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DELAY DIFFERENTIAL EQUATION 

OF THE FOURTH ORDER 

JAN FUTAK,2ilina 

(Received January 29, 1974) 

In the paper [1] there is investigated a delay differential equation of the 4th order. 
In the papers [2], [3], [5] there are introduced some properties of solutions found 
for ordinary differential equations of the 3rd and 4th orders. This paper is a generaliza
tion of several results of [1], [2], [3] and [5]. 

In this paper we shall be concerned with the oscillation properties of solutions of 
a delay differential equation of the form: 

(1) /4> + p(t) y + q(t) y' + r(t) y + y(t) £ Qt(t) Ffy[hff)J) = g(t). 
1=1 

We shall suppose that the functions p(t), q(t), r(t), g(t), Qi(t),hi(t), / = 1, 2,.. . , n 
belong to the class C0(J), where J= <t0, oo) and n is a positive integer. Moreover 
we suppose that 

inf [t - hi(ty] ^ d > 0, ht(t) -> + oo, t -• oo, 
tej 

Ft(z) e C0(- oo, oo), Ft(z) £ 0, i = 1, 2, ..., «. 

A fundamental initial problem (next only initial problem) is understood to be the 
following problem (see [4] pg. 14): Let <P(t) be a function defined and continuous 
on the initial set 

£ r o =U4» El
t0 = (Mhi(t),t0y 

i=i 

and let y0
k\ k = 1, 2, 3 be arbitrary real numbers. We find such a solution y(t) of (1) 

on J that fulfils initial conditions: 

(2) y(t0) = <P(t0) = y0, /k)(t0 + 0) = y0
k\ k = 1, 2, 3, 

X O s *(/) for teEt0. 

Existence and uniqueness of the solution of the initial problem (1), (2) is proved 
in paper [1]. 

oo 

Suppose next that J I g(t) \dt < oo. 
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Lemma:L et q(t) e Ct(J), q(t) ^ 0 and let for teJ there hold: 
2 - | / > ( 0 l £ 0 , 2 r ( 0 - | p ( 0 | - ? ' ( 0 - U ( 0 U 0 , Qf(0^0, i=l ,2 , . . . , / i . 

If for the solution y(t) of the initial problem (1), (2) there holds 

00 

(3) H W < o ) ] + y | l g ( O l d t g l C < 0 , 
to 

where # 0 ( 0 ] - K 0 / ( 0 - y'(0y"X0 + y ?(0y2(0> then zero points of functions 

y(t) and y"(t) are interlaced. 
Proof of this lemma is done analogously as in paper [1]. 

Theorem 1. Let assumptions of Lemma be fulfilled and let for teJ furthermore 
there hold: 

p(t)eCt(J), p(t) £ 0, p'(t) ^ 0, r(t) ^ 0, Qt(t) ̂  m > 0, / = 1, 2, . . . , n and let 
the functions Ft(z), i = 1, 2, . . . , n be increasing. Then every solution of the initial 
problem (1), (2) fulfilling (3) is oscillatory on J. 

Proof: Let the solution y(t) of the initial problem (1), (2) would be non-oscillatory. 
Then with regard to the functions y(t), y'(t) the following cases may occur: 

1. y(t) is non-oscillatory and y'(t) is oscillatory on /; 2. y(t) > 0, y'(t) ^ 0; 
3. y(t) > 0, y'(t) = 0; 4. y(t) < 0, y'(t) S 0; 5. y(t) < 0, y'(t) ^ 0, for te (tl9 oo) 
tteJ. 

We shall prove that none of the above-mentioned cases may occur: 
1. If y(t) is non-oscillatory and y'(t) is oscillatory on J, then y"(t) is oscillatory on / 

as well. This is a contradiction with the fact that y(t) is non-oscillatory. 
2. With regard to assumptions of theorem from (1) there follows: 

f*\t) < | g(t) | - p(t) y"(t) - my(tl) £ /^l>.0i)]). 
1=1 

After integrating this inequality from tt to t(*ztx) and arranging, we obtain: 
t t 

ym(t) <z y-(».) + j\g(s)\ds + pitO/ih) - K'MO + jp'(s)y'(s)ds -
- l - i 

-my^ZFfoMhMt-h), 
1=1 

from this inequality we have that ym(t) -• — oo for t --> oo. This is in contradiction 
with the fact that y(t) > 0. 

3. If we multiply equation (1) by y(t), use an inequality ± lab £> I a I 0 + *2) 
and integrate from t0 to t(>tt *£ t0), we obtain: 
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t t 

(4) tf|>(0] ^ #I>('o)] + y f I «(s) I d« - f (i - y I*(-) l) y%) ds -
.0 -0 

f 

- J[K«)-yIK-)l - y«'(-) - yI*(-).]/(-)* -
f 

- Z J/(-)fii(»)-?iO'[*i(-)])d-. 
to 

% From this inequality it follows that the function #[y(0] is bounded from above with 
a decreasing function. Furthermore from (3) it holds that #[y(to)] < 0 and there
fore #[y(ti)] < 0. It means that #[y(0] < 0 for t e <tt, GO) 

Consider / ( O as follows: 
a) Let / ( O S 0 for t e <t2, oo), t2 ^ tt. But it means that y(t) is concave and 

non-increasing. Therefore there exists such a point t3 e <f2, oo), that j>(t3) = 0> which 
is a contradiction with y(t) > 0. 

