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Commentationes Mathematicae Universitatis Carolinae
' 1, 4 (1960)

BIORTHCGONAL SYSTEMS AND BASES IN BANACH SPACE
' (Preliminary Note)
Jir{ VANIUEK, Praha

In all this paper [ denotes a Banach space {x,,,,, .,f,n}
a biorthogonal system in B , (i.e.x,eB f.,.,e Bﬁ' fo ;)= 0

for 't¥J 7 and  fu (X)) = 4 for m= 4,2,...) such that {x,,,}
ig fundamental in B (i.e. [{x }J1=B ). The sequence

.{x,,.,} is the base B , if z fn.("’?(n.- X -
" raEoREM 1. [ : Ifm I 5_ £ ()% <400 <> X =
’ 0.=4
Z f”(x)x,,., 7
mxe1

then {x,,.,} is the base B .

‘ ‘The consequence of results of N.S.Foguel [5] is, that
in the case that {X,} is no base of B , no two of the
‘sets

E =€ (x= Z Ju %) E £ (».\a/p Ilz f,,(x)x,,uuoo)

xeB m=q Se24 mz4

E,=€ wa»llsz(x)xwll-m) E£ (fum uz £ )% ll=t02)

X&B =4 m=4

are coincident. N.S.Foguel has proved that E, anda E, are
the first. "category in B in the case mentioned above. The
generalization of this result gives the following theorem.. -

THEOREM 2. [14 :Ichy =0 only if ¢; =0
for 1=4,2,..., then the set of those x e B , which ecan -
be represented in the form x— Z C, Yy 1 is the first ce~
tegory in itself, oomet ‘

An ir ?inite semimatrix T= ('t )4, 42,...5.3 called quasi -

consistent, ifr .&m'u S__ ‘l;‘, =4 af" 81 /&~ 42, ceen
L>0 4=k

This conception is-more general than the so called
Toeplitz ’ metrix usually empioy%coi for summebilitation of in-
finite series, If there exists Z t; . 7 Yy for all 4',
and a&m 2 b, 'ya =y Ty iP5 said ‘that the sequence
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end we shall use the denotation (T)Eum, = « There
m->oo Yn y
follows:

THEOREM 3, [15] : If T is & quasi-consistent semime-
trix and (T)f Cpo X =X for any numerical sequ-ace
{c“} ’ then ¢, = £ (X)) for m=4,2,... .

Ir {t.} is total in B (£, 0)=0 form=1,2,.=>x=0)
and if for the quasi-consistent semimatrix T is

(T)Z FaOIXp =y, then y=x .

THEOREM 4o [15] : If for x € B only a finite number of
elements of the sequence {f (K)} is equal to zero, then
exists a quasi-consmtent semimatrix T such that

(T)Z fw(x) Xm = .

An example may easily be found where it can be shown
that the a§sumption of the finite number of zero terms in
the expansion of the element x from theorem 4 is substan
tial. It is by no means clear whether this assumption may
be omitted, when the totality of the sequence-{f%} is re =
quired.

Let us denote H.L the Banach space, the elements of

which are functions, holomorphic for |zl< % and contie=
- nuous for lzl_ s with the usual algebraic operations
and the norm IIf /= ?&ax I f @) .

Let {#,} Dbe a decreasing sequence of resl number,

converging to 1. Let B be a strict inductive limit [4]
- of the spaces Hm,,b o It may be shown that the powers

1,%, z",... , form a basis of the locel convex topologi-
-cal space %  (which is of course nonmetrizable), but no -
basis of the Banach space H, . The question of the exis-
tence of a base in H1 remains unreplied at present. The
method of finding this base by means of base in the space
of harmonic functions is ineffectual [1 3]

Fuf’ther there may be pro%ed:

 THEOREM 5 [17] : Let B be a separable Banach space.
Then there exists a subspace of the space H, isomorfic
(algebraical and topological) with B .

Therefore and from the generalized James~ rvesult 3



‘ there follows

THEOREM 6 [17] : There exists no unconditional %) pasis
in the space H -

Let us denote S, (x) -f ’ ]six(x) x5 - It is useful to
inveat:lgate such sequeneesawhere either s, O<) is the best
appreximation of the element X by means of the elements
grom [{x;}.7,] =~ , or the residue x-S, (%) is the
best spproximation of the element X from [{X; ) emss) o

DEFINITION [16] : Let {x.] be a fundemental sequence
in B , composed exclusively of nonzere elements. We then
say that

1) {x.} 1is approximating from the right, if for eny
I II<Z”tx ”
numbers . t,,.., t,,, there is |

2) {X...,}‘ is well approximating f’rom the right, if for
any numbers t,,..., tn end lpe ¥ 0 there is

NE % <l x|
| 3) {x } is approximating from the 1eft, if for eny

‘pumbere  by,..., b there is ”Z R ﬂZ tx l
4) ‘{x.,,}. is well appraximating from the lef‘u, if for
| ‘mynumbers t,,,M ,...,ts, n<s andt' +0 there
18 ll’Z\‘ t.x: "("Z.Mt x, Il .

5) {X. } is epproximating, if it is approximating gi-
multsneously from the left end right s

, 6) { X } is well approximating, if it is well approxi-‘
mtin.g aimultaneously frum the left and right. :

THEOREM 6 [16] : A sequence {x.,,,} non-zero elements of

B -8 approximating from the right, if and only 1f there
exists a sequence {f,] such that {x., fn} is a bior-
_thogonal system snd s =4  for m=4,2,....

x) It is said that {x.,,,} is ean unconditional base B , if
| for each X € B and- each order {m.} of natural mxmbers

thenis Z fn (x)x =x'

“d=q
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A sequence {x,,,,} non-zerc ,elements of B is approxi~
mating from the lgft, if and onl 17 there exists a sequence
{f‘n} such that *me, 1fm-} is ¢ Liorthogonal system and

}]"7-3”[[:4 , where J is an identical mapping of B

THEOREM 7 [16] : If {x.} - a sequence of non-zero
elements of E> s approximating © on the left or right res -
pectively, then {xn} is a base of B .

THEOREM 8 [16] : If {Xn} .+ a base of B ,then exists

an equivalent norm - , by meons of which { x,,‘} is the
well epproximating seqwence of (%, L) .

THEOREM © [16] ¢ Let {x,,,} e a sequence of non-zero
elements of B . Then

1) {Xm} is approxima;.ing from the right, if and only
if l‘ﬁﬂ(x)ﬁm?{x " [{x-i,li«:n,.,w“’) ]

2) {X,,,} is well approximeting from the right, if and
only if, furthermore,ﬂx-y ”< © (;*;f,f{xf,‘}4;=z+ 4] is valid,
as soon a8 Y e[{x,;}f,_ﬂ+4] , WF X ~85p(X) -

3) {.?i,n} is approximating from the left, if and only if
fx ~smo = px, [{x;}e 27

4) { %%f- is well approximeting from the left, if and
only if, fur{hermcre, ﬂx,—-y ”<p (x ,f{xi }1; :,,J i\s valid,
as soon as Y E’[{Xé }4;:1"41, Y F 5n (X)

From the following generél tr=2orem there foilows that
there need not exist a base approrimating from the left in
each separable Banach space, '

THEOREM 10 [16] : Let { x,,,} be & base of the space

€<0,1> and m a natural number. Then there exisi “wo

elements 4 e‘ﬂf'<0,4> ’ ' e 5:{.’&'1;}{. 24 suc'ih that.
I = sp (R[> A= B !
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