Archivum Mathematicum

Miroslav Bartušek

On zeros of solutions of the differential equation $\left(p(t) y^{\prime}\right)^{\prime}+f\left(t, y, y^{\prime}\right)=0$

Archivum Mathematicum, Vol. 11 (1975), No. 4, 187--192
Persistent URL: http://dml.cz/dmlcz/104857

Terms of use:

© Masaryk University, 1975
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON ZEROS OF SOLUTIONS OF THE DIFFERENTIAL EQUATION $\left(p(t) y^{\prime}\right)^{\prime}+f\left(t, y, y^{\prime}\right)=0$

MIROSLAV BARTUŠEK, Brno

(Received August 5, 1974)

1. Consider a differential equation

$$
\left\{\begin{array}{l}
\left(p(t) y^{\prime}\right)^{\prime}+f\left(t, y, y^{\prime}\right)=0 \tag{1}\\
\text { where } p(t) \in C^{\circ}[a, \infty), p(t)>0 \text { on }[a, \infty) \\
f(t, y, v) \text { is continuous on } D=\{(t, y, v): t \in[a, \infty) \\
-\infty<y, v<\infty\}, f(t, y, v) y>0 \text { for } y \neq 0
\end{array}\right.
$$

We do not suppose the uniqueness of the Cauchy initial problem for the equation (1). In all the work we shall omit the trivial solution $y(t) \equiv 0$ from our considerations.

A solution y of (1) is called oscillatory if there exists a sequence of numbers $\left\{t_{k}\right\}_{1}^{\infty}$ such that $a \leqq t_{k}<t_{k+1}, y\left(t_{k}\right)=0, y(t) \neq 0$ for $t \in\left(t_{k}, t_{k+1}\right), k=1,2, \ldots, \lim _{t \rightarrow \infty} t_{k}=$ $=\infty$.

Let y be an oscillatory solution of (1) and $\left\{t_{k}\right\}_{1}^{\infty}$ the sequence of its zeros. Then there exists one and only one sequence of numbers $\left\{\tau_{k}\right\}_{1}^{\infty}$ called the sequence of extremants of y, such that $t_{k}<\tau_{k}<t_{k+1}, y^{\prime}\left(\tau_{k}\right)=0$ holds (see [1] or Lemma 1 in the present work).

The work [1] deals with some asymptotic properties of the sequence $\left\{\Delta_{k}\right\}_{1}^{\infty}, \Delta_{k}=$ $=t_{k+1}-t_{k}$. It was shown that under the assumptions

$$
\begin{gathered}
\left|f\left(t, y, y^{\prime}\right)\right| \geqq q(t)|y|, \quad\left(t, y, y^{\prime}\right) \in D \\
\lim _{t \rightarrow \infty} q(t)=\infty, \quad p(t) \leqq M=\text { const. }<\infty
\end{gathered}
$$

or

$$
\begin{aligned}
& \left|f\left(t, y, y^{\prime}\right)\right| \leqq q(t)|y|, \quad\left(t, y, y^{\prime}\right) \in D \\
& \lim _{t \rightarrow \infty} q(t)=0, \quad p(t) \geqq M=\text { const. }>0
\end{aligned}
$$

the relation $\lim _{k \rightarrow \infty} \Delta_{k}=0$ or $\lim _{k \rightarrow \infty} \Delta_{k}=\infty$ holds, respectively. In the present work it will be shown that these assumptions can be reduced if y is such that

$$
0<M_{1} \leqq\left|y\left(\tau_{k}\right)\right| \leqq M_{2}<\infty, \quad k=1,2, \ldots
$$

holds where $\left\{\tau_{k}\right\}_{1}^{\infty}$ is the sequence of extremants of y.

The following lemma was proved in [1] and it is necessary for our later considerations.

