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ARCH . MATH . 4, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 

XI: 205-216, 1975 

ON A COINCIDENCE OF CENTRAL DISPERSIONS 
OF THE FIRST AND SECOND KIND 

IN CONNECTION WITH PERIODIC SOLUTIONS 
OF THE DIFFERENTIAL EQUATION / = q(t)y 

IRENA RACHONKOVA, Olomouc 
(Received August 14, 1974) 

This paper will be devoted to the study of the properties of phases and dispersions 
of the 2nd order differential equation y" = q(t)y. In the first part we shall describe 
the set of all increasing phases of all the differential equations whose every solution 
is half-periodic with exactly one zero on the interval of the periodlength. There is 
found a connection between these differential equations and those having the basic 
central dispersions of the 1st and 2nd kind coinciding on the interval (-co, co). 

In the second part there is derived a necessary and sufficient condition for a co
incidence of the /t-th central dispersions of the 1st and 2nd kind on the interval 
(-co, oo). Moreover, there is described the set of all increasing phases of all the 
differential equations whose every solution is periodic (n even) or half-periodic 
(n odd) and has exactly n zeros on the interval of the periodlength. Further, properties 
of this set and its subsets are investigated. 

The paper is closed with establishing a connection between the foregoing 
differential equations and such equations having the «-th central dispersions of the 
1st and 2nd kind coinciding on the interval (-co, oo). 

1. Basic concepts and relations used in this paper are taken from [1], where they 
are defined and proved. For completeness, we give below a brief summary of them. 

We shall consider a both-side oscillatory differential equation 

(q) yn = q(t)y, 

where the carrier q(t) is a continuous function on the interval (-co, oo), that is, 
q(t) e C°. Let u(t), v(t) be a base of the differential equation (q), that is, a pair of linear
ly independent solutions of (q). A function a, continuous on ( — oo, oo) and satisfying 
the relation 

tan a(f) = u(t)jv(t) 

everywhere where v(t) ^ 0, is called the first phase of (q) corresponding to the 
base u(t)9 v(t) (henceforth a phase of (q)). For every phase a of the differential equation 
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(q) there holds a e C3, a'(t) # 0 for t e ( - °o, oo). The converse is valid, too. Namely, 
the function a satisfying the property 

a e C 3 , a'(l) # 0 for f e ( -oo , oo) 

is a phase of the differential equation (q) where q is determined by the relation 

q(t) = ~{ tana , f} = - { a , / } - (a'(0)2 = -(1/2) a 7 a ' + (3/4) (a"/a')2 - (a')2. 

Let l0e(-oo, oo), and y be a nontrivial solution of (q), whereby y(f0) = 0. 
Let cp(t0) e (— oo, oo) be the first zero of the solution y lying on the right of t0. Then <p 
is called.the basic central dispersion of the 1st kind of the differential equation (q) 
(henceforth the basic central dispersion). Similarly, if cpn(t0) [^-^n)] is the «-th zero 
of the solution y lying on the right [on the left] of t0, the function (pn[(p-n] is called 
the n-th [-n-th] central dispersion of the 1st kind of (q) (henceforth w-th [-w-th] central 
dispersion). 

If a is a phase of the differential equation (q) and cp is the 1st kind basic central 
dispersion of the differential equation (q), then Abel's equation 

cc(cp(t)) = cc(t) + n . sgn a' 

is satisfied on the whole interval (— oo, oo). Similarly the «-th dispersion cpn, n = 0, 
± 1 , ±2 , ..., satisfies 

a(<Pn(0) = a ( 0 + nn sgn a'. 

The following theorems are valid in the sequel. 

Theorem 1.1. The set G of all phases of all oscillatory differential equations (q) 
with an operation of composition of functions forms a group. 

Theorem 1.2. The set E of all phases corresponding to the equation (—1) is a subgroup 
of the group G. It is called a basic subgroup. 

Theorem 1.3. Let GjrE be a righthanded decomposition of the group G. Then any 
class of this decomposition is formed by exactly all the phases belonging to an appropriate 
equation (q). 