b) Let y"(t) ^ 0 for t e <t2, oo), t2 ^ tx. As #[y(0] < 0 on <fx, oo), andXO > 0, 
y'(t) S 0, y"(t) ^ 0, it must be ym(t) < 0 for te <t2, oo). With regard to signs of the 
functions XO, y'(t), / ( t ) , q(t) and (4), (3) there holds y(t)/(0 S #[y(0] < K, so 

K 
that j ^ ( 0 < -7-7- Because limXO = c ^ 0, so for any e > 0 there holds ^"(O < 

y(0 --•oo 

K 
< for t sufficiently large. Hence it follows that, lim / ( f ) = — oo, which is 

C + B f^oo 

a contradiction. 
c) Let / ( 0 be oscillatory for t e <t2, oo), t2 § tt. With regard to lemma it means 

that the function y(t) is also oscillatory for t e <t2, oo), which is in contradiction with 
y(0 > 0. 

The cases 4, and 5, can be proved similarly as the cases 2, and 3. 

Theorem 2. Let the assumptions of lemma be fulfilled and let for teJ there hold: 
oo 

P(0 € Ct(J), p(t) ^ 0, p'(t) ^ 0, r(t) ^ 0 and \r(t) dt = + oo. 

Then every solution y(t) of the initial problem (1), (2) fulfilling (3) is oscillatory on /• 
Proof: Under assumption that the solution y(t) of the initial problem (1), (2) 

is non-oscillatory, five cases may occur similarly as in the proof of theorem 1:1. y(t) 
is non-oscillatory and / ( t ) is oscillatory on / ; 2. y(t) > 0, y'(t) ;> 0; 3. XO > °> 
/ ( 0 ^ 0; 4. XO < 0, / ( 0 £ 0; 5. XO < 0, / ( 0 ^ 0; for t e Oi, «>), h e / . 

We shall only prove the case 2. 
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From the differential equation (1) there holds 

/*\t)1k\g(t)\-p(t)y\t)-r(t)y(t\ 

from that after integrating from t± to t(^ti) we have: 
t 

y'"(t) < y"(..) + f | g(s) | ds + p(tt)/(..) - ,(. .) ľ | g(s) | ds + p(tl) /( í .) - yití) ľ Қs) ds. 

From the last inequality there holds ym(t) -> — oo for t -> oo. It is a contradiction 
with y(t) > 0 for t e (tt, oo). The case 4, can be proved similarly. 

The cases 1, 3, 5, can be proved similarly as in theorem 1. * 

Theorem 3. Let for t e J assumptions of lemma hold. Let instead of (3) there hold: 

0') I!Wto)] + y | l g ( t ) | d t ^ 0 . 
to 

00 

Suppose furthermore that § q(t)dt = +oo. Then every solution y(t) of the initial 
to 

problem (1), (2) fulfilling (3') is oscillatory on J. 
Proof: Let y(t) be a non-oscillatory solution of the initial problem (1), (2). Then 

y(t) # 0 for t e <f x , oo), where tx e J. Suppose that y(t) > 0 for t e (tt, oo). If we 
use assumptions of the theorem we obtain from (4) an inequality H[y(0] -S 0> hence 
for t e <*!, oo) there follows: 

By integrating the last inequality from tt to t(^. tt), we obtain 

(5) /(0 . /('») i L ) d 3 

y"(0 from which there holds: lim ,V = -oo. It means that there exists t2 e <tx, oo) 
t-*co y(v 

f(t) 
such that >/ < 0 for t e <t2, oo). 

y(t) 
Because Xt) > 0> so y"(t) < 0 for t e <*2, oo). With regard to the function y'(t) 

wo cases may occur: 
a) There exists t3 e <t2, oo) such that y'(r3) < 0. 
b) y'(0> Ofor tG<t2,oo). 
In the a) case it leads to existence lim ><t) = -°o> which is a contradiction with 

t-*oo 

y(t)>0,te<tt,co). 
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In the b) case for any t e <f2> °°) there holds: 

y(h) y(t) 

It is evident from the last inequality with regard to (5) that y"(t) -> — oo for t -> oo. 
That is also a contradiction with y(t) > 0, t e (tx, oo). 

The proof of the cases when^(0 < 0 for t e <tt, oo) can be easily done in a similar 
way. 

REFERENCES 

[1] Futak, J.: On the properties solutions of nonlinear differential equations of the fourth order with 
delay. Acta Fac. R. Nat. Univ. Comen., Math. 1974, 31. 

[2] Fut&k, J., Soltes, P.: O nulovych bodoch rieseni linedrnej diferencidlnej rovnice 4. rddu. Prace 
a studie V§D 6. 1, 1974. 

[3] Lazer, A. C: The behavior of solutions of the differential equation ym +p(x)y ' + q(x) y -= 0. 
Pacific Journal of Math., Vol. 17, No. 3., 1966, 435—466. 

[4] El'sgorc, L. E., Norkin, S. B.: Vvedenie v teoriju differenciatnych uravnenij s otklonjajusdimsja 
argumentom. Izdaterstvo „Nauka", Moskva 1971. 

[5] Soltes, P.: A remark on the oscillatory behaviour of solutions of differential equations of order 
3 and 4. Archivum Math., Brno (v tladi). 

J. Futak 
010 88 2ilina, Marxa—Engelsa 25 
Czechoslovakia 

29 


		webmaster@dml.cz
	2012-05-09T15:49:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




