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ON ZEROS OF SOLUTIONS OF THE DIFFERENTIAL 
EQUATION (p(t)y')' +/(ř,y,y) = 0 

MIROSLAV BARTUŠEK, Brno 
(Received August 5, 1974) 

1. Consider a differential equation 
(P(Oy')'+/(',y,y') = o, 
where p(t) e C°[a, oo), p(t) > 0 on [a, oo), 
f(t, y, v) is continuous on D = {(/, y, v): t e [a, oo), 
- oo < y, v < oo}, f(t, y, v) y > 0 for y =£ 0. 

(D 

We do not suppose the uniqueness of the Cauchy initial problem for the equation (1). 
In all the work we shall omit the trivial solution y(t) == 0 from our considerations. 

A solution y of (1) is called oscillatory if there exists a sequence of numbers {tk}f 
such that a ̂  tk< tk + 1, y(tk) = 0, y(t) # 0 for t e (tk, tk+1), k = 1, 2, ..., lim tk = 

r-*oo 

= 0 0 . 

Let y be an oscillatory solution of (1) and {tk}f the sequence of its zeros. Then 
there exists one and only one sequence of numbers {xk}f called the sequence of 
extremants of y, such that tk < xk < tk+l, y'(xk) = 0 holds (see [1] or Lemma 1 
in the present work). 

The work [1] deals with some asymptotic properties of the sequence {Ak}™, Ak = 
= tk+i — tk. It was shown that under the assumptions 

| / ( ' , y , y ' ) | = < K 0 | y | , (t,y,y')eD, 
lim q(t) = oo, p(t) ^ M = const. < oo 
f-+oo 

or 
\f(t,y,y')\^q(t)\y\, (t,y,y')eD, 

lim q(t) = 0, p(t) = M = const. > 0 
if->oo 

the relation lim Ah = 0 or lim Ak = oo holds, respectively. In the present work it will 

be shown that these assumptions can be reduced if y is such that 

0 < M% S | y(t*) | £ M2 < oo, k = 1, 2, ... 

holds where {xk}f is the sequence of extremants of y. 
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The following lemma was proved in [I] and it is necessary for our later considera
tions. 

Lemma 1. Let y be an arbitrary solution of (1) and tx < t2 its consecutive zeros 
(y(t) z£ 0 on (tl912)). Then rt and t2 are the simple zeros of y, there exists one and 
only one number x such that tt < x < t2, y'(x) = 0 holds and the function sgn y . p(t) y' 
is decreasing on (tt, t2). 

2. Lemma 2. Let tx be an arbitrary zero of an oscillatory solution y of (1) and x 
the first extremant of y lying on the right of t. Then 

P(ti) | y'('i) | (T - tt) > | y(T) | minp(0, 

f(t,y(t),y'(t))y'(t)>0, /e(r . ,T) . 

Proof. We will prove the statement e.g. for y(t) > 0, ( e ^ j ] . For y(t) < 0, 
t e (fj, T] the proof is similar. We have from (1): 

1X0/(0] '<0, te(tltx\, 

yV) _ -PtMhL < o.' 
P(t) 

From this by integration in the limits from t^ to t we get: 

0>y(x)-y(ti)-p(tl)y'(tl) 
ŕцśr^т 

(because of y'(tt) > 0) and this is the first part of the statement. As y'(t) does not 

change the sign on (tt, x) and y'(tt) > 0 we have y'(t) > 0, t e (tx, x). But according 

to (I) f(t,y(t),y'(t)) > 0 and so the statement of. the lemma is proved. 

Theorem 1. Let y be an oscillatory solution of (1) such that | y(xk) \ ^ Mx = 
= const. < oo, k = 1, 2, ..'. holds where \xk}™ is the sequence of its extremants. Let 
a continuous function f*(t, y) exist with the followingproperties: / * is defined on Dt = 
= {(/, y): t e [a, oo), 0 _ y < oo}, / * is non-decreasing with respect to y, 

\f(tyy,y')\<f*(t,\y\), (t,y,y')eD, 

lim/*(r, M) = 0 for 0 < M = const. < oo. 
r->oo 

Then 

a) If there exists a constant M2 such that p(t) g M2 < oo holds, then liiti p(t)y'(t) = 
r-*oo 

= 0. 

6) If there exist positive constants M3,M4 such that \y(xk) | = M 3 , k = 1, 2, ..., 

p(t) = M 4 > 0 ho/d, fhew lint 4* = oo. 
k->oo 
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Proof. Let {tk}f is the sequence of the zeros of y9 tk < xk < t*+i. 

a) By multiplying the equation (1) by — 2y'p and by the integration we obtain 

(A = ['*,**]): 
..•.•'•' - . tfc - •_ } tfc 

0(t*) y'(h)T = 2 f P(t) f(t, y, y') y'(t) dt = 2 f p(t) \ f(t, y, y') j | y'(t) | dt, 
tk tk 

(we must use Lemma 2, too). From this 

' , t»c 

[P(t j/(t*)]2 = 2M2 f /*(/, M,) | y'(t) | df = 2M2 x 

x max/*(r, M ^ | y(xk) | ^ 2M2M\ max/*(t, Mx) -> 0. 
f e^k „ reJk Jk-*oo 

So the statement of the theorem is proved in this case. 
b) It follows by integration of (1) that 