Every equation (q) has an infinite number (continuum) of countable phase systems 
... < a _ 2 < a - i < a o < a i < a2---> every system belonging to exactly one base 
of the equation (q). Hence the set of all bases of the differential equation (q) is 
equivalent to the set of all countable phase systems of this differential equation. 

Theorem 1.4. If it holds w < 0[w > 0] on ( -oo , oo) for the Wronskian w of the 
base u, v of the differential equation (q) then all the phases of the corresponding phase 
system are simultaneously increasing [decreasing]. 

Thus, if we choose a base u, v of the equation (q) such that the corresponding 
Wronskian w < 0, and then perform all the transformations of this base the de-
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terminant of which is greater than zero, we obtain exactly all the bases to which 
exactly all the systems of the increasing phases correspond. Every class of the de
composition G\rE ca.n be therefore decomposed into two equivalent subsets: the set 
of all increasing phases and the set of all decreasing phases of the differential equa
tion (q). Consequently the basic subgroup E, too, can be decomposed into the 
(normal) subgroup E of all increasing phases of the differential equation (—1) and 
the coset of all decreasing phases of that equation. 

Theorem 1.5. The subset G of the group G consisting of exactly all increasing phases 
of all oscillatory equations (q) is a normal subgroup of the group G. 

This evidently implies that the following theorems hold. 

Theorem 1.6. Every class of the (righthanded) decomposition G\rE of the group G is 
formed by exactly all increasing phases belonging to the appropriate equation (q). 

Let us define the 1-1 mapping <P : G\rE -> G\rE by <P(E) = E, <P(OLE) = OLE for 
each a e G. Corresponding classes belong to the same differential equation (q). 

Theorem 1.7. In the group G the subset H of all elementary phases, that is, the subset 
of all phases satisfying the condition 

<*c = csgna'a, where c(t) = t + n, c(Osgna' = * + sgn a' . n 

forms a subgroup. It holds G z> R z> E. 
The group H can again be decomposed into the subgroup H of all increasing 

elementary phases and the coset of all decreasing elementary phases. 
It is evident that for any phase a e H there holds 

(c, c) OLC = COL. 

The cyclic group C of the phases cn(t) = t + nn, n = 0, + \, ±2, ... is a subgroup 
of the group E and it holds G z) H z> E z> C, where C is the centre of H. 

2. In this section we shall be concerned exclusively with increasing phases, that is, 
with the groups G, H, E, C; we shall therefore drop the word "increasing" in the 
writing and shall simply say "phases". 

Theorem 2.1. H is the group of phases of exactly all the equations whose basic central 
dispersion is c, that is <p(t) = t + n. 

Proof: Let OLGH. Then ac = COL and from Abel's equation 0L(p = COL we obtain 
q> = a ^ c a = a - 1 ac = c. Let q> = c This gives us 0L(p = COL leading to OLC = COL and 
consequently a e H. It holds (see [1]) that if an equation has one elementary phase, 
then all its phases are elementary ones, too. 

Let us consider the group G with the subgroup H and let us form the decomposition 
G\rH. It holds G\rH > G\rEy that is, G/rHis a superposition of the decomposition GfjE. 

Theorem 2.2. Let & be the set of all phases from G belonging to those equations 
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having the same basic central dispersion cp = t + k; k > 0, const. Then 0 forms 
exactly one class in G\rH. 

Proof. Let us write k(t) = / + k. Then it holds for any phase fe^ (based on 
Abel's equation) 

(*, c) fk = cf, 

and conversely, any phase f with the property (k, c) belongs to 0, because it is 
a phase of a differential equation with the basic central dispersion cp = k(t) = t + k. 
Namely, cp =f-1cf = f~xfk = k. 

Next for an arbitrary fe 0 and he H it holds hfk = hcf = chf and therefore 
hfe& which results in Hfcz 0>. Conversely, if there is an arbitrary phase ge&, 
fe&, then k'xf~l = f " 1 c " 1 and consequently gf~x = gkk~lf~x = cgf~xc~x 

which means gf~xc = cgf~l and finally gf~x e H. Therefore g e Hf and so 0 c ///'. 