Lemma 1. Let y be an arbitrary solution of (1) and $t_{1}<t_{2}$ its consecutive zeros $\left(y(t) \neq 0\right.$ on $\left.\left(t_{1}, t_{2}\right)\right)$. Then t_{1} and t_{2} are the simple zeros of y, there exists one and only one number τ such that $t_{1}<\tau<t_{2}, y^{\prime}(\tau)=0$ holds and the function $\operatorname{sgn} y . p(t) y^{\prime}$ is decreasing on $\left(t_{1}, t_{2}\right)$.
2. Lemma 2. Let t_{1} be an arbitrary zero of an oscillatory solution y of (1) and τ the first extremant of y lying on the right of t. Then

$$
\begin{aligned}
& p\left(t_{1}\right)\left|y^{\prime}\left(t_{1}\right)\right|\left(\tau-t_{1}\right)>|y(\tau)| \min _{t_{1} \leq t \leq \tau} p(t) \\
& f\left(t, y(t), y^{\prime}(t)\right) y^{\prime}(t)>0, \quad t \in\left(t_{1}, \tau\right)
\end{aligned}
$$

Proof. We will prove the statement e.g. for $y(t)>0, t \in\left(t_{1}, \tau\right]$. For $y(t)<0$, $t \in\left(t_{1}, \tau\right]$ the proof is similar. We have from (1):

$$
\begin{gathered}
{\left[p(t) y^{\prime}(t)\right]^{\prime}<0, \quad t \in\left(t_{1}, \tau\right],} \\
y^{\prime}(t)-\frac{p\left(t_{1}\right) y^{\prime}\left(t_{1}\right)}{p(t)}<0 .
\end{gathered}
$$

From this by integration in the limits from t_{1} to τ we get:

$$
0>y(\tau)-y\left(t_{1}\right)-p\left(t_{1}\right) y^{\prime}\left(t_{1}\right) \int_{t_{1}}^{\tau} \frac{\mathrm{d} t}{p(t)} \geqq y(\tau)-p\left(t_{1}\right) y^{\prime}\left(t_{1}\right) \frac{\tau-t_{1}}{\min _{t_{1} \leqq t \leqq \tau} p(t)},
$$

(because of $y^{\prime}\left(t_{1}\right)>0$) and this is the first part of the statement. As $y^{\prime}(t)$ does not change the sign on $\left(t_{1}, \tau\right)$ and $y^{\prime}\left(t_{1}\right)>0$ we have $y^{\prime}(t)>0, t \in\left(t_{1}, \tau\right)$. But according to (1) $f\left(t, y(t), y^{\prime}(t)\right)>0$ and so the statement of the lemma is proved.

Theorem 1. Let y be an oscillatory solution of (1) such that $\left|y\left(\tau_{k}\right)\right| \leqq M_{1}=$ $=$ const. $<\infty, k=1,2, \ldots$ holds where $\left\{\tau_{k}\right\}_{1}^{\infty}$ is the sequence of its extremants. Let a continuous function $f^{*}(t, y)$ exist with the following properties: f^{*} is defined on $D_{1}=$ $=\{(t, y): t \in[a, \infty), 0 \leqq y<\infty\}, f^{*}$ is non-decreasing with respect to y,

$$
\begin{gathered}
\left|f\left(t, y, y^{\prime}\right)\right| \leqq f^{*}(t,|y|), \quad\left(t, y, y^{\prime}\right) \in D \\
\lim _{t \rightarrow \infty} f^{*}(t, M)=0 \quad \text { for } 0<M=\text { const. }<\infty
\end{gathered}
$$

Then
a) If there exists a constant M_{2} such that $p(t) \leqq M_{2}<\infty$ holds, then $\lim _{t \rightarrow \infty} p(t) y^{\prime}(t)=$ $=0$.
b) If there exist positive constants M_{3}, M_{4} such that $\left|y\left(\tau_{k}\right)\right| \geqq M_{3}, k=1,2, \ldots$, $p(t) \geqq M_{4}>0$ hold, then $\lim _{k \rightarrow \infty} \Delta_{k}=\infty$.

