, uaa„xv or none, then there exists precisely one such element x. 
We have aa_xxaa„x e Ja_i- If aa_ixaa_i e L a _ , we define the distinguishing subset 
La of the ideal Ja to be La_i. This is possible for aa_iaa_jaa_i = aa_i according 
to assumption 2) of this theorem and according to aa_j $La_x. Therefore the set 
La_i distinquishes Ja. If aa_!xaa_i <£La_i then we define the distinguishing set 
La of Ja to be La_i u {aa_i}. This is possible because aa-xxaa_x e Ja_i and hence 
aa_!xaa_i # a a_ia a_!a a_i = aa_i and simultaneously aa_x eLa = La_X u {aa_i}. 

If a is a limit number then Ja = U v̂ anc* we define the distinguishing subset La 
v < a 

to be the union U Ly. 
v < a 

If X < a < 9 then Lx = Jx n La. We prove it by induction. For each ordinal 
a we denote by V(a) the following assertion: If X < a then LA = JA n La. 

Then V(0) holds trivially as there is no ordinal X < 0. 

Let us have 0 < a < 9 and suppose that V(P) holds for each /?, 0 g ft < a. 
If a is isolated and X = a — 1 then we have La = La_i or La = La_! u {aa_j}, 
where aa„xeJa. ThenL a _ t = Ja_x n L a . 

If a is isolated and X < a — 1 then LA = JA n La_! = JA n (Ja_i n La) = 
= (JAn Ja_i)nLa = JAnLa. 

If a is a limit ordinal then JA n La = JA n ( U A) ~ U (^A n A) = U (Jx n ^ 0 u 

i < a i < a k < i < a 
u U (JA n A) = Lx, Thus, V(a) holds. 

Let a be a limit number. Then Ja = U v̂ is a n ideal by (a). Let us admit that 
v < a 

La = \J Lv does not distinguish Ja. It means there exists at least one pair x, y e Ja 
v < a 

such that it holds for all elements u, v e Ja, simultaneously either uxv, uyveLa or 
uxv, uyv$La. Let us consider the first case. The second is analogous. 

It holds x, yeJa •= U Jy> therefore there exists v0 < a such that x, yeJv . 
v < a 

Since JVo has a distinguishing subset LVo, there exist u0, V0EJVQ such that either 
u0xv0 £LVo, uoy^o e^v0

 o r w o X t ? o e Lv , uoyt^o $Ly - We consider the first case again, 
the second being analogous. Since x, ye JVQ then also u0xv0 e JVo and u0yv0 e JVo. 
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Simultaneously u0xv0 £ LVo, u0yv0 e LVQ and u0yv0 e La = \J Lv. From the construc-
v < a 

tion of distinguishing subsets in the part b) and from the condition u0xv0 £ Lv it 
follows that u0xv0 is an element of no distinguishing subset Lxfor x §: v0 and hence 
u0xv0 does not lie in La = (J Lv and La distinguishes Ja. 

v < a 

2.4 Example. Let S be a lower semillattice with the operation A satisfying the 
descending chain condition with the least element e. Further let G be the free idempotent 
monoid with the operation o and with the unit e and generators a, b. Let G n S = {e}. 
Let us put & = G u S and let us define 

e if x = e = y 
x if y = e 7- x 
y if x = e 9- y 

x .y = \x A y if x 7-= e # y; x,y e S 
x o y if x T* e =£ y; x, y e G 
x ' if x 7-= e 7* y; x e G, y e S 
y if x 7- e 9- y; x e S, y e G 

Then the following statements hold: 

(i) . is a monoidal operation on**?. 
(ii) G is an ideal in <§. , 

(iii) The set L0 = {a . b . a, b . a . b] distinguishes G. 
(iv) There exists L Q & such that L distinguishes (S. 

Proof, (i) Evidently, e is the unit in ^ . We must prove that the operation © is 
associative. The following evidently holds from the definition of monoidal operation: 
Let xe G, y eS then x .y = x = y . x. If the elements u, v, we<§ are all from G 
or from S then (u. v). w — u . (v . w). If one of elements a, b, c — let us denote it 
by z — is in G and the remaining two are in S then certainly (u. v). w = z = u. 
. (v . w). If two of the elements u, v, w are in G then let us denote their product by z. 
We have again (u. v). w = z = u . (v . w). 

(ii) The second statement follows from the definition of the monoidal operation 
o n ^ . 

(iii) We find, for every two elements x, y e G, x 7-= y, the elements u, v such that 
either uxv e L0, uyv $ L0 or uxv £ L0, uyv e L0. We choose all the possible unordered 
pairs x, y e G and for every pair the respective elements u, veG. 

x,y u,v u. x .v u. y .v 

e, a b,b ЬфL0 b. a ЉeL0 

e,b a, a aфL0 a Љ .aeL0 

e,a.b e, a aфL0 a Љ. ąeL0 
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e9b. a e9Ь bфL0 b. a ЉєL0 

e9a Љ. a e9e eфL0 a Љ. aєL0 

e9b .a. b e9e eфL0 b. a ЉєL0 

a9 b a9 a aфL0 a Љ ,aєL0 

a9a Љ e9a aфL0 a Љ. aєL0 

a9b ,a e9Ь a ЉфL0 b .a ЉєL0 

a9a Љ . . a ere aфL0 a Љ. aєL0 

a9b. a, Љ e9e aфL0 b .a ЉєL0 

b9a Љ e, a b. aфL0 a Љ. aєL0 

b9b .a eЉ bфL0 b. a ЉєL0 

b9a Љ, . a e9e bфL0 a Љ . aєL0 

b9b.a, Љ e9e bфL0 b .a. bєL0 

a Љ9b, . a e9Ъ a ЉфL0 b .a ЉєL0 

a Љ9a, Љ. a e9e a ЉфL0 a Љ. aєL0 

a Љ9b . a . b e9e a ЉфL0 b. a ЉєL0 

b .a,a Љ. . a e9e b .aфL0 a Љ. aєL0 

b. a9b . a. Љ e9e b. aфL0 b. aЉєL0 

a Љ. a, Ж a.b b9 e b. aфL0 b. a ЉєL0 

We have chosen for every pair x9 y from G Some elements u9 v such that uxv $ L0, 
uyveL0. Hence L0 distinguishes G. (iv) The monoid ̂  satisfies the assumptions of the 
Theorem 2.3. Therefore there exists a distinguishing subset L in #. 
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