Theorem 2.3. 70 any function k(t) = t + k, k > 0, const., there exists exactly one 
differential equation (q) with the constant carrier q = — (n/k)2 whose basic central 
dispersion cp = k. 

Proof. We show first that the differential equation^" = — (n/k)2 y has cp = / + k. 
For this it suffices to find one phase of this differential equation satisfying the condi
tion (k, c). The considered equation ( —(71/k)2) has, for instance, the base u = 
= sin (n/k) t, v = cos (n/k) t. The corresponding system of phases an has a form 
an = (n/k) t + nn, n = 0, + 1 , ... An arbitrary phase ctn of this system satisfies the 
condition (k, c) and following this we can write (p = a~1ca/J = <x~lctnk = k(t) = 
= f + k. 

Next we see that the mapping k -» —(n/k)2 is a 1—1 mapping of the set of all 
positive numbers k onto the set of all negative numbers —(n/k)2. This, of course, 
implies that there exists exactly one equation with a constant carrier for every 
function k(t) = t + k. 

With the foregoing theorems we can now state a theorem as follows: 

Theorem 2.4. Let 0 e G\rH be the class of all the phases satisfying the condition (k, c). 
This yields 

&~H.f 

where f is an arbitrary (increasing) phase of the differential equation y" = —(n/k)2 y. 
In [2] there is derived the following 

Theorem 2.5. The differential equation (q) has the dispersion cp satisfying the equation 

<Pn(t) = t + k 

for a positive integer n and for all te(-<*>, 00) if and only if every solution of(q) is 
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periodic (n even) of half-periodic (n odd) with period k and has exactly n zeros on the 
interval [0, k). 

In the special case n = 1 we have (see also [2]): 

Theorem 2.6. The differential equation (q) has the dispersion cp satisfying 

cp(t) = t + k 

for every t e ( — oo, oo) if and only if every solution of the differential equation (q) is 
half-periodic with period k and has exactly one zero on the interval [0, k). 

From Theorems 2.2, 2.4 and 2.6 it follows 

Theorem 2.7. Let 0> be the set of all phases of all the equations whose every solution 
is half-periodic with period k and has exactly one zero on the interval [0, k). Then 

& = H.f 

where f is an arbitrary phase of the differential equation y" = — (njk)2 y. 
Next it holds 

Theorem 2.8. Let 0t be the set of all phases of all the equations whose every solution 
is half-periodic with exactly one zero on the halfclosed interval of the appropriate 
periodlength. Thus we arrive at 

®= U H.fk, 
k€R + 

where R+ is the set of all positive real numbers and fk is an arbitrary phase of the 
differential equation y" = —(njk)2 y. 

In addition to all this, let us now suppose at the differential equation (q) that 
q(t) e C2, q(t) < 0 for each t e ( - oo, oo). 

Let t0 e (—oo, oo), y be a nontrivial solution of (q) wherein y'(t0) = 0. Let \l/(t0) e 
e (—oo, oo) be the first zero of the function y' lying on the right of t0. Then \j/ is 
called the basic central dispersion of the 2nd kind of the differential equation (q). 

Similarly, if \j/n(t0) [i//-n(t0)] is the n-th zero of the function y' lying on the right 
[left] of t0, then the function lAnt^-J *s called the w-th [-n-th] central dispersion of the 
2nd kind of the differential equation (q). 

It will be always pointed out when central dispersions of the 2nd kind are being 
discussed. The simple notion of dispersion will mean a dispersion of the 1st kind 
all the time. 

A carrier q(t) is called an F-carrier if for the basic central dispersion (p of the 
1st kind and for the basic central dispersion \j/ of the 2nd kind there holds <p = \J/ 
for each te(— oo, oo). (See [1].), 

Theorem 2.9. q is an F-carrier if and only if the dispersion cp satisfies the equation 
<p(t) = t + k, k > 0, const. 

