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Commentationes Mathemat icae Universitatis Carolinae
1. ¢+ (1960)

NOTE ON THE TAPER OF I.FENY(: .
ON THE SOLUTION OF NON~' INEAR EQUATIONS IN BANACH SPACE
Josef KOLOM{, Praha

It is shown that in the well known article of I.Fenyo
[1] the rroofs of both thecrems are erroneous. Theorem 3
is a coraction of the theorem 2 ( [1] ).

Let the equalion
(1) Foxy=1y
be given, where a non=linear operator f (x) maps Banach
space X in Banach space Y . We denote by F(x) the ex -

pression f(x)«y » I.Fenvo proves [1] the following theo-
Tems: '

THEOREM 1. Let #£(X)} be a non-linear operator which
maps B -space X in [ ~space Y and has in A4 =
neighbourhood of the element x,€X the following proper=
ties:

1)} In the point X, it has the Frechet’s derivation, thers
exists Fx,)7" and IIF' (%.) )y 'lI5 B

Dol Clx -xl for lx-x. I £ x< 35T

Then the equation (1) has a unique solution X in A -neigh-
bourhood of X, for every Y€ Y  which yields the inequa-

lity
(2) ly-foxolls n = A3BLE—u .

The iterative precess defmed _by the equallty
Xn = Rpq = (Xm--'t),] F(Xm-1 )y m 4 2'
is convergent in the norm of "the space X to the solution

x¥  of (1). |

THEOREM 2. Let J(x) be a non-linear operator which r
maps B -space X in B -space Y and has in A -neigh -
bourhood of the element X, eX a continuous Frechet’s derl-
vation. If there the operator f(X, exists and the

inequality I Cx °)~4 [fg Fix, )] ” £ x4~ -q)
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holds for every X for which fx-x, /| £ & , then the
equation (1) has a unique solution X~ in A -neighbourhood
of tbe element K,GX for every ye€ Y which yields the

inequality ”f'(x.)-4 [y-f(xo)J I ¢n(1-9)

The modified Newton-Kantorowitch iterative process definea

by the equality = §n-1 "[F{(x.)]-"F(fn-‘v),

where F(x) =' f(x)- Y , is convergent in the norm of the
space A to the solution X of (1).

The proof of theorem 1 is establiéed on the validity
of the inequalities NF&)NEn  NF'e) ) =
yielding in l!x xollé (A . We show that these estimatie
ons are not held. Above all the estimation MF(x)% /]
does not follow from the assumptions of theorem 1 for eve-
ry X from le—xo " L,

Further the inequality || Fl(x) Il £ —,%" does not,
hold for every X for which is [[x-x,/l< n valid.

PROOF. There exists the operator

To=(0-F ) " )= F6)))

"T(X) " £ 1 _/'ch < g for every X fronm

Ix-x.l1% .
It follows from the inequalities

F ') [Faxa-Fe)h € IF e I 1FG)-Fooll £

$BClIx-xll &€ BCr < 4
and Banach theorem. Further we obtain

F'ix,) T00= Flxo) (I-Fix ) ' Fr-£60])=
=F'ox ) Fx)" Floxr= Flex)
Flx)™ ={F'(x°3T’(x)}"’=T(x> Flixa) ™ .

Therefore the operator F ’(x)'4 exists in # -neighbour=
hood of the element X, and /| F'tx)~7 || <%B
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; Let us now_assume that //F'(x) ” =<7';“— for every X
from lIx-x, Il £ . Then
1= F')1F (x)ll< Pl IF '« i<3 B ZL-

.3p 2-3BCx 3
B MB ,<41<4'

Therefore the above mentioned estimation does not hold. Fur~
ther the application of theorem 1 is not advantageous, becau=
.se in practical problems it is yielding when //x - Xg I< & y
where ¢& is rather small such that x, can be considered-
es a good approximate solution of the equation (1),

The proof of theorem 2 (see [1] ) is erroneous because:
a) the equalities (25), (26) (see [l ) do not hold because
Lagrange formula has no validity for operators in general
(see [2] y § 3)
b) from the condition of theorem 2 does not follow the uni -

city of the solution x* of (1) in 4 =neighbourhood of
X.GX .

THEOREM 3. Let f(x) be & non~linear operator which
maps B -space X in B -space ¥ and has the follo=-
wing properties:

1) For every X fron llx—x ”5 it has the derivation of
Frechet, there exists the operator i ‘(%)™ and

hfixy " lI< B )

2) I ') -f xIEC " forllx-x,14x  ena 0<BC<4 .

Then the equation (1) has a unique solution x* in 4-neigh-
bourhood of x,€X for every element 4 €Y  which
yields the inequality [y -f(%. M2 ’l 1-g).

The modified Newton<Kantorowitch 1terative process defihed
by the equalit. e, =
q J §“ = §n_4 - F (x,) F(gm -,,)

is convergent in the norm of the space X to the solution
P 3
X of the equation (1).
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