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1. Consider a differential equation
Py + ft,y,¥) =0,
where p(t) € C°[a, ), p(t) > 0 on [a, ),
f(t, y, v) is continuous on D = {(t, y, v): t € [a, ),
—00 < y,v < o}, f(t,y,v)y > 0 for y # 0.

(D

We do not suppose the uniqueness of the Cauchy initial problem for the equation (1).
In all the work we shall omit the trivial solution y(¢) = 0 from our considerations.
A solution y of (1) is called oscillatory if there exists a sequence of numbers {£,}¥
suchthata < 4, < 1,1, ) =0, (1) #0forte(f, they), k=1,2,...,lim¢ =
. t— a0
= o0.

Let y be an oscillatory solution of (1) and {#,}7 the sequence of its zeros. Then
there exists one and only one sequence of numbers {7} called the sequence of
extremants of y, such that #, < 7, < 41, J'(te) = 0 holds (see [1] or Lemma 1
in the present work).

The work [1] deals with some asymptotic properties of the sequence {4,}7, 4, =
= t,41 — t,. It was shown that under the assumptions

[f&&,y,y)| 2 a@®)|y], (@&»))eD,
lim ¢(t) = oo, p(t) £ M = const. < ©

t— o

or
|f(t,y,y)| 2q9®|y|, @ »¥)eD,
limg(t) =0, p(t)= M = const. >0

t— o0

the relation lim 4, = 0 or lim 4, = oo holds, respectively. In the present work it will
k= ® k=0
be shown that these assumptions can be reduced if y is such that
O0<M, S |ya)|SMy<0, k=12, ..

holds where {1,}7 is the sequence of extremants of y.
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The following lemma was proved in {1} and it is necessary for our later considera-
tions.

Lemma 1. Let y be an arbitrary solution of (1) and t; < t, its consecutive zeros
(¥(t) #0 on (t,, ;). Then t, and t, are the simple zeros of y, there exists one and
only one number v such thatt, < t© < t,, y'(t) = 0holds and the functionsgn y . p(t) y'
is decreasing on (t, t,).

2. Lemma 2. Let t, be an arbitrary zero of an oscillatory solution y of (1) and t

the first extremant of y lying on the right of t. Then

pa) |y | (= t) > IJ’(T) I min p(t),

1St

St y®,y@)y(®) >0,  te(t, )
Proof. We will prove the statement e.g. for y(t) > 0, te (¢, t]. For y(t) <0,
t e (t,, 1] the proof is similar. We have from (1):
[p@)y'(N) <0,  te(ty,1)

y(1) — P )(yt)(t) <0

From this by integration in the limits from ¢, to T we get:

min p(l)
tStse

, dt
0> 5(6) = 5(0) = #0)0) | 85 2 500 = 20 ()~
t
(because of y'(t;) > 0) and this is the first part of the statement. As y'(t) does not

change the sign on (#,, 7) and y'(¢,) > 0 we have y'(t) > 0, t € (¢, 7). But according
to (1) f(t, y(¢), ¥'(t)) > 0 and so the statement of. the lemma is proved.

Theorem 1. Let y be an oscillatory solution of (1) such that | y(1)| < M, =
= const. < o, k = 1, 2,... holds where {1,}{ is the sequence of its extremants. Let
a continuous function f*(t, y) exist with the following properties: f* is defined on D; =
= {(t,y): tela, ), 0 £ y < w}, f* is non-decreasing with respect to y,

/& )| S50y D, by, ¥)eD,
limf*(t, M) =0  for 0 < M = const. < oo.

t— o0
‘Then ‘ .
a) If there exists a constant M, such that p(t) £ M, < oo holds, then lim p(t) y (t )=
t= o
= 0.

b) If there exist posztwe constants M3, M4 Slich that | y(rk) | My, k=12.
p(t) = M, > 0 hold, then lim 4, = : . :

k- o
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Proof. Let {#}7 is the sequence of the zeros of y, t; < T, < ti4i.
. a) By multiplying the equation (1) by —2y’p and by the integration we obtain
(Vi = [t wd:

Tk ' ) T

[o(t) Y ()T = 2 f p(1) 10, 3, ¥) (1) dt = 2 f P17t 3 ¥) 1 1y () di,

[ 117
(we ‘must use Lemma 2, too). From this
[P YW S 21, [ 7200 M1yl 41 5 200,

tx

x max f*(t, My) | p(t) | £ 2M, M, max f*(t, M,) — 0.
J

teJx teJx k~

So the statement of the theorem is proved in this case.
b) It follows by integration of (1) that