This theorem is derived in {3]. From last two theorems it follows 
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Theorem 2.10. Let $F be the set of all phases of all the equations with F-carriers 
(i.e. with coinciding basic central dispersions of the 1st and 2nd kinds). Then 

3F = {a G M\ {a, t) + (a')2 > 0, a e C5 for each 1e ( - o o , oo)}. 

This means that all F-carriers can be characterized by the phases of all negative 
elementary carriers from C2 and by the phases of all negative constant carriers. 

3. Again suppose that in addition there holds q(t) e C2, q(t) < 0 for each t e 
G (~oo, oo). 

Let u(t), v(t) be a base of the differential equation (q). A function P continuous 
on (—oo, oo) and satisfying the relation 

tan P(t) = u'(t)jv'(t) 

for v'(t) 7* 0 is called the 2nd phase of the differential equation (q). For an arbitrary 
second phase p of the differential equation (q) there holds: P e C1, P'(t) ?- 0 for t e 
G(—00, OO). 

It will be always pointed out when the 2nd phases are being discussed. The simple 
notion of phase will mean the 1st phase all the time. 

If p is the second phase of (q) and \jj the basic central dispersion of the 2nd kind 
of (q) then there holds Abel's equation 

P(i//(t)) = p(t) + 7i sgn P' 

for each t e (— oo, oo). Similarly for the /t-th dispersion of the 2nd kind \j/n, n = 0, 
+ 1, +2, ..., there holds 

Ptynit)) = P(0 + nn sgn j?'. 

By a polar function of a base w, v of (q) we mean the function 9 = P — a, t e 
G ( —oo, oo), where a and /? are the first and the second phases of the base u, v, 
respectively. .The phases a and p are either both increasing or both decreasing 
(see [1]). 

We now define a function A(a) on ( — oo, oo) by A(a) = 9a" !(a) = 9(t). The 
function h is called a normed polar function of the 1st kind (see [1, § 6]). 

Let q>n and \j/n be the «-th central dispersions of the 1st and 2nd kinds of (q), 
respectively. If it holds <pn = \j/n for te(— oo, oo) then the carrier q will be called 
an Fn-carrier. 

Theorem 3.1. A carrier q is an Fn-carrier if and only if a normed polar function of 
the 1st kind A is periodic with period nn. 

Proof, a) Let q be an Fn-carrier. Then q>n = \j/n and we can write A[a + enn] = 
= ha(q>n) = P(cpn) - a(q>n) = p(i//n) - *(<pn) = \$(t) + enn] - [a(0 + enn] = Aa(t). 
(e = sgn a' = sgn /?'.) b) Let A[a + nn] = A(a) for a e ( - o o , oo). Then for each 
t e ( - oo, oo) there holds P(<p„(t)) -= <xq>n(t) + h<xq>n(t) = a(t) + enn + A[a(f) + enn] = 
== a(r) + enn + Aa(f) = P(t) + enn, which leads to q>n(t) == \^n(t). 
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Theorem 3.2. A carrier q is an F^carrier if and only if the n-th central dispersion <pn 

has the form 

<pn = t + k, k const. 

P r o o f . Let us choose a number l0 e ( — co, oo) and let us put a 0 = a(/0)> a o = 

or 

= a'(t0). Then (see [1, §6]) a ' ( 0 = a 0 exp ( - 2 J cot A(O) dO) and in the points 
ao 

a(t) = a, a *(a) = t e ( — co, oo) it holds 
a <т 

= t0 + — í exp 2 cot Һ(Q) ÚQ ) ác t = tn + —- I exp 2 cot Ate) do )da . 

ao ao 

Substituting <pn(t) for t into the last equation and using Abel's equation a(<p„(0) = 

= a(l) + enn. (a may be either increasing or decreasing; s = sgn a'.) We arrive at 

a + F.nn a 

ipn(i) = t0 + — I exp 2 cot A(0) do J do\ 

ao ao 

t0 is an arbitrary number from (— oo, co) so that we can write 

a + enn a 

I exp 2 cot A(0) do J da. <Pn{t) = t + — 

ao 

After differentiation and with some modification we get 

a + enrc 

(/^(t) = exp 2 cot A(o) dO 

a 

and further 
a 

^ ^ = 2a0[cot /i(a + sun) - cot % ) ] exp( - 2 cot h(e)dp J. 
<Pn(t) V J / 

ao 

By Theorem 3.1 it holds [cot A(a + enn) - cot A(a)] = 0; herefrom <Pn(t) = 0, 

hence <pn(t) = c and <pn(t) = ct + k. 

