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Commentationes Mathematicae Universitatis Carolinse

2. 4(1961)

ON INTEGRATION IN COMPACT METRIC SPACES
Zden&k HEDRLIN, Praha

‘Theorem. Let M be a finite Borel measure on a com-
pact metric space X . Then there exist X © Xy, k= 1,24,
such that, for any continuous f‘unc}‘iion £

/" £a = t(X) llmn 2- £ (%)
% n-» o0 k=1

Proof. Clearly we may suppose that «(X) = 1 and
¢4 (G) > O for eny open non-void GecX . It is easy to
prove that there exist finite closed coverings

{Af A Aﬁl}, m=1, 2, ... 8uch that

(1) ﬂ'm#-l refines 'ﬂ’m .

/

X0y d(ﬂ ) -> 0 where d(u‘l{n) denotes the maximum of

diameters of A? y
(3) (U;(A? M 83)'= 0 for 174,

@) (Agl) >0 for eny m, j ;

then, evidently,
(5) for any m, m°, m > m", there exists, for every.

i=1, «es, vy, exactly one j = j(i) with Am C Agl .

Mofeover, we may suppose theat :
(6) 1) < i, dmplies (i) < j(iy) .
Denote by. B? BN Do lj =1y wedy vy the elo-

J
sed interval with endpoints X w (A?), 2121 (u(AIj[_l) . For
i=] i |

o ; . gei
any set M C<O, 1> y denote. by XM the characteristic -
- 17 -



function of M; that i, ,'X, is defined on <0, 1>
equal to: .1l -on " M, -and to O on its complement. It is
well known that there exists a sequence {§ K

L <,

1l , such that, for any 0% €L <

0) sl & =
=K a
Laas .
g ~ VUNE G R
'rL]l;LE n k=1 ‘@ (é li:) = p-x
It is easy to see that § i hay be chosen to be distinct

from any endpoint of the intervals B? .
For a given k , there exists, for any m , exactly
< m+l
C
. Bm since Ag(m+l)

= j(m) such that e

one
(this follows from the abova property (6) ), the

m
» Aj(m)
intersection Ck of' all A?(E) is non-void. Now, choose
. We are going to show that

a point X, from every le

858 the required poperties.

X Posse
For any I X, put
; n
: 1%
x
e (Y) = lim sup — . X (x.)
iy Bookel vy P AR

n
s |
-, (Y) “nl]iiﬂa&m =1 Xy (%),

is the characteristic function of ¥

X, (X)) =3 f xey) X () 1 e £ x )
the 'colleection of " those 2 ¢ X which
m 4 as union of certain

e (2) 5 On

(1.6,

where X "

Denote by %
can be represented, for some
A? - Clearly, Z €& * implies 4, (2Z)
the other hand, for any closed F ¢ X
€ ¥ such that F n 7

md eny £ > 0,
there exists Z ity O
n(z2) » 1 - «(F) -~ ¢ . Hence
e (Z) & odow
Therefore ' ¢ ,u (F) for any closed F ,
: - 18 =~

i (2) € [ (F) +¢

(u, (1") §
%( and



Az = M, ()= m (7)) for Z € X .
Moreover,

ﬁd‘(F) = 0 whenever P is closed, w (F) = 0. :
It follows that ~ i
fgd/u’:lim}—— g(xj
ot Sip oD k=1 k :
for any function g which is, for some m , constant in
the interior of each A? . This concludes the proof since

every continuous function can be uniformly approximated
by functions of this kind.
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