Proof. Let $\left\{t_{k}\right\}_{1}^{\infty}$ is the sequence of the zeros of $y, t_{k}<\tau_{k}<t_{k+1}$.
a) By multiplying the equation (1) by $-2 y^{\prime} p$ and by the integration we obtain $\left(J_{k}=\left[t_{k}, \tau_{k}\right]\right):$

$$
\left[p\left(t_{k}\right) y^{\prime}\left(t_{k}\right)\right]^{2}=2 \int_{i_{k}}^{\tau_{k}} p(t) f\left(t, y, y^{\prime}\right) y^{\prime}(t) \mathrm{d} t=2 \int_{t_{k}}^{\tau_{k}} p(t)\left|f\left(t, y, y^{\prime}\right)\right|\left|y^{\prime}(t)\right| \mathrm{d} t
$$

(we must use Lemma 2, too). From this

$$
\begin{aligned}
& {\left[p\left(t_{k}\right) y^{\prime}\left(t_{k}\right)\right]^{2} \leqq 2 M_{2} \int_{t_{k}}^{\tau_{k}} f^{*}\left(t, M_{1}\right)\left|y^{\prime}(t)\right| \mathrm{d} t \leqq 2 M_{2} \times} \\
& \times \max _{t \in J_{k}} f^{*}\left(t, M_{1}\right)\left|y\left(\tau_{k}\right)\right| \leqq 2 M_{2} M_{1} \max _{t \in J_{k}} f^{*}\left(t, M_{1}\right) \rightarrow 0 .
\end{aligned}
$$

So the statement of the theorem is proved in this case.
b) It follows by integration of (1) that

$$
\begin{equation*}
p(t)\left|y^{\prime}(t)\right|=\left|\int_{t}^{t_{k}}\right| f\left(t, y(t), y^{\prime}(t)\right)|\mathrm{d} t|, \quad t \in\left[t_{k}, t_{k+1}\right] \tag{2}
\end{equation*}
$$

holds. From this for $t=t_{k}$ and according to Lemma 2 we have

$$
\begin{gathered}
\Delta_{k}>\left(\tau_{k}-t_{k}\right)>\frac{\left|y\left(\tau_{k}\right)\right|}{p\left(t_{k}\right)\left|y^{\prime}\left(t_{k}\right)\right|} \min _{t \in J_{k}} p(t) \geqq M_{3} M_{4} \times \\
\times\left[\int_{i_{k}}^{\tau_{k}}\left|f\left(t, y(t), y^{\prime}(t)\right)\right| \mathrm{d} t\right]^{-1} \geqq M_{3} M_{4}\left[\int_{\tau_{k}}^{\tau_{k}} f^{*}\left(t, M_{1}\right) \dot{\mathrm{d}} t\right]^{-1} \geqq \\
>M_{3} M_{4} \Delta_{k}^{-1}\left[\max _{t \in J_{k}} f^{*}\left(t, M_{1}\right)\right]^{-1}
\end{gathered}
$$

Thus

$$
\Delta_{k}^{2}>M_{3} M_{4}\left[\max _{t \in J_{k}} f^{*}\left(t, M_{1}\right)\right]^{-1} \underset{k \rightarrow \infty}{\longrightarrow} \infty
$$

and the theorem is proved.
Theorem 2. Let y be an oscillatory solution of (1) and $\left\{\tau_{k}\right\}_{1}^{\infty}$ the sequence of its extremants. Let $f^{*}(t, y)$ be a continuous function on $D_{1}=\{(t, y): t \in[a, \infty), 0 \leqq y<\infty\}$ such that f^{*} is non-decreasing with respect to y for an arbitrary $t \in[a, \infty)$,

$$
|f(t, y, v)| \geqq f^{*}(t,|y|)>0,(t, y, v) \in D
$$

$\lim _{t \rightarrow \infty} f^{*}(t, M)=\infty$ for an arbitrary constant $M, 0<M<\infty$.