It remains to prove c = 1. Let us consider the sequence {<pn(t)} offl-thdispersions . 

It holds <pn(t) -> +oo for n -> + c o and <p..(0 -> — oo for w -> — oo. 

Thus also the selected sequence <pn.m-+ + °o for m -> + co and <pn.m -> — °° for 

m -> - c o . Evidently, ^ n > m = cml + k(cm - l)/(c - 1). Let c > 1. Then for m -+ 

-* +co, <pn,m -> + o o , but for m -> - o o , <pn.m = eft + k(cw - l)/(c - 1) -> 

-* ( — k)l(c — 1) > - c o , a contradiction. 

Suppose that c < 1. Then for m -> - o o , <rVm -> - c o , but for m -+ + c o <rVw -* 

-> k/(l — c) < + c o , a contradiction. 
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For the purpose of fulfilling the conditions of the convergence it is necessary 
that c = 1 and consequently (pn = t + k. 

If (pn(t) = / + k, then (pn(t) = 0 and thus cot [/?(a + era)] = cot (h(a)). By 
Theorem 3.1 q(t) is an Fn-carrier. 

Remark. Let us look now at a case of an oscillatory differential equation (q) with 
an interval of definition (a, b) where a resp. b is a finite number. We shall now show 
that if it holds cpn = i//„ on (a, b) then cpn(t) = ct + k, where c > 1 resp. c < 1 
c, k const. 

In fact let for instance (pn = ^n on (a, oo). This gives us cpn = ct + k, c, k const. 
(The proof is analogous to that of Theorem 3.2.) Consequently (pnm = cml + 
+ k(cm - l)/(c - 1). 

In this ease the points a, oo are the accumulation points of the set of all zeros 
of an appropriate differential equation and thus for the sequence {<pn} of dispersions 
it holds cpn(t) -» oo for n -> oo, (pn(t) -• a for n -» — oo and for each t. 

And for the selected sequence {<pn.m} it holds, too, that cpn. m -+ + oo for m -> + oo, 
<Pn.m-* a f ° r m -^ -co. From the relation cml + k(cm - l)/(c - 1) -• oo for 
m -.• oo follows the inequality c ^ 1. From the relation cml + k(cm — l)/(c — 1) -» a 
for m -> — oo we get c ^ 1 and therefore c > 1 must hold. Likewise for (pn = i/fn 

on (—oo, b). Here the equation (q) under consideration has no F„-carrier. 
For the sake of simplicity, let us now consider the groups of increasing phases 

only, i.e. the groups G, H, E, C. 
Let Hn c G be the set of all phases a satisfying the condition 

(cn, cn) OLC„ = cno:, where cn = t + nn, n > 0. 

Theorem 3.3. Hn with the composition of functions is a group. 

Proof. Let a l 5 a2, a e Hn. This leads to a1a2c/l = a1c„a2 = c„a1a2, c"^"1 = 
= a^c"1--* a""1^ = c.,a-1, and we find that ax0L2eHn, a""1 e Hn. 

Let JS?B CZ G be the set of all phases a satisfying the condition 

(c, O ac = cwa. 

Lemma. Let a l 5 a2 be arbitrary phases in S£n. Then a j a j 1 e Hn, 0L2
icc2 e H. 

Proof. OLXC = cnax => c™^^1 = a j 1 ^ 1 ; a2c = cna2 => c'^J1 = a j 1 ^ 1 . 
a 1 a j 1 = OL1CC"1OL2

1 = cno:la2
lcn

l, thus a1aj1c l l = c^aj1, i.e. a 1 a j 1 eHn. a j 1 a 2 = 
= a1"

1c~1clla2 = c~1a1"
1a2c, thus a j 1a 2c = ca1"

1a2, i.e. a j 1 a 2 e H. 