(2) p(t)[y,(t)l = l J‘If(ta .V(t)’ y’(t))'dtl’ te[tlntlﬂ-l]

holds. From this for ¢ = t, and according to Lemma 2 we have

> (5= 1) > — PO i by 2 MM, x
: Pt 1Y ()| een

‘x[ J:kl £, (). y'(1)1 dt]_l = M3M4[ fkf*(r, M) dt]_lg

> MM A, [max f*(t, My)] ™.

tedy

Thus ) . ,
47 > MM, [max f*(t, M)]™! = o

1€ Jx
and the theorem i_s proved.
Theorem 2. Let y be an oscillatory solution of (1) and {t,}7 the sequence of its

extremants. Let f*(t, y) be a continuous functionon Dy = {(t, y): t € [a, ©0),0 £ y < 0}
such that f* is non-decreasing with respect to y for an arbitrary t € [a, ),

Ay | 24|y D >0, (4,9, 0) €D,
lim f*(t, M) = oo for-an arbitrary constant M; 0 < M < co.

t—
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Let 0 < My = const. S| y(z,) | My = const. < 00, kK =1,2,.
~a) If there ‘exist constants My, M, such that 0 < My £ p(t) £ M2 < oo holds,
then the function y’ is unbounded on [a, ).
b) If there exists a constant M , such that p(t) £ M, < oo holds, then
;v lim4, = 0.

k= ©

Proof. Let {#,}T be the sequence of the zeros of ¥, ty < Ty < #;4. It follows from
Lemma 1 that the arch of the curve | y(¢) | for t € [t ti+4] do not lay under the line
segments connecting the points [ty 0], [z, | (%) N and [y, ] y(r,‘) [1, [fx+1, O] Thus

, Loy — 1t
()i 2 U’(Tk)lt—k—ﬂ—"—, te [, 1,
k+1 Tk :

(€)

ROIE 1 J te [t 1l

At first we prove the statement b).
b) By integration of (2) (in the limits from #, to 7;) and by use of (3) we have:

ly(‘[‘k)l I 0] flf(t y(1), y'(1)jdtdt 2

>M;lj‘jf*(s,ly(s)l)dsdtgMz_‘ J J‘
e t ' ¢ ;"""‘ t
k "—‘2“
f*(s, Iy(rk)l_.__.s __'_"_>ds dt zb‘M{' | f ff*’(s, M )dsdt >
Tk - tk : 2
e+ =1tk
2
2
> M5! min f*(s, A; )gi—g—t—")—
fkSsSte |
From this
. VIRV . M3 ~%
@ T — 4 < J8M M, | min f*{1, —> —0.
e StST 2 Lad
By the same way the following relation can be proved:
) Loty —rkg\/SMle( min. f"‘ ) -——-—»0
' tkéismu 2 L

The statement of the theorem follows directly from (4) and (5).
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a) According to Lemma 2 and the proved part of the theorem the following
relations hold:

[yl . MM,
- min p(t) = —_—
P(te) Ak tsesne () M,4, k=

[Y'(8)] >

So the theorem is proved.

Remark 1. How we can see from the proof, the Theorem 2 is also valid if we
suppose that f*(¢, y) is non-decreasing with respect to y only in the region D, =
= {(t,y): tea, ©),0 < y < M,} instead of in D, .

Theorem 3. Consider a differential equation

(6) V' + 9 () =0
where g € C°[a, ©),f e C°(— 0, ®), h e C°(— o, ©),¢(t) > 0fort € [a, x0),f(y) y >
> 0 for y #0.

Let y be its oscillatory solution and {t,}T the sequence of the extremants of y.
“a) Let limg(t)=0, 0<h(v) S M <o for —0 <v< oo, and |y(tk)| =<

t— o0
EM,<w,k=12,.. Then
lim y'(¢) = 0.

t—+

If, in addition, 0 < M, < |y(tk) |, k=12,... then

lim 4, = oo.

k-

b) Let lim q(t) = 00, 0 < M < h(v) for —o0 <v < o0 and0 < M, < |y(r) | £

t—=+ o

<M, <o, k=1,2,.... Then the derivative y' of y is unbounded on [a, ©) and

lim4, = 0.
k= o
Proof. The statement of the theorem follows directly from Theorems 1 and 2
and Remark 1 for

f*(t, ) = Mq(t) max | f(w) |

and
f*(t,y) = Mg(t) min |f(w)]|,

yS|u| M2
respectively.

Remark 2. When proving his Theorem, author of [2] proved the second part
of Theorem 3b) (that the derivative )’ is unbounded) for the differential equation (6),
h = 1, but under many other assumptions on the functions g and f.
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