Let $0<M_{3}=$ const. $\leqq\left|y\left(\tau_{k}\right)\right| \leqq M_{1}=$ const. $<\infty, k=1,2, \ldots$
a) If there exist constants M_{2}, M_{4} such that $0<M_{4} \leqq p(t) \leqq M_{2}<\infty$ holds, then the function y^{\prime} is unbounded on $[a, \infty)$.
b) If there exists a constant M_{2} such that $p(t) \leqq M_{2}<\infty$ holds, then

$$
\lim _{k \rightarrow \infty} \Delta_{k}=0
$$

Proof. Let $\left\{t_{k}\right\}_{1}^{\infty}$ be the sequence of the zeros of $y, t_{k}<\tau_{k}<t_{k+1}$. It follows from Lemma 1 that the arch of the curve $|y(t)|$ for $t \in\left[t_{k}, t_{k+1}\right]$ do not lay under the line segments connecting the points $\left[t_{k}, 0\right],\left[\tau_{k},\left|y\left(\tau_{k}\right)\right|\right]$ and $\left[\tau_{k},\left|y\left(\tau_{k}\right)\right|\right],\left[t_{k+1}, 0\right]$. Thus

$$
\begin{cases}|y(t)| \geqq\left|y\left(\tau_{k}\right)\right| \frac{t_{k+1}-t}{t_{k+1}-\tau_{k}}, & t \in\left[\tau_{k}, t_{k+1}\right] \tag{3}\\ |y(t)| \geqq\left|y\left(\tau_{k}\right)\right| \frac{t-t_{k}}{\tau_{k}-t_{k}}, & \\ t \in\left[t_{k}, \tau_{k}\right]\end{cases}
$$

At first we prove the statement b).
b) By integration of (2) (in the limits from $t_{\boldsymbol{k}}$ to $\tau_{\boldsymbol{k}}$) and by use of (3) we have:

$$
\begin{gathered}
\left|y\left(\tau_{k}\right)\right|=\int_{\tau_{k}}^{\tau_{k}} \frac{1}{p(t)} \int_{t}^{\tau_{k}}\left|f\left(t, y(t), y^{\prime}(t)\right)\right| \mathrm{d} t \mathrm{~d} t \geqq \\
\geqq M_{2}^{-1} \int_{\tau_{k}}^{\tau_{k}} \int_{t}^{\tau_{k}} f^{*}(s,|y(s)|) \mathrm{d} s \mathrm{~d} t \geqq M_{2}^{-1} \int_{t_{\tau_{k}}+\frac{\tau_{k}-t_{k}}{2}}^{\tau_{i}} \int_{t}^{\tau_{k}} \cdot \\
f^{*}\left(s,\left|y\left(\tau_{k}\right)\right| \frac{s-t_{k}}{\tau_{k}-t_{k}}\right) \mathrm{d} s \mathrm{~d} t \geqq M_{2}^{-1} \int_{\tau_{k}}^{\tau_{k}} \int_{\tau_{k}+\frac{\tau_{k}-t_{k}}{2}}^{\tau_{k}} f^{*}\left(s, \frac{M_{3}}{2}\right) \mathrm{d} s \mathrm{~d} t \geqq \\
\geqq M_{2}^{-1} \min _{t_{k} \leqq s \leqq \tau_{k}} f^{*}\left(s, \frac{M_{3}}{2}\right) \frac{\left(\tau_{k}-t_{k}\right)^{2}}{8} .
\end{gathered}
$$

From this

$$
\begin{equation*}
\tau_{k}-t_{k} \leqq \sqrt{8 M_{1} M_{2}}\left(\min _{t_{k} \leqq t \leqq \tau_{k}} f^{*}\left(t, \frac{M_{3}}{2}\right)\right)^{-\frac{1}{2}} \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0 \tag{4}
\end{equation*}
$$

By the same way the following relation can be proved:

$$
\begin{equation*}
t_{k+1}-\tau_{k} \leqq \sqrt{8 M_{2} M_{1}}\left(\min _{\tau_{k} \leqq t \leq t_{k+1}} f^{*}\left(t, \frac{M_{3}}{2}\right)\right)^{-\frac{1}{2}} \xrightarrow[k \rightarrow \infty]{ } 0 \tag{5}
\end{equation*}
$$