Theorem 3.4. S£n = Hn . a, where a is aw arbitrary phase satisfying the condition 

(c> Cn)' 

Proof, a) LetfG^f„, i.e.fc = cnf Then by the foregoing lemma fa"x e Hn from 
which we arrive at fe HHOL. 
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b) Letf = hoL, where heHn. Thenfc = hac = hcna = cnha = cnf 

Theorem 3.5. S£n = aH, where a is an arbitrary phase satisfying the condition (c, cn). 
Pr o of. a) Letfe Sfn. Then again by our lemma we can write 0L~*feHand therefore 

feaH. 
b) Let f = ah, where he H. Then fc = ahc = ach = cnah = cnf. 
The following theorem is a consequence of Theorems 3.4, 3.5 and 2.5. 

Theorem 3.6. The set of all phases of all the equations whose solution is periodic 
(n even) or half-periodic (n odd) with period n and has exactly n zeros on the interval 
[0,TI) is&n. 

S£n = Hna = OLH, where a is an arbitrary phase satisfying the condition (c, cn). 

Remark. The differential equation (q) has the n-th central dispersion cpn = t + k 
if and only if a(t + k) = a(t) -f nn, i.e. ock = cna, where a is an arbitrary increasing 
phase of (q). This follows directly from Abel's equations. 

Let us consider the classes ^ ( n ) e G/rHof the phases satisfying the conditions (cn,c), 
i.e. fe 0>{n) :fcn = cf Between the system of the classes 0>{n)eG\rH and that of the 
classes S£neG\iH there exists a 1 — 1 correspondence ^ ( r t ) = Ha <-• a _ 1 H = S£n, 
with acn = ca. (Evidently ^ ( 1 ) = S£ ± = H.) 

Theorem 3.7. The set of all phases of all the equations whose every solution is half-
periodic with period nn and has exactly one zero on [0, nn) is the right coset HOL in the 
decomposition GIrH and the set of all phases of all the equations whose every solution 
is periodic (n even) or half-periodic (n odd) with period n having exactly n zeros on the 
interval [0, n) is the corresponding left coset OL~1H in the decomposition G\tH. 

In other words, all the phases of the equations with periodic (n even) or half-
periodic (n odd) solutions with period n and exactly n zeros on [0, n) can be determined 
by means of the elementary phases and of the phases of equations with the constant 
carriers q = — (\\n2). 

Theorem 3.8. Let Jn be the set of all phases of all the equations whose every solution 
is periodic (n even) or half-periodic (n odd) with period k and exactly n zeros on the 
interval [0, k). Then it holds 

2Ln = St nf = HAf = Hnfn = hnHf, 

where the phase f and hn and fn satisfy the conditions (k, c) and (c, cn) and (k, cn), 
respectively. 

Proof, a) Let ge 2Ln, then by Theorem 2.5gk = cng, where k(t) = t + k. Under 
the assumption fk = cf thus k~1f~i =f~1c~1; continuing we obtain g .f~l = 
= gkk~lf~l = cn.g .f~1c~i

9 therefore gf~l eS£n and consequently geS£nf. 
b) Let g = af where u.eS£n,fk = cf Then gk = vfk = acf = cnaf = cng, hence 

g e £n. This proves that £n = &nf 
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The remaining equalities follow from the foregoing theorems. 
The following theorem was proved in {2]: 

Theorem 3.9. A differential equation (q), q e C°, has only periodic or half per iodic 
solutions with period n, with exactly n zeros on [0, n) and, moreover, there exists a non-
trivial solution y of(q) such that a + kn\n, k = 0, + I, ±2, ... are all zeros of y, and 
| y'(a + kn\n) | = 1/A = const, for every integer k, if and only if 

q(t) = f\t) + f'2(/) + 2nf'(t) . cot [n(t - a)] - n2, 

where fe C2, f(t + n) = f(t), f(a + kn\n) = f'(a + kn\n) = 0 for all integers k, 
and 

n 

Í (c-2/«> _ i)/sin2 [n(ř - й)]d í = 0. 