(2) P ( 0 ! / ( 0 l = l f l/( t .KO./<0)id t l , te[tk, f l + 1] 

holds. From this for t = ft and according to Lemma 2 we have 

4. > (r* - O > A ^ A , min p(t) = M 3M 4 x 
p(t*)l/(t*)l r.A 

tfc 

X 

!k 

*k Tfc 

Г flf(t,y(0./(0)jdtl ^ М з М ^ ÍI"*(ř' M ' ) d ř ] ' = 
"- *к 

> M.M^rVax/^f.M.)]" 1 . 
*ejk 

Thus 
J* > M3M4[max/*(t, M.T1 —>- oo 

and the theorem is proved. 

Theorem 2. JLef >> 6e an oscillatory solution of (1) and {xk}™ the sequence of its 
extremants. Letf*(t, y) be a continuous function onDt -= {(/, y): t e [a, oo), 0 ^ y < oo} 
such that f* is non-decreasing with respect to y for an arbitrary te [a, oo), 

|/(r, y,v)\% f*(t, | y |) > 0, (t9y9 v)B A 

lim/*(f, M) = oo for an arbitrary constant M9 0 < M < oo. 
f-*ao 
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Let 0 < M3 = const. £> | y(xk) | = ^ -= const. < oo, k = 1, 2,... 
a) If there exist constants M2,MA such that 0 < M4 S P(0 S M2 < oo holds, 

then the function y' is unbounded on [a9 oo). 
b) If there exists a constant M2 such that p(t) < Af2 < oo holds, then 

Mm Ab = 0. лk 
k-

Proof. Let {tk}™ be the sequence of the zeros of y, tk < xk < ffc+1. It follows from 
Lemma 1 that the arch of the curve | y(t) | for t e [/*, tfc+1] do not lay under the line 
segments connecting the points [tk9 0], [xk, | y(xk) |] and [Tfc, | y(xk) |], [/fc+1, 0]. Thus 

(3) 
\y(t)\ž\y(rk)\!k+l •[ , »e[T*,«*+i], 

lk+í "~ Tk 

I X 0 I - Š I X T * ) I - - - - 4 - , ' íe[i t,Tj. 
Tfc ~" řfc 

At first we prove the statement b). . 
b) By integration of (2) (in the limits from tk to xk) and by use of (3) we have: 

Tfc tfc 

I y(rk) I = j - - £ - f I f(t, y(t), y'(t)) \dtdt* 
tk t 

tfc Tfc Tfc tfc 

..^M2-
IJf/*(s,|;><S)|)dsd^W2-

1 J [.. 

Tfc Tfc 

/*(-, I M \-^f^dsdt k M2- J jf*(s, - ^ d s d . ^ 

^ ,.,-1 • .-*/ M a \ (T* — tt)
2 

| M 2 mm /» s , - ^ - * . 
tk£s£rk \ l } ° 

From this 

By the same way the following relation can be proved: 

(5) tk+, - xk £ V^M-T ( «--* /* f*. 4--1) V T " °-

The statement of the theorem follows directly ffotri (4) and (5). 
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a) According to Lemma 2 and the proved part of the theorem the following 
relations hold: 

i >/ \ . I y(Tfc) I • / \ ^ M1M4 

So the theorem is proved. 

Remark 1. How we can see from the proof, the Theorem 2 is also valid if we 
suppose that /*(f, y) is non-decreasing with respect to y only in the region D2 = 
= {(t, y): t 6 [a, 00), 0 <I y <I Mx} instead of in Dt. 

Theorem 3. Consider a differential equation 

(6) / + q(t)f(y)h(y') = 0 

whereg e C°[a, oo),/e C°(- 00, 00), A e C°(- 00, 00), q(0 > 0/0r t e [a, oo),f(y) y > 
> Ofory # 0. 

Let y be its oscillatory solution and {TJ'J0 the sequence of the extremants of y. 
a) Let lim q(t) = 0, 0 < h(v) <; M < 00 for — 00 < v < 00, and | y(xk) j <i 

t-+oo 

^ M2 < 00, fc = 1, 2 , . . . Then 

lim / (*) = 0. 
f-*oo 

If, in addition, 0 < Mx 51 | y(xk) |, k = 1, 2, ... rhen 

lim^djt = 00. 
fc-» 00 

ft) Let lim ?(f) = 00, 0 < M <; h(v)for - 00 < v < 00 and 0 < Mx <i | j f e ) | ^ 
r-*oo 

<i M2 < 00, fc = 1, 2, .... Then the derivative yf of y is unbounded on [a, 00) and 

lim Ak = 0. 
k-*oo 

Proof. The statement of the theorem follows directly from Theorems 1 and 2 
and Remark 1 for 

/*(<,>>) = M?(0 max \f(u)\ 
\«\*y 

and 
f*(t,y) = Mq(t) min \f(u)\, 

y%\u\£M2 

respectively. 

Remark 2. When proving his Theorem, author of [2] proved the second part 
of Theorem 3b) (that the derivative y' is unbounded) for the differential equation (6), 
i s l , but under many other assumptions on the functions q a n d / 
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