The statement of the theorem follows directly from (4) and (5).
a) According to Lemma 2 and the proved part of the theorem the following relations hold:

$$
\left|y^{\prime}\left(t_{k}\right)\right|>\frac{\left|y\left(\tau_{k}\right)\right|}{p\left(t_{k}\right) \Delta_{k}} \min _{t_{k} \leqq t \leq \tau_{k}} p(t) \geqq \frac{M_{3} M_{4}}{M_{2} \Delta_{k}} \xrightarrow[k \rightarrow \infty]{ } \infty
$$

So the theorem is proved.
Remark 1. How we can see from the proof, the Theorem 2 is also valid if we suppose that $f^{*}(t, y)$ is non-decreasing with respect to y only in the region $D_{2}=$ $=\left\{(t, y): t \in[a, \infty), 0 \leqq y \leqq M_{1}\right\}$ instead of in D_{1}.

Theorem 3. Consider a differential equation

$$
\begin{equation*}
y^{\prime \prime}+q(t) f(y) h\left(y^{\prime}\right)=0 \tag{6}
\end{equation*}
$$

where $g \in C^{\circ}[a, \infty), f \in C^{\circ}(-\infty, \infty), h \in C^{\circ}(-\infty, \infty), q(t)>0$ for $t \in[a, \infty), f(y) y>$ >0 for $y \neq 0$.

Let y be its oscillatory solution and $\left\{\tau_{k}\right\}_{1}^{\infty}$ the sequence of the extremants of y.
a) Let $\lim _{t \rightarrow \infty} q(t)=0,0<h(v) \leqq M<\infty$ for $-\infty<v<\infty$, and $\left|y\left(\tau_{k}\right)\right| \leqq$ $\leqq M_{2}<\infty, k=1,2, \ldots$ Then

$$
\lim _{t \rightarrow \infty} y^{\prime}(t)=0
$$

If, in addition, $0<M_{1} \leqq\left|y\left(\tau_{k}\right)\right|, k=1,2, \ldots$ then

$$
\lim _{k \rightarrow \infty} \Delta_{k}=\infty
$$

b) Let $\lim _{t \rightarrow \infty} q(t)=\infty, 0<M \leqq h(v)$ for $-\infty<v<\infty$ and $0<M_{1} \leqq\left|y\left(\tau_{k}\right)\right| \leqq$ $\leqq M_{2}<\infty, k=1,2, \ldots$. Then the derivative y^{\prime} of y is unbounded on $[a, \infty)$ and

$$
\lim _{k \rightarrow \infty} \Delta_{k}=0
$$

Proof. The statement of the theorem follows directly from Theorems 1 and 2 and Remark 1 for

$$
f^{*}(t, y)=M q(t) \max _{|u| \leqq y}|f(u)|
$$

and

$$
f^{*}(t, y)=M q(t) \min _{y \leqq|u| \leqq M_{2}}|f(u)|,
$$

respectively.
Remark 2. When proving his Theorem, author of [2] proved the second part of Theorem 3 b) (that the derivative y^{\prime} is unbounded) for the differential equation (6), $h \equiv 1$, but under many other assumptions on the functions q and f.

REFERENCES

[1] Бартушек М.: О нулях колеблющихся решений уравнения $\left(p(t) x^{\prime}\right)^{\prime}+f\left(t, x, x^{\prime}\right)=0$. Дифференц. урав. To appear.
[2] Катранов А. Г.: О нулях колеблющихся решений уравнения $x^{\prime \prime}+a(t) f(x)=0$. Дифф.: урав., VII., № 5, 1971, 930-933.
[3] Катранов А. Г.: К вопросу об асимптотическом поведении колеблющихся решений нелинейного дифференциального уравнения второго порядка. Дифф. урав., VIII., № 5, 1972, 785-789.

M. Bartušek

66295 Brno, Janáčkovo nám. 2a
Czechoslovakia