Then the solution y can be written as 

em 

y : t -> ^-(-Vf-1 s\nn(t - a). 

Let us now consider the function 

f(t) = -(1/2) In [1 - (1/2) sin 2(/ -,a)sin2n(t -a)]. 

This function has properties as follows: 

a) f(t) has continuous derivatives of an arbitrary order; thusf(*>)e C00; 
b ) / (* + n) = -(1/2) In [1 - (1/2) sin 2(t + n - a) sin2 n(t + n - a)] 

= ~(l/2) In [1 - (1/2) sin 2(r - a) sin2 n(t - a)] =f(t); 

} f'(\ — (MI\ c o s ^ ( ^ — a)sin2n(r— a) + (n/2)sin2(r — a)sin2n(t — a) 

W - ( / 1 - ( l / 2 ) s i n 2 ( r - a ) s i n 2 n ( t - a ) ' 

f(a + kn\n) = -(1/2) ln [1 - (1/2) sin (2kя/л) sin2 kя] = 0, 

cos (2kn\n) sin2 kя + (n\2) sin (2kn\ń) sïn 2kя 

1 - (l/2)sin(2kя/n)sîn2 kя 
/«Y . . ( . v uos ^_;/c7i/tz;bin K7c-i-in/zjbin^z»K7i;//ii_in._/c7r 

d) • f ( e - 2 / ( , ) - - l ) / ? i n 2 « ( i -<i ) d ť = . 
O 

-(l/2)sin2(ř - a)sin 2 n(ř - a)/sin2 n(t - a)d t = 

JI 

- (1/2) i -s in 2(í - a) dř = (1/2) [cos 2(í - _)]5 - 0. 

Я 

í 
0 
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From the above we can see that the function f(t) = —(1/2) In [I — (1/2) 
sin 2(t - a) sin2 n(t - a)] satisfies the conditions of Theorem 3.9 and consequently 
the equation with the carrier defined with the aid of this function 

q(t) = / ' ( 0 + / 2 ( t ) + 2nf'(t) cot [n(t - a)] - n2 (<£ qjt, a)) 

has only half-periodic or periodic solutions, with period n and exactly n zeros on 
[0,7.). 

Thus we can state the following theorem. 

Theorem 3.10. Let £n be the set of all phases of all the differential equations whose 
every solution is periodic (n even) or half-periodic (n odd) with period k and exactly n 
zeros on [0, k). Then 

where H is the elementary phases group, an an arbitrary phase of the equation with 
a carrier qn(t, a) and f an arbitrary phase of the equation with the carrier — (njk)2. 

Next it holds 

Theorem 3.11. Let 0tn be the set of all phases of all the equations whose every solution 
is periodic (n even) or half periodic (n odd) having exactly n zeros on the halfclosed 
interval of the appropriate periodlength. Then 

-*. = u «J&, 
keR + 

where R+ is the set all positive real numbers, <xn andfk arbitrary phases of the differential 
equation with a carrier qn(t, a) and —(njk)2, respectively. 

In Theorems 3.10 and 3.11 we can also use as the phase a„ any phase of the equation 
f = ~n2y. 

From Theorems 3.2, 3.8 and 3.11 we arrive at 

Theorem 3.12. Let !Fn be the set of all phases of all the equations with Fn-carriers 
(i.e. of the equations with the coinciding n-th central dispersions <pn, il/n of the 1st and 
2nd kind). Then we can write 

^n = {a e 0tn : {a, t} + (a')2 > 0, a e C 5 for each t e ( - oo, oo)}. 

Thus we see that all Frt-carriers can be characterized with the aid of phases of all 
the negative elementary carriers from C2, next with the aid of phases of the negative 
carriers qn(t, a) and finally with the aid of phases of the negative constant carriers. 
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